
Indexing and Querying Linguistic Metadata and Document Content

Niraj Aswani and Valentin Tablan and Kalina Bontcheva and Hamish Cunningham∗

Department of Computer Science
University of Sheffield

Regent Court, 211 Portobello Street
Sheffield, S1 4DP, UK

{niraj,valyt,kalina,hamish}@dcs.shef.ac.uk

Abstract

The need for efficient corpus indexing and
querying arises frequently both in machine
learning-based and human-engineered natural
language processing systems. This paper
presents the ANNIC system, which can index
documents not only by content, but also by their
linguististic annotations and features. It also
enables users to formulate versatile queries mix-
ing keywords and linguistic information. The
result consists of the matching texts in the cor-
pus, displayed within the context of linguistic
annotations (not just text, as is customary for
KWIC systems). The data is displayed in a
graphical user interface, which facilitates its ex-
ploration and the discovery of new patterns,
which can in turn be tested by launching new
ANNIC queries.

1 Introduction

The need for efficient corpus indexing and query-
ing arises frequently both in machine learning-
based and human-engineered natural language
processing systems. A number of query systems
have been proposed already and (Christ 94), (Ma-
son 98), (Bird et al. 00a) and (Gaizauskas et al.
03) are amongst the most recent ones. In this
paper, we present a full-featured annotation in-
dexing and retrieval search engine, called ANNIC
(ANNotations-In-Context), which has been devel-
oped as part of GATE (General Architecture for
Text Engineering) (Cunningham et al. 02).

Whilst systems such as (McKelvie & Mikheev
98), (Gaizauskas et al. 03) and (Cassidy 02)
are targeted towards specific types of documents,
(Christ 94), (Bird et al. 00a) and (Mason 98) are
general purpose systems. ANNIC falls in between
these two types, because it can index documents
in any format supported by the GATE system
(i.e., XML, HTML, RTF, e-mail, text, etc). These
existing systems were taken as a starting point,
but ANNIC goes beyond their capabilities in a
number of important ways. New features address

∗This work was partially supported by an AHRB grant
ETCSL and an EU grant SEKT.

issues such as extensive indexing of linguistic in-
formation associated with document content, in-
dependent of document format. It also allows in-
dexing and extraction of information from over-
lapping annotations and features. Its advanced
graphical user interface provides a graphical view
of annotation mark-ups over the text along with
an ability to build new queries interactively. In
addition, ANNIC can be used as a first step in
rule development for NLP systems as it enables
the discovery and testing of patterns in corpora.

Section 2 introduces the GATE text processing
platform which is the basis of this work. Following
this, we briefly describe how Lucene is used to in-
dex documents (Section 3). This section also pro-
vides details of the ANNIC implementation and
the changes made in Lucene.

2 GATE

GATE is a large-scale infrastructure for natural
language processing applications (Cunningham et
al. 02). Lingustic data associated with language
resources such as documents and corpora is en-
coded in the form of annotations. GATE supports
a variety of formats including XML, RTF, HTML,
SGML, email and plain text. In all cases, when
a document is created/opened in GATE, the for-
mat is analysed and converted into a single unified
model of annotation. The annotation format is a
modified form of the TIPSTER format (Grish-
man 97) which has been made largely compatible
with the Atlas format (Bird et al. 00b), and uses
‘stand-off markup’ (Thompson & McKelvie 97).
The annotations associated with each document
are a structure central to GATE, because they
encode the language data read and produced by
each processing module. Each annotation has a
start and an end offset and a set of features asso-
ciated with it. Each feature has a name and a rel-
ative value, which holds the descriptive or analyt-
ical information such as Part-of-speech and sense
tags, syntactic analysis, named entities identifica-

tion and co-reference information etc.
JAPE, Java Annotation Patterns Engine, is

part of the GATE system. It is an engine based on
regular expression pattern/action rules over anno-
tations. JAPE is a version of CPSL (Common
Pattern Specification Language). This engine ex-
ecutes the JAPE grammar phases - each phase
consists of a set of pattern/action rules. The left-
hand-side (LHS) of the rule represents an anno-
tation pattern and the right-hand-side (RHS) de-
scribes the action to be taken when pattern found
in the document. JAPE executes these rules in a
sequential manner and applies the RHS action to
generate new annotations over the matched regu-
lar expression pattern. Rule prioritisation (if ac-
tivated) prevents multiple assignments of annota-
tions to the same text string.

