sheffi(a%[lllp

GATE — An Application Developer’s Guide

Valentin Tablan
Diana Maynard
Kalina Bontcheva
Hamish Cunningham

Department of Computer Science

University of Sheffield, UK

V.Tablan, D.Maynard, K.Bontcheva,
H.Cunningham@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/“valyt,diana,kalina,hamish

19 July 2004

Contents

1 Introduction 3

2 Gazetteers 4
2.1 Imtroduction 4
2.2 Creating and Modifying Gazetteer Lists 5
2.3 Using Gaze e 5

3 Introduction to JAPE 7
3.1 Imtroduction. 7
3.2 Pattern matchingo 7

321 Context 8
3.2.2 Macroso 9
3.3 Simple Pattern actions 9
3.4 Setting the options oL 10
3.5 Useof priority 11
3.6 Using phases sequentially 11
3.7 Some tricks 12
3.7.1 Negative operator 12
3.7.2 Matching special characters 13

4 API 14
4.1 Resource Management in GATE 14
4.2 Language Resources 16

4.2.1 GATE Documents 16
4.2.2 Feature Maps 17

4.2.3 Annotation Sets L.
4.24 Annotations
425 GATE Corpora v i v i i
4.3 Ontologies e
4.4 Processing Resources
4.5 Controllers
4.6 Persistent Applications,

Using Java for JAPE

5.1 Introduction. L o
5.1.1 A more complex example

5.2 Adding a feature to the document

5.3 Finding the Tokens of a matched annotation.

Tools for Annotation and Evaluation

6.1 Manual annotation00
6.1.1 Simple method of adding annotations
6.1.2 Complex method of adding annotations
6.1.3 Modifying and removing annotations

6.2 Evaluation.
6.2.1 Annotation Diff
6.2.2 Corpus Benchmark tool
6.2.3 How to define the properties of the benchmark tool . .

28
28
30
31
32

35
35
35
35
36
36
36
37

Chapter 1

Introduction

This report provides a concise guide to developing NLP applications with
GATE, with focus on using the Gate API. Programming examples are pro-
vided to clarify the functionality of the API, e.g., as part of JAPE grammars
or Java processing resources.

For an introduction to the GATE graphical user interface and general back-
ground on using GATE, please refer to the Gate User Guide.

http://gate.ac.uk/userguide/

Chapter 2

Gazetteers

2.1 Introduction

The gazetteer consists of a set of lists containing names of things such as
cities, organisations, days of the week, etc. These lists are typically used to
assist with the task of named entity recognition, although they may be used
for any purpose. When the gazetteer is run on a document, annotations
of type Lookup will be created for each matching string in the text. The
gazetteer does not depend on Tokens or on any other annotation. This
means that an entry may span more than one token. A Lookup annotation
will only be created if the entire entry is matched. Partial entries are not
matched. An entry does not have to correspond with a Token annotation to
match, but it must be delimited by white space or punctuation.

Each list is a plain text file, with one entry per line.

Below is a section of the list for units of currency:

Ecu

European Currency Units
FFr

Fr

German mark

German marks

New Taiwan dollar

New Taiwan dollars

NT dollar

NT dollars

An index file (usually called lists.def) is used to access these lists. Each
gazetteer list should reside in the same directory as the index file. For each

list, a major type must be specified and, optionally, a minor type. In the
example below, the first column refers to the list name, the second column
to the major type, and the third to the minor type. These lists are compiled
into finite state machines. Any text strings matched by these machines will
be annotated with features specifying the major and minor types.

currency_prefix.lst:currency_unit:pre_amount
currency_unit.lst:currency_unit:post_amount
date.lst:date:specific_date

day.lst:date:day

month.lst:date:month

season.lst:date:season

Grammar rules can specify the types to be identified in particular circum-
stances. The major and minor types enable this identification to take place,
by giving access to items stored in particular lists or combinations of lists.

For example, if a day needs to be identified, the minor type ”day” would be
specified in the grammar, in order to match only information about specific
days. If any kind of date needs to be identified, the major type ”date” would
be specified. This might include weeks, months, years etc. as well as days of
the week, and would give access to all the items stored in day.lst, month.Ist,
season.lst, and date.lst in the example shown.

2.2 Creating and Modifying Gazetteer Lists

Gazetteer lists can be modified using any text editor. Use of the GATE
Unicode editor is advised, however, in order to ensure that the lists are stored
as UTF-8, which will minimise any language encoding problems, particulary
if e.g. accents are present.

To create a new list, simply add an entry for that list to the definitions file
and add the new list in the same directory as the existing lists.

After any modifications have been made, ensure that you reinitalise the
gazetteer PR in GATE, if one is already loaded, before rerunning your ap-
plication.

2.3 Using Gaze

There is also a gazetteer viewer and editor available within GATE, if the
correct creole resource is present. If it is available, double clicking on the

gazetteer list from the resource tree will display the contents of the gazetteer
in the main window. The first pane will display the definition file, while the
right pane will display whichever gazetteer list has been selected from it.

A gagetteer list can be modified simply by typing in it. it can be saved
by clicking the Save button. When a list is saved, the whole gazetteer is
automatically reinitialised (and will be ready for use in GATE immediately).

To edit the definition file, right click inside the pane and choose from the
options (Inset, Edit, Remove). A pop-up menu will appear to guide you
through the remaining process. Save the definition file byu selecting Save.
Again, the gazetteer will be reinitialised automatically.

Chapter 3

Introduction to JAPE

3.1 Introduction

JAPE allows you to recognise regular expressions in annotations on docu-
ments. A JAPE grammar consists of a set of phases, each of which consists
of a set of pattern/action rules. The phases run sequentially and constitute
a cascade of finite state transducers over annotations. The left-hand-side
(LHS) of the rules consist of an annotation pattern that may contain regular
expression operators (e.g. *, 7, +). The right-hand-side (RHS) consists of
annotation manipulation statements. Annotations matched on the LHS of
a rule may be referred to on the RHS by means of labels that are attached
to pattern elements.

