
Named Entity Recognition from Diverse Text Types
Diana Maynard and Valentin Tablan and

Cristian Ursu and Hamish Cunningham and Yorick Wilks
Dept. of Computer Science

University of Sheffield
Regent Court, 211 Portobello St

Sheffield, S1 4DP, UK
[diana,valyt,cursu,hamish,yorick]@dcs.shef.ac.uk

Abstract

Current research in Information Extraction
tends to be focused on application-specific sys-
tems tailored to a particular domain. The Muse
system is a multi-purpose Named Entity recog-
nition system which aims to reduce the need for
costly and time-consuming adaptation of sys-
tems to new applications, with its capability for
processing texts from widely differing domains
and genres. Although the system is still under
development, preliminary results are encourag-
ing, showing little degradation when processing
texts of lower quality or of unusual types. The
system currently averages 93% precision and
95% recall across a variety of text types.

1 Introduction

Most Information Extraction (IE) systems (Cowie
and Lehnert, 1996; Appelt, 1999; Cunningham,
1999b) are designed to extract fixed types of infor-
mation from documents in a specific language and
domain. To increase suitability for end-user appli-
cations, IE systems need to be easily customisable
to new domains (Karkaletsis et al., 1999). Driven
by the MUC competitions (e.g. (Sundheim, 1995;
Sundheim, 1998)), work on IE, and in particular
on named entity recognition (NE), has largely fo-
cused on narrow subdomains, such as newswires
about terrorist attacks (MUC-3 and MUC-4), and
reports on air vehicle launches (MUC-7). In many
applications, however, the type of document and
domain may be unknown, or a system may be
required which will process different types of doc-
uments without the need for tuning.

Many existing IE systems have been success-
fully tuned to new domains and applications - ei-
ther manually or semi-automatically – but there
have been few advances in tackling the problem
of making a single system robust enough to forego
this need. The adaptation of existing systems to
new domains is hindered by both ontology and
rule bottlenecks. A substantial amount of knowl-
edge is needed, and its acquisition and application
are non-trivial tasks.

For systems to deal successfully with unknown
or multiple types of source material, they must
not only be able to cope with changes of domain,
but also with changes of genre. By this we mean
different forms of media (e.g. emails, transcribed
spoken text, written text, web pages, output of
OCR recognition), text type (e.g. reports, letters,
books, lists), and structure (e.g. layout options).
The genre of a text may therefore be influenced
by a number of factors, such as author, intended
audience and degree of formality. For example,
less formal texts may not follow standard capi-
talisation, punctuation or even spelling formats.
The MUSE project aims to identify the parame-
ters relevant to the creation of a name recognition
system robust across these types of variability.

2 Entity Types

The MUSE system identifies the same types of
entity as detailed in the MUC guidelines, but with
two additional types: address and identifier. The
entities and sub-entities are as follows:

• Entity: organisation, person, location

• Time: date, time

• Number: money, percent

• Address: email, url, telephone, ip

• Identifier

We have largely followed the MUC-7 guide-
lines for the definition and markup of entities
(Douthat, 1998), but we have made a few changes
in order to remove some anomalies and to make
the entities found more practical for further ap-
plications. For example, we include the title of
a person in the markup, e.g. we annotate [Dr.
John Smith] rather than Dr [John Smith]. We
also combine sub-types of entity (e.g. combina-
tions of dates and times which occur consecutively
are annotated as dates).



The MUSE system is based on GATE, a Gen-
eral Architecture for Text Engineering (Cunning-
ham, 2001; Cunningham et al., 1997), which is
an architecture, framework and development en-
vironment for language processing R&D. GATE
is an instance of a Software Architecture for Lan-
guage Engineering (Cunningham, 2000; Cunning-
ham, 1999a).

3 Processing Resources

The system requires three main processing re-
sources: a tokeniser, a gazetteer and a finite
state transduction grammar. The resources com-
municate via GATE’s annotation API, which is
a directed graph of arcs bearing arbitrary fea-
ture/value data, and nodes rooting this data into
document content (in this case text).