This paper demonstrates how ANNIC indexes
GATE processed documents with their annota-
tions and features and enables users to formulate
versatile queries using JAPE patterns. The result
consists of the matching texts in the corpus, dis-
played within the context of linguistic annotations
(not just text, as is customary for KWIC sys-
tems). The data is displayed in a graphical user
interface, which facilitates its exploration and the
discovery of new patterns, which can in turn be
tested by launching new ANNIC queries.

3 Apache Lucene

ANNIC is built on top of the Apache Lucene1

a high performance full-featured search engine
implemented in Java, which supports indexing
and search of large document collections. Our
choice of IR engine is due to the customisability
of Lucene.

Lucene document is a basic unit of indexing
and search operations. All information associated
with Lucene documents is stored in units called
fields, where each field has its name and a textual
value. (e.g. contents, url, modified date etc.).
Analyzer knows what to parse and how to con-
vert text into the format that Index Writer un-
derstands. Index Writer builds a Token Stream
(a sequence of words), which describes informa-
tion about the token text. Token contains lin-
guistic properties, and other information such as
the start and end offsets and the type of the string
(i.e. the lexical or syntactic class that the token
belongs to). We will use the term Lucene token

1http://lucene.apache.org

Table 1: Lucene Token Generation
Lucene Token Position Increment
John 1
wants 1

Table 2: Lucene Token Generation
Lucene Token Position Increment
John 1
wants 1
want 0

to refer to the tokens created by Lucene. Fil-
ters take the stream of tokens as input and add
or delete Lucene tokens in the token stream. For
example, a stemmer would add a new Lucene to-
ken with base word for each word that is not in
its base form and a stop word filter would re-
move all stop words from the token stream so
that they do not get indexed. Not only Lucene
provides the ability to create user defined queries
through its API, it also supports a wide range of
predefined queries. This includes wild character
queries, boolean queries, phrase queries etc.

Every Lucene token has its own position in the
token stream. This position remains relative to its
previous Lucene token and is stored as a position
increment factor in the token stream. Consider
the example in Table 1 and Table 2 which show
the strings, the Lucene tokens derived from them,
and their respective position increments in the to-
ken stream. Executing a stemmer over the above
sentence would generate two extra words, which
are stored with 0 increments immediately after
the word they refer to in the token stream.

Along with its position increment attribute,
each Lucene token in the token stream comprises
of four attributes: text (e.g. wants), start offset,
end offset and type (e.g. word). Lucene stores
only the first attribute (i.e. text) in its indices.

When a Lucene query is submitted to the
Lucene query parser, an array that contains hits
is returned as a result. Each hit is an object that
contains a pointer to the document, in which one
or more patterns have been found, and the score
of that hit. Documents in this hit array are or-
ganized in a descending order of their scores, i.e.
the most relevant document appears first. This
arrangement allows users only to refer to the n
number of top most documents in the results.

4 ANNIC

The aim of the ANNIC system is to index the
linguistic information and other metadata and
retrieve the annotation patterns in the form of
KWIC concordances (see 5). After few changes in
the behaviour of the key components of Lucene,
we were able to make Lucene adaptable to our
requirements.

4.1 Lucene Token generation

As mentioned before, Lucene only indexes the
text attribute of a Lucene token. To meet our
requirements, i.e. to index the linguistic informa-
tion and metadata, Lucene was modified to in-
dex also the type attribute. Type attribute holds
a string assigned by lexical analyzer that defines
the lexical or syntactic class of the Lucene token.
GATE documents need to be separated into to-
kens by a tokeniser (GATE Token from now on)
before they get indexed with ANNIC. This is re-
quired as tokens are the basic segments of any
document and therefore they should be indexed
in order to perform full-text search. Every anno-
tation in GATE has a corresponding features as-
sociated with it. We create a separate Lucene to-
ken for every feature in the document. In the case
where multiple annotations and their features re-
fer to the same text in the document, we use the
“Position increment” attribute to indicate their
positions. Consider the following example:

E.g. the word Bill is annotated as:
GATE Token

POS: NNP

Kind: word

String: Bill

Person

Table 3 explains the token stream that contains
tokens for the above annotations. The annotation
type itself is stored as a separate Lucene token
with its attribute type * and text as the value
of annotation type. This allows users to search
for a particular annotation type. In order not to
confuse features of one annotation with others,
feature names are qualified with their respective
annotation type names. Where there exist multi-
ple annotations over the same piece of text, only
the position of the very first feature of the very
first annotation is set to 1 and it is set to 0 for the
rest of the annotations and their features. This
enables users to query over overlapping annota-

tions and features.
It is possible for two annotations to share the

same offsets. They can share either start, end
or both offsets. The built-in GATE annotation
comparator is used for this purpose. First, the
start offsets are compared and then the end off-
sets. If comparator returns two annotations as
sharing both offsets, such annotations are kept
on the same position in the token stream, and
otherwise one after another. This may lead to a
problem. What if annotations overlap each other
(i.e. they share only one of the start and end
offsets)? In this case, though annotations do not
appear one after another, they are stored one after
another. This may lead to incorrect results being
returned and therefore the results are verified in
order to filter out invalid overlapping patterns.

Before indexing GATE documents with Lucene,
we convert them into the Lucene format and re-
fer to them as GATE Lucene documents. In or-
der to fetch patterns for their left and right con-
texts, it was necessary for some old concordances
programs to have all documents available at the
search time (Mason 98). This may lead to serious
performance penalties. To overcome this prob-
lem, the token stream is stored in a separate file
as a Java serializable object in the index direc-
tory. Later, it is retrieved in order to fetch left
and right contexts of the found pattern.

4.2 Gate Query Parser

JAPE patterns support various query formats.
Below we give few examples of JAPE patterns.
Actual patterns can also be a combination of one
or more of the following pattern clauses:

1. String

2. {AnnotationType}

3. {AnnotationType == String}

4. {AnnotationType.feature == feature value}

5. {AnnotationType1, AnnotationType2.feature == fea-
tureValue}

6. {AnnotationType1.feature == featureValue, Annota-
tionType2.feature == featureValue}

Order of the annotations specified in ANNIC
query is very important. In Lucene, document
must contain the specified keywords, no matter
in which order they exist. Order is important
only for the phrase queries. Since the default im-
plementation of Lucene indexer indexes only the

Table 3: Token stream entries for the word Bill annotated as Token and Person
Sr. No. Lucene Token Text Lucene Token Type Pos. Incr. Description
1 Token * 1 Annotation Type Token
2 NNP Token.pos 0 pos feature with value NNP
3 word Token.kind 0 kind feature with value word
4 Bill Token.string 0 string feature with value Bill
5 Person * 0 Annotation Type Person

text attribute of Lucene Token, it does not al-
low searching over the type attribute. Certain
characters used in JAPE patterns have differ-
ent meanings in Lucene. E.g. Lucene uses { }
(opening and closing brackets) to recognize the
range queries and these characters are used to en-
close the annotation type in JAPE. Lucene query
parser does not support position increments in
queries. For example if one wants to search for
annotations of type Location and Person refer-
ring to the same piece of text, Lucene does not
support this. On the other hand, the respective
JAPE pattern would be {Location, Person}.

JAPE patterns also support the | (OR) opera-
tor. For instance, {A} ({B} | {C}) is a pattern
of two annotations where the first is an annota-
tion of type A followed by the annotation of type
either B or C.

Due to the various reasons explained above, we
introduce our own query parser (ANNIC Query
Parser) which accepts JAPE queries. Instead of
comparing only the text attribute of Lucene To-
ken, we also compare the type attribute. Lucene
query parser, before accessing index, converts
each keyword into an instance of Term class and
compares them with the terms in index. Table 4
demonstrates how JAPE pattern tokens are con-
verted into query terms. In order to use prede-
fined Lucene queries (i.e. Boolean and Phrase
queries), JAPE patterns with OR operator are
normalized into the AND normalized form and
all such patterns are ORed together to form a
Boolean query.