3.2 Pattern matching

A pattern is specified in terms of one or more annotations, and optionally,
the values of any or all of its features. The following operators can be used:

e |-or
e * - zero or more occurrences
e 7 - zero or one occurrences

e - - one or more occurrences

Note that there is no negative operator. There are, however, ways round
this problem, as will be explained later.

An operator can operate on any pattern enclosed in round brackets. Every
complete pattern to be annotated must be enclosed in round brackets and
followed by a label. A label is denoted by a preceding semi-colon. In the
example below, the label is :loc.

(
{Lookup.majorType == location}
)

:loc

It is possible to have more than one pattern (and corresponding label) on
the LHS of a rule, e.g.

(
{Lookup.majorType == jobtitlel}
) :jobtitle
(
{TempPerson}
) :person

Nested patterns are also permitted (if correctly labelled), e.g.

(
(
{Lookup.majorType == jobtitle}
) :jobtitle

{TempPerson}
) :person

3.2.1 Context

Context before or after a pattern can also be indicated by enclosing it in
a set of round brackets. The difference between a pattern to be annotated
and context not to be annotated is simply the presence of a label, i.e. an
unlabelled pattern acts as context. For example, the following rule would
annotate the pattern matched by YEAR if the words “in” or “by” preceded
it. Note that context cannot be reused in more than one rule in the same
grammar phase, i.e. it is always consumed if the rule fires.

Rule: YearContextl

({Token.string == "in"}|
{Token.string == "by"}
)

(YEAR)

:date

3.2.2 Macros

Macros can also be used in the LHS of rules. This means that instead of
expressing the information in the rule, it is specified in a macro, which can
then be called in the rule. The reason for this is simply to avoid having to
repeat the same information in several rules. Macros can themselves be used
inside other macros. A macro used in one phase of a grammar does not need
to be respecified in a later phase, i.e. a rule may call a macro specified in a
previous phase of the same grammar.

The example below shows a TITLE macro which is then used in a rule. Con-
ventionally, macros are written in capital letters, though this is not essential.
When used in the rule, a macro must not be enclosed in curly braces, but
only (optionally) in round brackets.

Macro: TITLE
(
{Title}
({Token.string == "."})7
({Title})?
({Token.string == "."})?
)

Rule: TitlePerson
(
(TITLE)
({Upper})+
) :person
-—>

3.3 Simple Pattern actions

The RHS of the rule contains information about the annotation to be given
to the pattern. Information about the pattern is transferred from the LHS
of the rule using the label. and annotated with the entity type (which

follows it). Finally, features and their corresponding values are added to the
annotation.

In the example rule below, the label is “loc”. The RHS of the rule is the part
which follows the arrow. The label is transferred to the RHS of the rule and
the annotation type “Location” is added to the pattern. The annotation is
given two features, “kind” and “rule” with the values “city” and “GazCity”
respectively. Both of these features are optional. The first is used to give us
more specific information about the annotation, i.e. that it is a particular
kind of Location. The second is used mainly for debugging purposes, so
that we can keep track of which rule fired. The resulting annotation and
its features and values will all be displayed, together with the string and
the offsets, in the annotations tablein the GATE GUI (assuming that the
grammar has been run on a document and the rule has been fired).

Rule: GazCity
(
{Lookup.majorType == city}
)
:loc -—>
:loc.Location = {kind="city", rule=‘‘GazCity’’}

3.4 Setting the options

At the beginning of each grammar, several options can be set:
Control - this defines the method of rule matching. More on this later.

Debug - when set to true, if the grammar is running in Appelt mode and
there is more than one possible match, the conflicts will be displayed in the
messages window.

Input annotations must also be defined at the start of each grammar. If no
annotations are defined, the default will be Token, SpaceToken and Lookup
(i.e. only these annotations will be considered when attempting a match).
Every annotation type that is going to be matched in that grammar phase
must be included in the Input set. Any annotation type that is not defined
will be ignored in the pattern matching. This is very useful in the case of
white space. If SpaceTokens are specified, then every possible space between
tokens in patterns must be described in the rules. If they are not specified,
then this is not necessary, as their presence or absence will be ignored.

10

3.5 Use of priority

Each grammar phase has 3 possible control styles: “brill”, “first” and “ap-
pelt”. This is specified at the beginning of the grammar. For named entity
recognition, the appelt style is generally the most suitable. When writing
JAPE grammars for other uses, the other styles are often useful.

The “brill” style means that when more than one rule matches the same
region of the document, they are all fired. The result of this is that a
segment of text could be allocated more than one entity type, and that no
proiority ordering is necessary.

With the “first” style, a rule fires for the first match that is found. This
makes it unappropiate for rules that end in "+” or ”?” or ”*’. Once a
match is found, the rule is fired; it does not attempt to get a longer match
(as the other two styles do).

With the “appelt” style, only one rule can be fired for the same pattern,
according to a set of priority rules. Priority operates in the following way.

1. From all the rules that match a region of the document starting at
some point X, the one which matches the longest region is fired.

2. If more than one rule matches the same region, the one with the highest
priority is fired.

3. If there is more than one rule with the same priority, the one defined
last in the grammar is fired.

An optional priority declaration is associated with each rule, which should
be a positive integer. The higher the number, the greater the priority. By
default (if the priority declaration is missing) all rules have the priority -1
(i.e. the lowest priority).

3.6 Using phases sequentially

A JAPE grammar consists of a set of sequential phases. The list of phases is
specified (in the order in which they are to be run) in a file, conventionally
named main.jape. When loading the grammar into GATE, it is only neces-
sary to load this main file — the phases will then be loaded automatically.
It is, however, possible to omit this main file, and just load the phases in-
dividually, but this is much more time-consuming. The grammar phases do
not need to be located in the same directory as the main file, but if they are
not, the relative path should be specified for each phase.

11

One of the main reasons for using a sequence of phases is that a pattern can
only be used once in each phase, but it can be reused in a later phase. Com-
bined with the fact that priority can only operate within a single grammar,
this can be exploited to help deal with ambiguity issues.