The tokeniser splits text into simple tokens,
such as numbers, punctuation, symbols, and
words of different types e.g. with an initial capi-
tal, all upper case, etc.). The aim is to limit the
work of the tokeniser to maximise efficiency, and
enable greater flexibility by placing the burden of
analysis on the grammars. This means that the
tokeniser does not need to be modified for differ-
ent applications or text types.

The gazetteer consists of lists such as cities,
organisations, days of the week, etc. It not only
consists of entities, but also of names of useful
indicators, such as typical company designators
(e.g. ‘Ltd.’), titles, etc. The gazetteer lists are
compiled into finite state machines, which can
match text tokens.

The grammar consists of hand-crafted rules
describing patterns to match and annotations to
be created as a result. Patterns can be specified
by describing a specific text string, or annotations
previously attached to tokens (e.g. annotations
created by the tokeniser, gazetteer, or document
format analysis). Rule prioritisation (if activated)
prevents multiple assignment of annotations to
the same text string. Section 5.1 describes how
the grammar rules can be adapted to deal with
different text types.

3.1 Implementation of the processing
resources

The implementation of the processing resources
is centred on performance, usability and the clear
distinction between declarative data representa-
tions and finite state algorithms. The behaviour

of all the processors is completely controlled by
external resources such as grammars or rule sets
which makes them easily modifiable by users that
do not need to be familiar with programming lan-
guages.

The tokeniser is implemented as a finite state
machine (FSM) that uses the classes of charac-
ters defined by the Unicode 2.0 specification as
input symbols, and outputs annotations on the
document being processed. The use of Unicode-
defined categories allows for generality, as the
same tokeniser can be used to process text in vir-
tually any language. We have successfully tested
it on Western and Cyrillic languages, and it is
used by the EMILLE project (McEnery et al.,
2000) for processing Indic languages.

The gazetteer is also implemented as an FSM,
which is built at initialisation time starting from
the list of phrases that need to be recognised. It
runs directly over the text being processed, and so
does not depend on any other processing resource.
Again, the gazetteer is capable of handling Uni-
code input, which makes it usable for text in any
language.

The third type of processing resource used is
a Jape transducer, (Java Annotation Patterns
Engine – (Cunningham et al., 2000)) which han-
dles most of the workload in the Named Entity
recognition system. It is implemented as a cas-
cade of phases, each of which is a finite state
transducer. The transfer of temporary results be-
tween phases is done via a GATE document which
is the only data source shared between the phases.
One advantage of this approach is that the results
of one phase can then either be used by any num-
ber of subsequent phases, or constitute output of
the whole system.

The way Jape transducers work can best be de-
scribed as a regular expression matching mecha-
nism that uses a directed graph of annotations as
input. So far, we have successfully used Jape for
named entity recognition and sentence splitting,
and we intend to experiment with it in other fields
such as shallow syntactic parsing. The phases
that compose a multiphase Jape transducer are
independent entities, which means that they can
be reordered, reused in other applications or even
executed in parallel if they do not depend on
each other’s results. Like the other processing
resources, the Jape transducer is capable of han-
dling Unicode input.



Domain Format Type
Natural/Pure Sciences written book

email mailing list
Computing email mailing list
Commerce/Finance written periodical

spoken monologue
Education spoken monologue
World affairs written misc.
Social sciences written misc.
Public/Institutional spoken dialogue
Imagination written misc.
Arts written misc.

Table 1: Composition of Corpus

Although at the moment we are only using
hand crafted rules, it would be possible for an
application to learn rules automatically for the
Jape transducers in a manner similar to (Day et
al., 1997). These rules could then be verified or
ammended by a human if necessary, as they are
human readable.

The fact that all the processing resources em-
ployed are using the FSM technology makes them
quite powerful in terms of execution times. Our
initial experiments show that the full named en-
tity recognition system is capable of processing
around 10 KB of text per second (independently
of the size of the input file; the processing require-
ment is linear in relation to the text size), and we
hope to improve on this figure in future.