Lucene Phrase query considers its each token
as a separate term and sets its position to the
previous terms position + 1. This behaviour leads
to a problem in the context of JAPE queries. For
example, user issues the following query:

{Location, Person.gender = male}
This should search for the text that is anno-

tated as Location and Person, where the Person
annotation must contain a feature called gender
with value male. In this case, the ANNIC query
parser creates two separate terms (Location and

Person.gender = male). In order to make both
terms referring to the same location, positions of
these terms must remain same. If the position of
first term is n, Lucenes phrase query implemen-
tation makes the position of second term to n+1.
This results into a pattern where the first annota-
tion is Location and is followed by the annotation
Person.gender = male. To overcome this problem,
one solution is to pass customized term positions
along with terms to the phrase query. Given a
term and its position respective to its previous
term, Lucene searches within its index to find the
term only at the given position. Thus, instead of
searching the second term at the n+1 position,
Lucene seeks a term that occurs at n position.
This disables automatic increment in term’s posi-
tion and also allows searching for the overlapping
annotation.

But even after this arrangment, there exists
one major overlapping problem. For example for
the text “Mr. Tim-Berners Lee told ...”, where
the text “Mr.” is annotated as “Title”, “Tim-
Berners” as “FirstName”, “Lee” as “Surname”,
“Mr. Tim-Berners Lee” as “Person” and finally
“told” as “Token” with the part-of-speech tag
“verb”. For these annotations, the tokens “Ti-
tle” and “Person” will be placed at the same po-
sition in the token stream, while “FirstName”,
“Surname” and “Verb” will be placed one af-
ter another after the “Title” and the “Person”
annotations. This results into incorrect results
when the query is : {Person} {Token.string ==
“told”}. When searching this pattern in the to-
ken stream, “Person” is not followed by the Token
string “told”, instead “Person” is followed by the
annotation “FirstName”, which is followed the
annotation “Surname” and which is followed by
the “told”. To solve this problem, after converting
the JAPE query into the Lucene query terms, we
issue the query that contains only the initial terms
which refer to the same location. For example,
instead of querying with {Person}{Token.string
== “told”}, we query index with {Person}. As
a result this query returns all positions from the

Table 4: JAPE pattern tokens and their respective Query terms
Query Term

JAPE Pattern Token Term Text Term Type
String String Token.string
{annotationType} annotationType *
{annotationType.featureType == value} value annotationType.featureType

Table 5: Klene Characters
Query Interpretation
({A})+3 ({A}) | ({A}{A}) | ({A}{A}{A})
{B}({A})*3 ({B}) | ({B}{A}) |

({B}{A}{A}) | ({B}{A}{A}{A})
{B}({A} | {C})+2 ({B}{A}) | ({B}{C})|

({B}{A}{A}) | ({B}{A}{C}) |
({B}{C}{A}) | ({B}{C}{C})

token stream where the annotation is “Person”.
We compare the rest terms (i.e. “Token.string
== “told”) by fetching terms after the “Person”
annotation and by comparing query terms with
them.

Annotations in left and right contexts:
As described earlier, each token stream referring
to a separate document in the corpus is stored
in a separate file as a Java serializable object
and is retrieved once the Lucene tokens matching
the query results in the token stream are known.
Along with a list of documents, positions (i.e.
where these annotations in the token stream ap-
pear) are also retrieved. This helps in skipping to
a specific location in a token stream and reduces
the lookup time. Numbers of tokens, specified
in a context window field at run-time, are also
fetched from the token stream before and after
the pattern so as to show them as the left and
right contexts in the GUI.

Klene operators: ANNIC supports two oper-
ators, + and *, to specify the number of times a
particular annotation or a sub pattern should ap-
pear in the main query pattern. Here, ({A})+n
means one and up to n occurrences of annotation
{A} and ({A})*n means zero or up to n occur-
rences of annotation {A}. Table 5 lists few ex-
ample queries to illustrate the use of klene char-
acters.

5 ANNIC user interface

ANNIC provides an advanced user interface at
the presentation layer that allows users to index a
large collection of documents (i.e. corpus), search
indices and analyze the found patterns along with
their left and right contexts concordances. At

indexing time, the user can specify the corpus
to be indexed, the annotation type that acts as
document tokens, annotation set which contains
the annotations to index, features and annotation
types not to include in index and finally the loca-
tion of index on the local or network file system.
At search time, the user specifies the maximum
number of documents to retrieve as results, num-
ber of tokens to show in the left and right contexts
and finally the JAPE pattern query.