The solution currently adopted is to write a grammar phase for each annota-
tion type, or for each combination of similar annotation types, and to create
temporary annotations. These temporary annotations are accessed by later
grammar phases, and can be manipulated as necessary to resolve ambiguity
or to merge consecutive annotations. The temporary annotations can either
be removed later, or left and simply ignored.

Generally, annotations about which we are more certain are created earlier
on. Annotations which are more dubious may be created temporarily, and
then manipulated by later phases as more information becomes available.

3.7 Some tricks

Although the JAPE language has some limitations as to how rules and pat-
terns can be expressed, there are some useful tricks to overcome these prob-
lems.

3.7.1 Negative operator

A negative operator cannot be specified as such. One solution to this is
to create a “negative rule” which has higher priority than the matching
“positive rule”. The style of matching must be Appelt for this to work.
To create a negative rule, simply state on the LHS of the rule the pattern
that should NOT be matched, and on the RHS do nothing. In this way,
the positive rule cannot be fired if the negative pattern matches, and vice
versa, which has the same end result as using a negative operator. A useful
variation for developers is to create a dummy annotation on the RHS of the
negative rule, rather than to do nothing, and to give the dummy annotation
a rule feature. In this way, it is obvious that the negative rule has fired.
Alternatively, use Java code on the RHS to print a message when the rule
fires. An example of a matching negative and positive rule follows. Here,
we want a rule which matches a surname followed by a comma and a set
of initials. But we want to specify that the initials shouldn’t have the POS
category PRP (personal pronoun). So we specify a negative rule that will
fire if the PRP category exists, thereby preventing the positive rule from
firing.

12

Rule: NotPersonReverse
Priority: 20
// we don’t want to match ’’Jones, I’

({Token.category == NNP}

{Token.string == ","}
{Token.category == PRP}
) :label
-—>
{3
Rule: PersonReverse

Priority: 5
// we want to match ‘‘Jones, F.W.?”’

(

{Token.category == NNP}

{Token.string == ","}

(INITIALS)?
)

:person -—>

:person.Person = {rule = ‘PersonReverse’’}

3.7.2 Matching special characters

To specify a single or double quote as a string, precede it with a backslash,
e.g.

{Token.string=="\""}

will match a double quote. For other special characters, such as ”$”, enclose
it in double quotes, e.g.

{Token.category == "PRP$"}

13

Chapter 4

API

GATE defines three different types of resources:

Language Resources : (LRs) entities that hold linguistic data.
Processing Resources : (PRs) entities that process data.

Visual Resources : (VRs) components used for building graphical inter-
faces.

These resources are collectively named CREOLE! resources.

All CREOLE resources have some associated meta-data in the form of an
entry in a special XML file named creole.xml. The most important role
of that meta-data is to specify the set of parameters that a resource under-
stands, which of them are required and which not, if they have default values
and what those are.

All resource types have creation-time parameters that are used during the
initialisation phase. Processing Resources also have run-time parameters
that get used during execution (see section 4.4 for more details).

Controllers are used to define GATE applications and have the role of
controlling the execution flow (see section 4.5 for more details).

4.1 Resource Management in GATE

This section describes how to create and delete CREOLE resources as ob-
jects in a running Java virtual machine. This process involves using GATEs
Factory class?, and, in the case of LRs, may also involve using a DataStore.

!CREOLE stands for Collection of REusable Objects for Language Engineering
2Fully qualified name: gate.Factory

14

CREOLE resources are Java Beans; creation of a resource object involves us-
ing a default constructor, then setting parameters on the bean, then calling
an init () method. The Factory takes care of all this, makes sure that the
GUI is told about what is happening (when GUI components exist at run-
time), and also takes care of restoring LRs from DataStores. A program-
mer using GATE should never call the constructor of a resource:
always use the Factory!

Creating a resource involves providing the following information:

e fully qualified class name for the resource. This is the only re-
quired value. For all the rest, defaults will be used if actual values
are not provided.

e values for the creation time parameters.|

e initial values for resource features.! For an explanation on features
see section 4.2.2.

e a name for the new resource;

T Parameters and features need to be provided in the form of a GATE Fea-
ture Map which is essentially a java Map (java.util.Map) implementation,
see section 4.2.2 for more details on Feature Maps.

Here is an example that creates a GATE document:

URL u = new URL("http://gate.ac.uk/");
FeatureMap params = Factory.newFeatureMap();
params.put ("sourceUrl", u);

FeatureMap features = Factory.newFeatureMap();

Document doc = (Document)
Factory.createResource("gate.corpora.DocumentImpl",
params, features, "GATE Homepage");

Apart from createResource () methods with different signatures, Factory
also provides some shortcuts for common operations:

newFeatureMap () creates a new Feature Map (as used in the example above).

newDocument (String content) creates a new GATE Document starting
from a String value that will be used to generate the document content.

15

newDocument (URL sourceUrl) creates a new GATE Document using the
text pointed by an URL to generate the document content.

newDocument (URL sourceUrl, String encoding) same as above but al-
lows the specification of an encoding to be used while downloading the
document content.

newCorpus (String name) creates a new GATE Corpus with a specified
name.

GATE maintains various data structures that allow the retrieval of loaded re-
sources. When a resource is no longer required, it needs to be removed from
those structures in order to remove all references to it, thus making it a candi-
date for garbage collection. This is achieved wusing the
deleteResource (Resource res) method on Factory.

Simply removing all references to a resource from the user code will NOT be
enough to make the resource collect-able. Not calling
Factory.deleteResource() will lead to memory leaks!

4.2 Language Resources

This section describes the implementation of documents and corpora in
GATE.

4.2.1 GATE Documents

Documents are modelled as content plus annotations (see section 4.2.4) plus
features (see section 4.2.2).

The content of a document can be any implementation of the
gate.DocumentContent interface; the features are <attribute, value> pairs
stored a Feature Map. Attributes are String values while the values can be
any Java object.