4 The data

For training and testing purposes, we have com-
piled a corpus containing texts which are diverse
in terms of domain, format, style and genre. This
aims to ensure that the system can cope ade-
quately with any kind of text, and that its fu-
ture use is not limited to any particular text type.
The data comes from 3 sources: a subset of the
BNC (British National Corpus) comprising both
spoken and written text; a set of emails from a
medical mailing list; and a set of emails from a
computer helpdesk. The corpus is subdivided as
shown in Table 1. the spoken and written data to-
gether comprises about a million words; the medi-
cal mailing list about 530,000 words; and the com-
puter helpdesk data about 200,000 words.

5 Processing different text types

The MUSE Named Entity recognition system is
designed to process multiple types of text in a ro-
bust fashion, with minimal adaptation. It is hard
to generate this kind of robustness in a system
without sacrificing specificity (and thereby either
precision or recall, or both). To overcome this
problem, the system is designed so that it can
be adapted to the situation through the use of a
set of resource switches, which operate according
to certain linguistic or other features of the text.
For example, information about the domain of the
text may cause the system to turn on or off a spe-
cific set of gazetteer lists related to that domain.
Similarly, information about the text format may
require different grammar rules to be used in or-
der to preserve or ignore the layout of the text
(e.g. addresses in letters and emails). In Table 2
we give an example of some features of different
text formats which have an impact on our core
NE recognition system.

5.1 Adapting the resources to the text
type

So far, we have identified a number of features of
different text types which require adaptation to
the processing resources. Although changes may
be necessary to both the grammars and gazetteer
lists, the adaptation is only required in the gram-
mars themselves, because the gazetteer lists are
designed in such a way that they can be manipu-
lated in different ways from the grammar. When
calling for entries found in a gazetteer, we can
specify a broader or narrower set, depending on
our requirements (e.g. we can specify that mili-
tary titles are to be included or excluded as part of
a set of general titles). Currently, the correct re-
source set for a particular text type must be man-
ually loaded, although it is intended to automate
this facility by means of a lookup table associ-
ating certain textual characteristics with specific
grammars.

Below we outline some of the switches we use
to deal with different types of text format and
domain.

5.1.1 Email-specific requirements

Emails tend to be the least predictable type of
text in structural terms, because they may be very
well structured or not at all. Much may depend
on the particular email program used to produce



Written Spoken Email

Line Breaks control char replaces space control char replaces space control char in addition to space

Spacing no extra spaces some extra spaces some extra spaces

Other space types none none reply separators

Spelling few errors some errors with names errors with all words

stumbles etc. mid-word/entity

Punctuation mostly correct some missing frequent spurious and missing

Capitalisation mostly correct some missing capitals missing and extra capitals

Numbers as figures as words as figures

Abbreviations interspersed with spaces

Table 2: Features of different text formats

the original text - for example, if line breaks are
forced. They are also wildly different in terms of
formality, which has an impact on features such
as use of punctuation, correct spelling etc. How-
ever, there are certain clues given by the email
header information which can be used to assist
with processing. The grammar used for emails
varies in two important ways from that used for
other types of text.

1. More flexibility is permitted for emails re-
garding the use of spaces and control char-
acters. This includes the use of the reply
separator “>”.

2. An extra grammar is used which processes
header information (e.g. the “to:” and
“from:” lines) and some information about
hostnames and specifications (also usually
found in the header lines).

5.1.2 Email and spoken text
requirements

Both emails and (transcriptions of) spoken
texts may be considered in some way as “degraded
input” in that they do not necessarily conform to
correct usage of English. In particular, capital-
isation, punctuation and spelling norms are not
always obeyed. Punctuation and spelling are is-
sues that have not been fully tackled as yet. How-
ever, grammars for email and spoken texts both
have a switch which turns on the use of entirely
lowercase names. By default, this is only fired
when the name in question is not ambiguous with
a common noun, although this can be overridden

in the case where context makes it clear that a
name is being used (e.g. following words such as
“Dear” in a letter or email).

5.1.3 Scientific texts
In scientific texts, single initials are often used,

for example when referring to points on a graph,
e.g.