5.1 ANNIC Viewer

Figure 1 gives a snapshot of an ANNIC search
window. The bottom section in the window con-
tains the patterns along with their left and right
context concordances and the section at top shows
graphical visualization of annotations. ANNIC
shows each pattern in a separate row and pro-
vides tool tip that shows the query that the se-
lected pattern refers to. Along with its left and
right context texts, it also lists the name of doc-
uments that the patterns come from. When the
focus changes from one pattern to another, graph-
ical visualization of annotations (GVA, above the
pattern table) changes its current focus to the
selected pattern. Here, users have an option
of visualising annotations and their features for
the selected pattern. The figure shows the high-
lighted spans of annotations for the selected pat-
tern. Annotation types and features can also be
selected from the drop-down combo box and their
spans can also be highlighted into the GVA. When
users choose to highlight the features of annota-
tions (e.g. Token.category), GVA shows the high-
lighted spans containing values of those features.
Whereas when users choose to highlight the anno-
tation with feature all, ANNIC adds a blank span
in GVA and shows all its features in a popup win-
dow when mouse enters the span region. A new
query can also be generated and executed from
the ANNIC GUI. When clicked on any of the
highlighted spans of the annotations, the respec-
tive query clause is placed in the New Query text
box. Clicking on Execute issues a new query and
refreshes the GUI output. ANNIC also provides

Figure 1: ANNIC Viewer

an option to export results in XML or HTML files
with options of all patterns and selected patterns.

6 Applications of ANNIC

ANNIC is used as a tool aiding the development
of JAPE rules. Language engineers use their in-
tuition when writing JAPE rules trying to strike
the ideal balance between specificity and cover-
age. This requires them to make a series of in-
formed guesses which are then validated by test-
ing the resulting ruleset over a corpus. ANNIC
can replace the guesswork in this process with ac-
tual live analysys of the corpus. Each pattern in-
tended as part of a JAPE rule can be easily tested
directly on the corpus and have its specificity and
coverage assesed almost instantaneously.

ANNIC can be used also for corpus analysys.
It allows querying the information contained in a
corpus in more flexible ways than simple full-text
search. Consider a corpus containing news
stories that has been processed with a standard
named entity recognition system like AN-
NIE2. A query like {Organization} ({Token})*3
({Token.string==’up’}|{Token.string==’down’})
({Money} | {Percent}) would return mentions
of share movements like “BT shared ended up
36p” or “Marconi was down 15%”. Locating
this type of useful text snippets would be very
difficult and time consuming if the only tool
available were text search. ANNIC can also be
useful in helping scholars to analyse linguistic

2GATE is distributed with an IE system called ANNIE,
A Nearly-New IE system.

Table 6: ANNIC queries
QP Patterns
1 {Token.string==Microsoft} |

”Microsoft Corp”
2 {Person} {Person}
3 {Person} {Token.category==IN}

{Token.category==DT})*1
{Organization}

4 ({Token.orth==allCaps} |
{Token.orth==upperInitial})
({Token.kind==number,Token.length==1})+2
{Token.kind==number,Token.length==1}
({Token.orth==allCaps} |
{Token.orth==upperInitial})

5 ({Token.kind==number})+4
({Token.string =”/”} | {Token.string==”-”})
({Token.kind==number})+2
({Token.string==”/”} | {Token.string==”-”})
({Token.kind==number})+2

6 {Title} ({Token.orth==upperInitial} |
{Token.orth==allCaps}) ({FirstPerson})*1

7 {Token.category==”DT”}
({Token.category==”NNP”} |
{Token.category==”NNPS”})
({Token.category==”NNP”} |
{Token.category==”NNPS”})

8 ({Token.category==”DT”})*1 {Location}
{Token.category==”CC”}
({Token.category==”DT”})*1 {Location}

9 {Token.category==”IN”}
({Token.category==”DT”})*1 {Location}
{Token.category==”CC”}
({Token.category==”DT”})*1 {Location}