The annotations are grouped in sets (see section 4.2.3). A document has a
default (anonymous) annotations set and any number of named annotations
sets.

Documents are defined by the gate.Document interface and the provided
implementations are:

gate.corpora.DocumentImpl : transient document. Can be stored persis-
tently through Java serialisation.

16

gate.corpora.DatabaseDocumentImpl :
It can be used in conjunction with database datastores.

database persistent documents.
3

Main Document functions are presented in table 4.1.

Content Manipulation

Method

Purpose

DocumentContent getContent ()

Gets the Document content.

void edit(Long start, Long end,
DocumentContent replacement)

Modifies the Document content.

void setContent (DocumentContent
newContent)

Replaces the entire content.

Annotations Manipulation

Method

Purpose

public AnnotationSet getAnno-
tations ()

Returns the default annotation set.

public AnnotationSet getAnno-
tations(String name)

Returns a named annotation set.

public Map getNamedAnnota-
tionSets ()

Returns all the named annotation
sets.

void removeAnnotation-
Set (String name)

Removes a named annotation set.

Input O

utput

String toXml()

Serialises the Document in XML for-
mat.

String toXml(Set
aSourceAnnotationSet, boolean
includeFeatures)

Generates XML from a set of annota-
tions only, trying to preserve the orig-
inal format of the file used to create
the document.

Table 4.1: gate.Document methods.

4.2.2 Feature Maps

All CREOLE resources as well as the Controllers and the annotations can
have attached meta-data in the form of Feature Maps.

A Feature Map is a Java Map (i.e. it implements the java.util.Map in-
terface) and holds <attribute-name, attribute-value> pairs. The attribute
names are Strings while the values can be any Java Objects.

3Currently implementations for ORACLE and PostgreSQL are provided.

17

The use of non-Serialisable objects as values is strongly discouraged.
Feature Maps are created using the gate.Factory.newFeatureMap () method.

The actual implementation for FeatureMaps is provided by the
gate.util.SimpleFeatureMapImpl class.

Objects that have features in GATE implement the gate.util.FeatureBearer
interface which has only the two accessor methods for the object features:
FeatureMap getFeatures() and void setFeatures(FeatureMap features).

How to get a particular feature from an object?

Object obj;
String featureName = "length";
if (obj instanceof FeatureBearer){
FeatureMap features = ((FeatureBearer)obj).getFeatures();
Object value = (features == null) 7 null :
features.get (featureName) ;

4.2.3 Annotation Sets

A GATE document can have one or more annotation layers — an anonymous
one, (also called default), and as many named ones as necessary.

An annotation layer is organised as a Directed Acyclic Graph (DAG) on
which the nodes are particular locations —anchors— in the document con-
tent and the arcs are made out of annotations reaching from the location
indicated by the start node to the one pointed by the end node (see Figure
4.1 for an illustration). Because of the graph metaphor, the annotation layers
are also called annotation graphs. In terms of Java objects, the annotation
layers are represented using the Set paradigm as defined by the collections
library and they are hence named annotation sets. The terms of annotation
layer, graph and set are interchangeable and refer to the same concept when
used in this guide.

An annotation set holds a number of annotations and maintains a series of
indices in order to provide fast access to the contained annotations.

The GATE Annotation Sets are defined by the gate.AnnotationSet inter-
face and the current implantations are:

gate.annotation.AnnotationSetImpl annotation set implementation used
by transient documents.

18

Node Annotation description Annotation
(type & features)

Figure 4.1: The Annotation Graph model.

gate.annotation.DatabaseAnnotationSetImpl annotation set implemen-
tation used by persistent documents.

The annotation sets are created by the document as required. The first
time a particular annotation set is requested from a document it will be
transparently created if it doesn’t exist.

Tables 4.2 and 4.3 list the most used Annotation Set functions.
How to iterate from left to right over all annotations of a given type?

AnnotationSet annSet = ...;

String type = "Person";

//Get all person annotations

AnnotationSet persSet = annSet.get(type);

//Sort the annotations

List persList = new ArrayList(persSet);
Collections.sort(persList, new gate.util.OffsetComparator());
//Iterate

Iterator perslter = persList.iterator();
while(persIter.hasNext()){

by

4.2.4 Annotations

An annotation, is a form of meta-data attached to a particular section of
document content. The connection between the annotation and the content
it refers to is made by means of two pointers that represent the start and
end locations of the covered content. An annotation must also have a type
(or a name) which is used to create classes of similar annotations, usually
linked together by their semantics.

19

Annotations Manipulation

Method

Purpose

Integer add(Long start, Long
end, String type, FeatureMap
features)

Creates a new annotation between two
offsets, adds it to this set and returns
its id.

Integer add(Node start, Node
end, String type, FeatureMap
features)

Creates a new annotation between two
nodes, adds it to this set and returns
its id.

boolean remove(Object o)

Removes an annotation from this set.

No

des

Method

Purpose

Node firstNode()

Gets the node with the smallest offset.

Node lastNode()

Gets the node with the largest offset.

Node nextNode(Node node)

Get the first node that is relevant for
this annotation set and which has the
offset larger than the one of the node
provided.

Set implementation

Iterator iterator()

int size()

Table 4.2: gate.AnnotationSet methods (general purpose).

20

Searching

AnnotationSet get(Long offset)

Select annotations by offset. This re-
turns the set of annotations whose
start node is the least such that it is
less than or equal to offset. If a po-
sitional index doesn’t exist it is cre-
ated. If there are no nodes at or be-
yond the offset parameter then it will
return null.

AnnotationSet get(Long
startOffset, Long end0ffset)

Select annotations by offset. This re-
turns the set of annotations that over-
lap totally or partially with the inter-
val defined by the two provided offsets.
The result will include all the annota-
tions that either:

e start before the start offset and
end strictly after it

e start at a position between the
start and the end offsets

AnnotationSet get(String type)

Returns all annotations of the speci-
fied type.

AnnotationSet get(Set types)

Returns all annotations of the speci-
fied types.

AnnotationSet get(String type,
FeatureMap constraints)

Selects annotations by type and fea-
tures.