“The closer to AD a trajectory starts,
the closer to one of the points R or L it
will return.”

In such situations, we attempt to recognise these,
in order to prevent them from being identified as
part of a person or company’s name. From anal-
ysis of the sample texts, we also find that most
unknown proper nouns are names of people, so
we set the default unknown switch to Person.

5.1.4 Religious texts
Although it may not seem intuitive that reli-

gious texts require any special treatment, they
tend to involve sets of names not commonly used
elsewhere (and which might have different mean-
ing in other situations). For example, it is likely
that names such as “God” and “Jesus Christ”
found in non-religious text are being used as ex-
pletives rather than as real references to entities,
whereas in religious texts we can be fairly sure
they are being used to represent people1. We
therefore have a switch for religious texts which
turns on the use of specific gazetteer lists for
names of biblical people and places.

1Whether we view them as people or not is largely im-
material, since the original authors did.



6 Evaluation

The system was tested on texts drawn from the
test corpus, after minimal training on similar
texts. It was also tested using the standard
core set of resources to provide a baseline for
evaluating the genre adaptivity features, as op-
posed to the specific resource set for that do-
main and text type. The test texts were split
into 4 groups: medical emails (EMLMED), spo-
ken miscellaneous texts (SPOMISC), written sci-
entific texts (WRISCI) and spoken religious texts
(SPOREL). Each group consisted of 4 randomly
chosen texts.

The sample texts were evaluated according to
precision, recall, and F-measure according to the
formulae below, with a half weight accorded to
partially correct answers (i.e. where the entity
type is correct but the span is incorrect). The
weighting for the F-measure is 0.5, i.e. equal pref-
erence is given to precision and recall.

Precision =
Correct + 1/2Partial

Correct + Spurious + 1/2Partial
(1)

Recall =
Correct + 1/2Partial

Correct + Missing + 1/2Partial
(2)

F −measure =
R ∗ P

0.5 ∗ (R + P )
(3)

The results were generated automatically using
GATE’s ‘annotation diff’ tool.

6.1 Results

The results depicted below are averages for each
group of texts.

Figure 1 shows the precision, recall and F-
measure by entity type for the SPOMISC group.
The results are consistently high, with percent-
ages and addresses achieving perfect scores of
100%. This is in line with MUC experiments,
where the best systems achieved name recogni-
tion in the high 90s.

Figure 2 depicts the average precision, recall
and F-measure for 3 groups of texts – SPOMISC,
SPOREL and EMLMED, . Somewhat surpris-
ingly, email texts scored the highest here, with
the miscellaneous spoken texts achieving slightly
lower scores, and the religious texts scoring the
lowest. However, given that more time has been

spent on tuning the resources to emails, and very
little time training on the religious domain, it is
not so unexpected.

Finally, Figure 3 shows how the F-measure
varies when a specific grammar set is used rather
than the standard set. For this test, we did
not use the SPOMISC data, since it uses the
default grammar set anyway. Instead, we used
the SPOREL data. For emails there is very lit-
tle difference, but this is perhaps coincidental,
since a small number of test texts were used, and
we might expect to find greater differences with
other email texts. For religious texts there was a
slight improvement, mainly for the Person entity.
For scientific texts there was a marked difference,
largely again in the Person entity.

Figure 1: Average results by entity type for
spomisc

Figure 2: Average results by text type

We shall discuss below in more detail the results
for the different entity types found in each type
of text.

6.1.1 Business monologues
On these spoken texts in the general domain of

business, the system scored 100% precision and
93.3% recall, only producing errors for 2 entity
types - person and date.



Figure 3: Average F measure using different
grammars

6.1.2 Religious monologues

On this text, the system scored well when used
with the religious set of resources, falling down
slightly on organisation and person. This was
mainly due to wrongly spelled words and spac-
ing errors (e.g. no space between two words).
When this text was tested with the core gram-
mar and gazetteer, precision fell very slightly and
recall dropped a couple of points. This was largely
due to religious names not being recognised with
the standard grammar.