10 {Organization}{Token.category==”IN”}
({Token.category==”DT”})*1 {Location}

QP=Query Pattern

Table 7: ANNIC query results
BNC 10% HSE NEWS

QP ST P ST P ST P
1 11.276 112 0.5 0 1.252 3
2 24.798 17 2.0 0 0.933 12
3 5.23 6 7.0 6 0.432 2
4 24.33 24 26.458 14 0.803 0
5 50.139 264 110.738 39 6.652 36
6 39.029 238 120.054 180 12.37 1038
7 99.813 480 192.013 321 16.854 1261
8 62.971 81 126.823 124 5.508 281
9 52.08 43 96.735 67 3.672 134
10 6.191 10 11.875 5 0.692 11
QP=Query Pattern,ST=Search Time,P=Patterns

corpora. Sumerologists, for instance, could use it
to find all places in the ETCSL corpus 3 where a
particular pair of lemmas occur in sequence.

7 Performance Results

In order to evaluate the performance of AN-
NIC, we experimented on three different cor-
pora (large, medium, and small), processed
with GATE: 10% of the BNC (British Na-
tional Corpus)(374 documents,1443.84MB), HSE
(Health and Security Experiments)(192 docu-
ments,896MB), and finally the NEWS corpus
(446 documents, 39.4MB).

We tested the performance with several types
of queries: string only queries, combinations of
strings and linguistic data, and patterns with
quantified Klene operators. Table 6 lists some
of the different types of queries which were is-
sued over the indexed corpuses. Table 7 gives
the statistics of output of these queries. It pro-
vides different statistics including the time taken
by ANNIC to retrieve the results and the number
of patterns retrieved.

8 Related Work

(McKelvie & Mikheev 98) describe a suite of pro-
grams, LT INDEX, that supports indexing of
large SGML documents. It indexes elements by
their position in the document structure and by
their textual content. ANNIC is more generic, be-
cause it can cope with a wider range of formats,
while covering the same functionality.

CUE (Corpus Universal Examiner) system
(Mason 98) splits the corpus data into different
data streams (e.g. actual words, POS informa-
tion), which are stored along with their posi-
tioning information in the index. Unlike CUE,

3http://www-etcsl.orient.ox.ac.uk/

ANNIC maintains a fixed structured data format
(Term string, Term type, position) within indices
and converts all annotations and their features
into this consistent format. (Christ 94) describes
separate layers for their corpus query system,
where index access is described at the physical
layer; interpreting user queries, searching within
indices and processing of results at the logical
layer; and the graphical user interface at the pre-
sentation layer. Their system is aimed at indexing
all text documents that their modules at the phys-
ical layer can convert into a predefined format.
Similarly ANNIC also indexes any document for-
mat that is supported by the GATE. Lucene and
GATE both play a vital role in carrying out the
tasks at physical layer. GATE reads different
kinds of documents (SGM, EML, MAIL, XHTM,
RTF, XML, SGML, HTML, TXT etc.) from a
file system or from the web and transforms them
into GATE documents, which are then processed
by the ANNIC via the GATE API. ANNIC then
converts them in a format that Lucene can index
and store. GATE, ANNIC and Lucene work alto-
gether at the logical layer. GATE processes the
documents and provides an API that helps AN-
NIC to deal with document text, annotations and
their features. ANNIC takes queries from users,
interprets them using the query parser and sub-
mits them to Lucene. Once the results are out,
ANNIC uses respective token streams stored un-
der the index directory to fetch the patterns and
left and right contexts along with their annota-
tions to prepare the GUI.

(Gaizauskas et al. 03) describe a system,
XARA that indexes any well-formed XML doc-
ument. It combines an indexer, a server and
a windows client. Indexer requires information
like how element content is to be tokenized and
how tokens are to be mapped to index terms etc.
ANNIC supports not only XML but many other
types of documents supported by the GATE. Sim-
ilar to XARA, in ANNIC as well, the decision of
how documents be tokenized is left on a user (e.g.,
GATE supplies tokenisers for several languages).

In order to investigate new models for semi
structured data that are appropriate to XML,
(Buneman et al. 98) describes a query language
that is beyond any XML query languages. They
describe extraction rules that consist of expres-
sions along the tree and are expressed using the
HTML Extraction Languages (HEL). Their query

language comes with navigation operators, regu-
lar expressions and conditions to retrieve infor-
mation even from the nested structures. ANNIC
query parser works on top of the GATE annota-
tions and features and supports search over over-
lapping annotations and features. Its advanced
user interface allows users to visualize the nested
structure of the annotations with their features
highlighted.