Set getAllTypes()

Gets a set of java.lang.String objects
representing all the annotation types
present in this annotation set.

Table 4.3: gate.AnnotationSet methods (searching).

21

An Annotation is defined by:

start node a location in the document content defined by an offset.
end node a location in the document content defined by an offset.
type a String value.

features (see section 4.2.2).

ID an Integer value. All annotations IDs are unique inside an annotation
set.

In GATE, annotations are defined by the gate.Annotation interface and
implemented by the gate.annotation.AnnotationImpl class. Annotations
exist only as members of annotation sets (see section 4.2.3) and they should
not be directly created by means of a constructor. Their creation should
always be delegated to the containing annotation set.

4.2.5 GATE Corpora

A corpus in GATE is a Java List (i.e. an implementation of java.util.List)
of documents. GATE corpora are defined by the gate.Corpus interface and
the following implementations are available:

gate.corpora.CorpusImpl used for transient corpora.

gate.corpora.SerialCorpusImpl used for persistent corpora that are stored
in a serial datastore (i.e. as a directory in a file system).

gate.corpora.DatabaseCorpusImpl used for persistent corpora stored in
a database datastore.

Apart from implementation for the standard List methods, a Corpus also
implements the methods in table 4.4.

How to create a corpus from all XML files in a directory?

Corpus corpus = Factory.newCorpus("My XML Files");

File directory = ...;

java.io.FileFilter filter = new gate.util.ExtensionFileFilter();
filter.addExtension("xml");

URL url = directory.toURL();

corpus.populate(url, filter, null, false);

22

Method

Purpose

String getDocumentName (int
index)

Gets the name of a document in this
corpus.

List getDocumentNames()

Gets the names of all the documents
in this corpus.

void populate(URL directory,
FileFilter filter,

String encoding, boolean
recurseDirectories)

Fills this corpus with documents cre-
ated on the fly from selected files
in a directory. Uses a FileFilter
to select which files will be used
and which will be ignored. A sim-
ple file filter based on extensions
is provided in the Gate distribution
(gate.util.ExtensionFileFilter).

Table 4.4: gate.Corpus methods.

4.3 Ontologies

Starting from GATE version 3.1, support for ontologies has been added.
Ontologies are nominally Language Resources but are quite different from
documents and corpora and are detailed in this section dedicated to them.

Classes related to ontologies are to be found in the gate.creole.ontology
package and its sub-packages. The top level package defines an abstract API
for working with ontologies while the sub-packages contain concrete imple-
mentations. The GATE API for ontologies does not provide full support for
all operations that are posible using different ontology models (like RDF-S,
OWL or DAML); it only tries to provide support for all the operations that
all these formalisms have in common. This includes hierarchies of classes,
instances (or individuals) and properties. The terminology used in the nam-
ing of the classes and the operations is sligthly biased toward RDF-S and
OWL.

The entry point to the ontology API is the gate.creole.ontology.0Ontology
interface which is the base interface for all concrete implementations. It pro-

vides methods for accessing the class hierarchy, listing the instances and the

properties.

4.4 Processing Resources

Processing Resources (PRs) represent entities that are primarily algorith-
mic, such as parsers, generators or ngram modellers.

23

They are created using the GATE Factory in manner similar the Language

Resources.

Besides the creation-time parameters they also have a set of

run-time parameters that are set by the system just before executing them.

Analysers are a particular type of processing resources in the sense that they
always have a document and a corpus among their run-time parameters.

The most used methods for Processing Resources are presented in table 4.5

Method

Purpose

void setParameterValue(String
paramaterName, Object
parameterValue)

Sets the value for a specified pa-
rameter. method inherited from

gate.Resource

void setParameterVal-
ues(FeatureMap parameters)

Sets the values for more parameters
in one step. method inherited from

gate.Resource

Object getParameter-
Value(String paramaterName)

Gets the value of a named parameter
of this resource. method inherited from

gate.Resource

Resource init()

Initialise this resource, and return it.
method inherited from gate.Resource

void relnit()

Reinitialises the processing resource.
After calling this method the resource
should be in the state it is after call-
ing init. If the resource depends on
external resources (such as rules files)
then the resource will re-read those re-
sources. If the data used to create
the resource has changed since the re-
source has been created then the re-
source will change too after calling
relnit().

void execute()

Starts the execution of this Processing
Resource.

void interrupt()

Notifies this PR that it should stop its
execution as soon as possible.

boolean isInterrupted()

Checks whether this PR has been in-
terrupted since the last time its Exe-
cutable.execute() method was called.

Table 4.5: gate.ProcessingResource methods.

24

4.5 Controllers

Controllers are used to create GATE Applications. A Controller handles
a set of Processing Resources and can execute them following a particular
strategy. GATE provides a series of serial controllers (i.e. controllers that
run their PRs in sequence):

gate.creole.SerialController: a serial controller that takes any kind of
PRs.

gate.creole.SerialAnalyserController: a serial controller that only ac-
cepts Language Analysers as member PRs.

gate.creole.ConditionalSerialController: a serial controller that ac-
cepts all types of PRs and that allows the inclusion or exclusion of
member PRs from the execution chain according to certain run-time
conditions (currently features on the document being processed are
used).

gate.creole.ConditionalSerialAnalyserController: a serial controller
that only accepts Language Analysers and that allows the conditional
run of member PRs.