6.1.3 Scientific books

The results for the scientific books were slightly
lower than for the religious texts, with Person
scoring low on recall (63%). This was largely
because of surnames being used on their own,
without contextual clues. There was, however,
a marked improvement in both precision and re-
call over the same text being processed with a
standard set of resources, as discussed earlier.

6.1.4 Medical emails

The email texts also performed well, achieving
100% precision and recall on dates, and 100% pre-
cision on organisations, although they fell down
slightly on recall of locations (due to typographi-
cal errors). There is little difference between us-
ing the standard grammar and the email-specific
grammar, although we might expect this differ-
ence to be more noticeable with texts which make
more use of certain stylistic features such as ad-
dress layout.

7 Conclusions and Further Work

In this paper, we have described a system for
named entity recognition from texts of widely dif-
fering domain, format and genre. The results so
far look very promising, in that we are able to
achieve high recall and precision scores with min-
imal alterations to the processing resources. At
the same time, it is clear that these alterations
are important to the overall success of the sys-
tem. The next major step will be to automate
the process of determining which set of process-
ing resources to use. We also plan to improve
the scope of the system and decrease time spent
developing new rules by investigating methods of
learning new rules, for example by detecting use-
ful contextual information automatically.

References

D. Appelt. 1999. An Introduction to Information
Extraction. Artificial Intelligence Communications,
12(3):161–172.

J. Cowie and W. Lehnert. 1996. Information Extrac-
tion. Communications of the ACM, 39(1):80–91.

H. Cunningham, K. Humphreys, R. Gaizauskas, and
Y. Wilks. 1997. Software Infrastructure for Nat-
ural Language Processing. In Proceedings of the
Fifth Conference on Applied Natural Language Pro-
cessing (ANLP-97), March. http://xxx.lanl.gov/-
abs/cs.CL/9702005.

H. Cunningham, D. Maynard, and V. Tablan. 2000.
JAPE: a Java Annotation Patterns Engine (Sec-
ond Edition). Research Memorandum CS–00–10,
Department of Computer Science, University of
Sheffield, November.

H. Cunningham. 1999a. A Definition and Short His-
tory of Language Engineering. Journal of Natural
Language Engineering, 5(1):1–16.

H. Cunningham. 1999b. Information Extraction: a
User Guide (revised version). Research Memoran-
dum CS–99–07, Department of Computer Science,
University of Sheffield, May.

H. Cunningham. 2000. Software Architecture for
Language Engineering. Ph.D. thesis, University of
Sheffield. http://gate.ac.uk/sale/thesis/.

H. Cunningham. 2001. GATE, a General Architec-
ture for Text Engineering. [in press], ??(??):?? Ac-
cepted for publication by Computing and the Hu-
manities, May 2001.

D. Day, J. Aberdeen, L. Hirschman, R. Kozierok,
P. Robinson, and M. Vilain. 1997. Mixed-Initiative
Development of Language Processing Systems. In
Proceedings of the 5th Conference on Applied NLP
Systems (ANLP-97).



A. Douthat. 1998. The message understand-
ing conference scoring software user’s man-
ual. http://www.itl.nist.gov/iaui/894.02/-
related projects/muc sw/muc sw manual.html.

V. Karkaletsis, C.D. Spyropoulos, and G. Petasis.
1999. Named Entity Recognition from Greek texts:
the GIE Project. In S.Tzafestas, editor, Advances
in Intelligent Systems: Concepts, Tools and Appli-
cations, pages 131–142. Kluwer Academic Publish-
ers.

A.M. McEnery, P. Baker, R. Gaizauskas, and H. Cun-
ningham. 2000. EMILLE: Building a Corpus of
South Asian Languages. Vivek, A Quarterly in Ar-
tificial Intelligence, 13(3):23–32.

Beth Sundheim, editor. 1995. Proceedings of the
Sixth Message Understanding Conference (MUC-6),
Columbia, MD. ARPA, Morgan Kaufmann.

Beth Sundheim, editor. 1998. Proceedings of the Sev-
enth Message Understanding Conference (MUC-7).
ARPA, Morgan Kaufmann.