(Kazai et al. 04) discuss the overlapping prob-
lem in content-oriented XML retrieval. They dis-
cuss the INitiative for the Evaluation of XML Re-
trieval (INEX) system, which discusses the matri-
ces to evaluate the XML retrieval results. Their
argument is that if in an XML document, a sub
element satisfies a content-oriented query, parent
element would also satisfies the same query. Thus,
instead of including only a subcomponent in the
result, INEX also includes the parent component.
In ANNIC, the overlapping problem, as discussed
in (Kazai et al. 04), does not exist due to two
reasons. 1) Annotations in GATE documents are
stored as an annotation graph. Thus compar-
ing the structure of XML documents where ele-
ments contain texts, in GATE documents annota-
tions are created over the text. 2) ANNIC queries
are very specific about the annotation types, i.e.
query itself describes the annotation type in which
the string should be searched. If user does not
specify annotation type, ANNIC does it automat-
ically to search strings with the GATE token an-
notation type.

References

(Bird et al. 00a) S. Bird, P. Buneman, and W. Tan.
Towards a query language for annotation graphs. In
Proceedings of the Second International Conference
on Language Resources and Evaluation, Athens,
2000.

(Bird et al. 00b) S. Bird, D. Day, J. Garofolo, J. Hen-
derson, C. Laprun, and M. Liberman. ATLAS: A
flexible and extensible architecture for linguistic an-
notation. In Proceedings of the Second International
Conference on Language Resources and Evaluation,
Athens, 2000.

(Buneman et al. 98) P. Buneman, A. Deutsch, W. Fan,
H. Liefke, A. Sahuguet, and W.C. Tan. Beyond
XML Query Languages. In In Proceedings of the
Query Language Workshop (QL’98), 1998.

(Cassidy 02) S. Cassidy. Xquery as an annotation
query language: a use case analysis. In Proceedings
of 3rd Language Resources and Evaluation Confer-
ence (LREC’2002), Gran Canaria, Spain, 2002.

(Christ 94) O. Christ. A Modular and Flexible Ar-
chitecture for an Integrated Corpus Query System.
In Proceedings of the 3rd Conference on Computa-
tional Lexicography and Text Research (COMPLEX
’94), Budapest, 1994. http://xxx.lanl.gov/-
abs/cs.CL/9408005.

(Cunningham et al. 02) H. Cunningham, D. Maynard,
K. Bontcheva, and V. Tablan. GATE: A Frame-
work and Graphical Development Environment for
Robust NLP Tools and Applications. In Proceedings
of the 40th Anniversary Meeting of the Association
for Computational Linguistics (ACL’02), 2002.

(Gaizauskas et al. 03) R. Gaizauskas, L. Burnard,
P. Clough, and S. Piao. Using the XARA XML-
Aware corpus query tool to investigate the METER
Corpus. In In Proceedings of the Corpus Linguistics
2003 Conference, pages 227–236, Lancaster, UK,
2003.

(Grishman 97) R. Grishman. TIPSTER Architecture
Design Document Version 2.3. Technical report,
DARPA, 1997. http://www.itl.nist.gov/div894/-
894.02/related projects/tipster/.

(Kazai et al. 04) G. Kazai, M. Lalmas, and A. Vries.
The Overlapping problem in Content-Oriented
XML Retrieval Evaluation. In Proceedings of the
27th International conference on Research and de-
velopment in information retrieval, pages 72–79,
Sheffield, UK, 2004.

(Mason 98) O. Mason. The CUE Corpus Access Tool.
In Workshop on Distributing and Accessing Linguis-
tic Resources, pages 20–27, Granada, Spain, 1998.
http://www.dcs.shef.ac.uk/~hamish/dalr/.

(McKelvie & Mikheev 98) D. McKelvie and
A. Mikheev. Indexing SGML files using
LT NSL. LT Index documentation, from
http://www.ltg.ed.ac.uk/, 1998.

(Thompson & McKelvie 97) H. Thompson and
D. McKelvie. Hyperlink semantics for standoff
markup of read-only documents. In Proceedings of
SGML Europe’97, Barcelona, 1997.