25

The following example shows how to create an ANNIE application and how
to run it over a corpus

// load the ANNIE plugin
Gate.getCreoleRegister() .registerDirectories(new File(
Gate.getPluginsHome (), "ANNIE").toURI().toURL());

// create a serial analyser controller to run ANNIE with
SerialAnalyserController annieController =
(SerialAnalyserController) Factory.createResource(
"gate.creole.SerialAnalyserController",
Factory.newFeatureMap(),
Factory.newFeatureMap(), "ANNIE");

// load each PR as defined in ANNIEConstants

for(int i = 0; i < ANNIEConstants.PR_NAMES.length; i++) {
// use default parameters
FeatureMap params = Factory.newFeatureMap() ;
ProcessingResource pr = (ProcessingResource)

Factory.createResource (ANNIEConstants.PR_NAMES[i],
params) ;

// add the PR to the pipeline controller
annieController.add(pr);

} // for each ANNIE PR

// Tell ANNIE’s controller about the corpus you want to run on
Corpus corpus = ...;

annieController.setCorpus (corpus) ;

// Run ANNIE

annieController.execute();

4.6 Persistent Applications

GATE allows the persistent storage of applications in a format based on
Java serialisation. This is particularly useful for applications management
and distribution. A developer can save the state of an application when
he/she stops working on its design and continue developing it in a next
session. When the application reaches maturity it can be deployed to the
client site using the same method.

When an application (i.e. a Controller) is saved, GATE will actually only

26

save the values for the parameters used to create the Processing Resources
that are contained in the application. When the application is reloaded, all
the PRs will be re-created using the saved parameters.

Many PRs use external resources (files) to define their behaviour and, in most
cases, these files are identified using URLs. During the saving process, all the
URLs are converted relative URLs based on the location of the application
file. This way, if the resources are packaged together with the application
file, the entire application can be reliably moved to a different location.

API access to application saving and loading is provided by means of two
static methods on the gate.util.persistence.PersistenceManager class:

public static void saveObjectToFile(Object obj, File file): saves
the data needed to re-create the provided GATE object to the specified
file. The Object provided can be any type of Language or Processing
Resource or a Controller. The procedures may work for other types of
objects as well (e.g. it supports most Collection types).

public static Object loadObjectFromFile(File file): parses the file
specified (which needs to be a file created by the above method) and
creates the necessary object(s) as specified by the data in the file.
Returns the root of the object tree.

The following example shows how to save and load a GATE application

//Where to save the application?
File file = ...;
//What to save?
Controller theApplication = ...;

//save

gate.util.persistence.PersistenceManager.
saveObjectToFile(theApplication, file);

//delete the application

Factory.deleteResource(theApplication);

theApplication = null;

[...]

//load the application back

theApplication = gate.util.persistence.PersistenceManager.
loadObjectFromFile(file) ;

27

Chapter 5

Using Java for JAPE

5.1 Introduction

The RHS of a JAPE rule can consist of any Java code. This is useful for
a variety of things such as removing temporary annotations, percolating
and manipulating features from previous annotations, adding features to
the document, etc.

The first rule below shows a rule which matches a first person name, e.g.
“Fred”, and adds a gender feature depending on the value of the minorType
from the gazetteer list in which the name was found. We first get the bindings
associated with the person label (i.e. the Lookup annotation). We then
create a new annotation called “personAnn” which contains this annotation,
and create a new FeatureMap to enable us to add features. Then we get
the minorType features (and its value) from the personAnn annotation (in
this case, the feature will be “gender” and the value will be “male”), and
add this value to a new feature called “gender”. We create another feature
"rule” with value “FirstName”. Finally, we add all the features to a new
annotation “FirstPerson” which attaches to the same nodes as the original
“person” binding.

Rule: FirstName

(

{Lookup.majorType == person_first}
) :person

-—>

{

gate.AnnotationSet person = (gate.AnnotationSet)bindings.get("person");

28

gate.Annotation personAnn = (gate.Annotation)person.iterator().next();
gate.FeatureMap features = Factory.newFeatureMapQ) ;
features.put("gender", personAnn.getFeatures().get("minorType")) ;
features.put("rule", "FirstName");

outputAS.add(person.firstNode(), person.lastNode(), "FirstPerson",
features) ;

}

Note that inputAS and outputAS represent the input and output annotation
set. Normally, these would be the same (by default when using ANNIE,
these will be the “Default” annotation set). Since the user is at liberty
to change the input and output annotation sets in the parameters of the
JAPE transducer at runtime, it cannot be guaranteed that the input and
output annotation sets will be the same, and therefore we must specify the
annotation set to which we are referring.

The next rule (contained in a subsequent grammar phase) makes use of an-
notations produced by the first rule described above. Instead of percolating
the minorType from the annotation produced by the gazetteer lookup, this
time it percolates the feature from the annotation produced by the pre-
vious grammar rule. So here it gets the “gender” feature value from the
“FirstPerson” annotation, and adds it to a new feature (again called “gen-
der” for convenience), which is added to the new annotation (in outputAS)
“TempPerson”. At the end of this rule, the existing input annotations (from
inputAS) are removed because they are no longer needed. Note that in
the previous rule, the existing annotations were not removed, because it is
possible they might be needed later on in another grammar phase.

Rule: GazPersonFirst
(
{FirstPerson}
)
:person
-—>
{
gate.AnnotationSet person = (gate.AnnotationSet)bindings.get("person");
gate.Annotation personAnn = (gate.Annotation)person.iterator().next();
gate.FeatureMap features = Factory.newFeatureMap() ;

features.put("gender", personAnn.getFeatures().get("gender"));
features.put("rule", "GazPersonFirst");
outputAS.add(person.firstNode(), person.lastNode(), "TempPerson",
features);

29

inputAS.removeAll (person) ;

by

5.1.1 A more complex example

The example below is more complicated, because both the title and the first
name (if present) may have a gender feature. There is a possibility of conflict
since some first names are ambiguous, or women are given male names (e.g.
Charlie). Some titles are also ambiguous, such as “Dr”, in which case they
are not marked with a gender feature. We therefore take the gender of the
title in preference to the gender of the first name, if it is present. So, on the
RHS, we first look for the gender of the title by getting all Title annotations
which have a gender feature attached. If a gender feature is present, we add
the value of this feature to a new gender feature on the Person annotation
we are going to create. If no gender feature is present, we look for the gender
of the first name by getting all firstPerson annotations which have a gender
feature attached, and adding the value of this feature to a new gender feature
on the Person annotation we are going to create. If there is no firstPerson
annotation and the title has no gender information, then we simply create
the Person annotation with no gender feature.

Rule: PersonTitle
Priority: 35
/* allows Mr. Jones, Mr Fred Jones etc. */

(
(TITLE)
(FIRSTNAME | FIRSTNAMEAMBIG | INITIALS2)=*
(PREFIX)?
{Upper?}
({Upper})?
(PERSONENDING) ?
)
:person -->
{
gate.FeatureMap features = Factory.newFeatureMapQ) ;
gate.AnnotationSet personSet = (gate.AnnotationSet)bindings.get("person");

// get all Title annotations that have a gender feature
HashSet fNames = new HashSet();
fNames.add("gender") ;
gate.AnnotationSet personTitle = personSet.get("Title", fNames);

30

// if the gender feature exists
if (personTitle != null && personTitle.size()>0)
{
gate.Annotation personAnn = (gate.Annotation)personTitle.iterator().next();
features.put("gender", personAnn.getFeatures().get("gender"));
}
else
{
// get all firstPerson annotations that have a gender feature
gate.AnnotationSet firstPerson = personSet.get("FirstPerson", fNames);

if (firstPerson !'= null && firstPerson.size()>0)
// create a new gender feature and add the value from firstPerson
{
gate.Annotation personAnn = (gate.Annotation)firstPerson.iterator().next();
features.put("gender", personAnn.getFeatures().get("gender"));
}
}
// create some other features
features.put("kind", "personName");
features.put("rule", "PersonTitle");
// creat a Person annotation and add the features we’ve created
outputAS.add(personSet.firstNode(), personSet.lastNode(), "TempPerson",
features);

3

5.2 Adding a feature to the document

This is useful when using conditional controllers, where we only want to fire
a particular resource under certain conditions. We first test the document
to see whether it fulfils these conditions or not, and attach a feature to the
document accordingly.

In the example below, we test whether the document contains an annotation
of type “message”. In emails, there is often an annotation of this type
(produced by the document format analysis when the document is loaded in
GATE). Note that annotations produced by document format analysis are
placed automatically in the “Original markups” annotation set, so we must
ensure that when running the processing resource containing this grammar
that we specify the Original markups set as the input annotation set. It
does not matter what we specify as the output annotation set, because the

31

annotation we produce is going to be attached to the document and not to an
output annotation set. In the example, if an annotation of type “message”
is found, we add the feature ”genre” with value ”email” to the document.

Rule: Email
Priority: 150

(
{message}

)
-—>
{

doc.getFeatures() .put("genre", "email");

}

5.3 Finding the Tokens of a matched annotation

In this section we will demonstrate how by using Java on the right-hand side
one can find all Token annotations that are covered by a matched annotation,
e.g., a Person or an Organization. This is useful if one wants to transfer some
information from the matched annotations to the tokens. For example, to
add to the Tokens a feature indicating whether or not they are covered by a
named entity annotation deduced by the rule-based system. This feature can
then be given as a feature to a learning PR, e.g. the HMM. Similarly, one can
add a feature to all tokens saying which rule in the rule based system did the
match, the idea being that some rules might be more reliable than others.
Finally, yet another useful feature might be the length of the coreference
chain in which the matched entity is involved, if such exists.

The example below is one of the pre-processing JAPE grammars used by the
HMM application. To inspect all JAPE grammars, see the muse/applications/hmm
directory in the distribution.

Phase: NEInfo

Input: Token Organization Location Person
Options: control = appelt

Rule: NEInfo

Priority:100

32

({Organization} | {Person} | {Location}):entity
-—>

{

//get the annotation set
gate.AnnotationSet annSet = ((gate.AnnotationSet)bindings.get("entity"));

//get the only annotation from the set
g y
gate.Annotation entityAnn = (gate.Annotation)annSet.iterator().next();

gate.AnnotationSet tokenAS = inputAS.get("Token",
entityAnn.getStartNode() .get0ffset(),
entityAnn.getEndNode () .getOffset());

List tokens = new ArrayList(tokenAS);

//if no tokens to match, do nothing

if (tokens.isEmpty())

return;
Collections.sort(tokens, new gate.util.OffsetComparator());

gate.Annotation curToken=null;
for (int i=0; i < tokens.size(); i++) {
curToken = (gate.Annotation) tokens.get(i);
String ruleInfo = (String) entityAnn.getFeatures().get("rulel");
String NMRuleInfo = (String) entityAnn.getFeatures().get("NMRule");
if (ruleInfo != null) {
curToken.getFeatures() .put("rule_NE_kind", entityAnn.getType());
curToken.getFeatures() .put ("NE_rule_id", rulelInfo);
}
else if (NMRulelInfo != null) {
curToken.getFeatures() .put ("rule_NE_kind", entityAnn.getType());
curToken.getFeatures () .put ("NE_rule_id", "orthomatcher");

}

else {
curToken.getFeatures() .put ("rule_NE_kind", "None");
curToken.getFeatures() .put ("NE_rule_id", "None");

}

List matchesList = (List) entityAnn.getFeatures().get("matches");
if (matchesList != null) {
if (matchesList.size() == 2)
curToken.getFeatures() .put ("coref_chain_length", "2");
else if (matchesList.size() > 2 && matchesList.size() < 5)
curToken.getFeatures() .put ("coref_chain_length", "3-4");

33

else
curToken.getFeatures() .put ("coref_chain_length", "5-more");
}
else
curToken.getFeatures() .put ("coref_chain_length", "0");

}//for

Rule: TokenNEInfo
Priority:10
({Token}) :entity
-—>

{

//get the annotation set
gate.AnnotationSet annSet = ((gate.AnnotationSet)bindings.get("entity"));

//get the only annotation from the set
gate.Annotation entityAnn = (gate.Annotation)annSet.iterator().next();

entityAnn.getFeatures() .put("rule_NE_kind", "None");

entityAnn.getFeatures() .put ("NE_rule_id", "None");
entityAnn.getFeatures() .put("coref_chain_length", "0");

34

Chapter 6

Tools for Annotation and
Evaluation

6.1 Manual annotation

There are two methods of manually annotating data in GATE. Usually, it is
quicker to annotate by using the system to produce the majority of annota-
tions automatically, and then manually editing the annotations produced.

6.1.1 Simple method of adding annotations

The simple method is when only the annotation type is needed, with no
features. Annotations can be added simply by selecting the text and clicking
on the annotation type that is displayed in the list of types.

6.1.2 Complex method of adding annotations

The more complex way of annotating documents is via the annotation editor,
which is invoked via the menu displayed on right mouse click (after selecting
the text to be annotated). This method is used in two cases: (i) when no
annotations of the desired type already exist. The first annotation of this
type needs to be created via the editor. Subsequent annotations can then
be created either via the simple point-and-click method described above.
(ii) when we want to annotate with more detailed information by specifying
annotation features. For example, Date annotations in GATE can be several
kinds (time, date, and date-time).

35

6.1.3 Modifying and removing annotations

To modify or remove an annotation, select the annotation from the annota-
tions table, right click and select “Edit” or “Delete selected annotations”.
To delete an entire annotation type, select the annotation type from the
annotation set on the right hand pane and use the keyboard Delete key. To
delete an entire annotation set, select the annotation set in the right hand
pane and use the keyboard Delete key. Note that the Default annotation set
can be cleared but not removed.

6.2 Evaluation

There are two main tools for evaluation:

e Annotation Diff, which enables comparison of key and system annota-
tions on a document;

e Corpus Benchmark Tool, which enables comparison of annotations on
a whole corpus and over time.

Both tools give figures for precision, recall, F-measure and false positives.

6.2.1 Annotation Diff

Run the Annotation Diff tool by selecting it from the Tools menu. Select
the key and response documents to be used (note that both must be open
in GATE), the annotation sets to be used for each, and the annotation type
to be evaluated.

The tool automatically intersects all the annotation types from the selected
key annotation set with all types from the response set. On a separate
note, you can perform a diff on the same document, between two different
annotation sets. One annotation set could contain the key type and another
could contain the response one.

After the type has been selected, the user is required to decide how the
features will be compared. Features are compared by by analyzing if features
from the key set are contained in the response set. Both feature name and
value must be identical to obtain a match.

There are three basic options to select:

1. Take all the features from the key set into consideration;

36

2. Take only the user selected ones;

3. Ignore all features.

If false positives are to be measured, select the annotation type (and relevant
annotation set) to be used as the denominator (normally, Token or Sentence).
The weight for the F-Measure can also be changed - by default it is set to 0.5
(i.e. to give precision and recall equal weight). Finally, click on ”Evaluate” to
display the results. Note that the window may need to be resized manually,
by dragging the window edges or internal bars as appropriate).

In the main window, the key and response annotations will be displayed.
They can be sorted by any category by clicking on the relevant column
header. The key and response annotations will be aligned if their indices are
identical, and are color coded according to the legend displayed.

6.2.2 Corpus Benchmark tool

To use the corpus benchmark tool, first make sure the properties of the tool
have been set correctly (see below). Then select “Corpus Benchmark Tool”
from the Options menu. There are 3 ways in which it can be run:

e Default mode compares the stored processed set with the current
processed set and the human-annotated set. This will give information
about how well the system is doing compared with a previous version.

¢ Human marked against stored processing results compares the
stored processed set with the human-annotated set.

¢ Human marked against current processing results compares the
current processed set with the human-annotated set.

Once the mode has been selected, choose the directory where the corpus
is to be found. The corpus must have a directory structure consisting of
“clean” and “marked” subdirectories. The clean directory should contain
the raw texts; the marked directory shuold contain the human-annotated
texts. Finally, select the application to be run on the corpus (for “default”
and “human v current” modes).

If the tool is to be used in Default or Current mode, the corpus must first
be processed with the current set of resources. This is done by selecting
“Store corpus for future evaluation” from the Corpus Benchmark Tool. Se-
lect the corpus to be processed (from the top of the subdirectory structure,
i.e. the directory containing the marked and stored subdirectories). If a

37

“processed” subdirectory exists, the results will be placed there; if not, one
will be created.

Once the corpus has been processed, the tool can be run in Default or Current
mode. The resulting HTML file will be output in the main GATE messages
window. This can then be pasted into a text editor and viewed in an internet
browser for easier viewing.

The tool can be used either in verbose or non-verbose mode, by selecting
the verbose option from the menu. In verbose mode, any score below the
user’s pre-defined threshold (stored in corpus_tool.properties file) will show
the relevant annotations for that entity type, thereby enabling the user to
see where problems are occurring.

6.2.3 How to define the properties of the benchmark tool

The properties of the benchmark tool are defined in the file corpus_tool.properties,
which should be located in the directory from which Gate is run (usually
gate/build or gate/bin).

The following properties should be set:
e the threshold for the verbose mode (by default this is set to 0.5);

e the name of the annotation set containing the human-marked annota-
tions (annotSetName);

e the name of the annotation set containing the system-generated anno-
tations (outputSetName);

e the annotation types to be considered (annotTypes).

38

	Introduction
	Gazetteers
	Introduction
	Creating and Modifying Gazetteer Lists
	Using Gaze

	Introduction to JAPE
	Introduction
	Pattern matching
	Context
	Macros

	Simple Pattern actions
	Setting the options
	Use of priority
	Using phases sequentially
	Some tricks
	Negative operator
	Matching special characters

	API
	Resource Management in GATE
	Language Resources
	GATE Documents
	Feature Maps
	Annotation Sets
	Annotations
	GATE Corpora

	Ontologies
	Processing Resources
	Controllers
	Persistent Applications

	Using Java for JAPE
	Introduction
	A more complex example

	Adding a feature to the document
	Finding the Tokens of a matched annotation

	Tools for Annotation and Evaluation
	Manual annotation
	Simple method of adding annotations
	Complex method of adding annotations
	Modifying and removing annotations

	Evaluation
	Annotation Diff
	Corpus Benchmark tool
	How to define the properties of the benchmark tool

