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Bridging the gap between text and knowledge

On the ”ontology” in ontology learning

In recent years, the field of ontology learning from text has attracted a lot of
attention, resulting in a wide variety of approaches to the extraction of knowledge
from textual data. Yet, results so far are still limited as the semantic gap between
human language on the one hand and formalized knowledge on the other is sig-
nificant. Knowledge formalized in the form of ontologies is declarative, explicit
and in general monotonic and crisp. Knowledge expressed by human language is
highly diluted, very implicit, vague and even defeasible.

As Brewster et al. [1] have correctly argued, when writing an article, authors
assume a large body of background knowledge which they share with their com-
munity and potential readers, while focusing on a very specific aspect, i.e. on the
specific message they want their text to convey. Thus, most of the knowledge in
texts is actually very implicit and remains ”under the surface”. Further, natural
language lacks conceptual preciseness, allowing people to have very different con-
ceptualizations and yet use the very same words to express them. In addition,
for reasons of economy, people use language in a rather vague and underspecified
way and are just precise enough to still allow reasonable communication. Thus,
knowledge conveyed by means of language has to be considered as implicit, vague
and defeasible in general and is consequently far away from current ontology mod-
els assuming knowledge defined declaratively, explicitly as well as in a crisp and
monotonic manner.

By definition, an ontology is an explicit specification of a shared conceptual-
ization (see [2] and [3]). In essence, it is thus a view on how the world or a specific
domain is structured as agreed upon by the members of a community. Assuming
that we have perfect natural language processing tools for extracting knowledge
from text, it is still questionable whether we will be able to actually learn an
ontology from this data as the conceptualization behind an ontology is typically
assumed to be the result of an intentional process. Ontologies therefore cannot
be ”learned” by machines in the strict sense of the word as they lack intention
and purpose. Instead, ontology learning may only support the human ontology
engineers in defining their conceptualization of a particular part of the world, e.g.
a technical domain, on the basis of empirical evidence derived from textual and
other data.

If we adopt such a view of ontology learning, we have to conclude however
that a number of important questions in this regard remain largely unanswered
by the current literature:

• textual evidence: What kind of empirical textual evidence should an ontol-
ogy engineer actually consider when modelling an ontology?



• evidence-based agreement: How can we foster the process of consensus build-
ing and agreement by presenting empirical evidence derived from data for
different design choices?

• data-driven ontology engineering: On a more general note, what should the
role of data-driven ontology learning be in the overall process of ontology
engineering?

• methodological integration: How should ontology learning tools be inte-
grated into a larger framework for ontology engineering from a method-
ological point of view?

• user interface: What is the best way to support an ontology engineer in
presenting empirical evidence at the user interface level and what is the
optimal way for a user to interact with such a system?

At least four different research communities may contribute to answering
these questions: natural language processing, machine learning, knowledge rep-
resentation/engineering and user interface design. In fact, it seems to us that
the above questions can only be addressed through an interdisciplinary research
program across these research communities. We will briefly elaborate why.

The natural language processing community has so far applied their best
techniques to the problem of ontology learning, mainly for term extraction and
for learning paradigmatic relations between terms such as synonymy (see [4] and
[5]), hyperonymy (see [6,7]) and meronymy (see [8]). However, these are lexical
relations and do not hold between concepts with explicitly defined intensions.
Lexical relations do in fact not map straightforwardly to relations between con-
cepts, e.g. A is a subconcept of B iff every A is also a B. In contrast, according
to Lyons [9], hypernymy is defined as ”the relation which holds between a more
specific, or subordinate, lexeme and a more general, or superordinate, lexeme.”,
which is clearly not equivalent to the definition above in terms of subsumption
of extension. Typically, hypernym relations are indicated through so called di-
agnostic frames. In the case of hypernymy, one useful diagnostic frame is An X
is a kind/type of Y” (see [10]). However, such diagnostic frames clearly lack the
necessary preciseness. First of all, they do not distinguish whether the terms are
roles (in the sense of OntoClean [11]) or actually concepts. Thus, student and
person can be actually found in such a diagnostic frame A student is a person who
studies, while the first is clearly a (material) role and the second a type. Similar
remarks hold for the meronymy relation. It is well-known in artificial intelligence
that there are various types of part-of relations (compare [12]) that can clearly
not be differentiated from each other within diagnostic frames. In summary, an
important problem seems to be that there is neither a straightforward mapping
between terms in language to concepts with a well-defined intension and extension
nor can lexical relations be mapped to ontological relations in the general case
(see also [13]). NLP research has in many cases ignored such intricate questions
in knowledge acquisition and focused instead on learning paradigmatic relations
between linguistic objects.

The machine learning community provides a large number of sound tech-
niques for data-driven (inductive) learning but, with a few exceptions, is in fact
quite opposed to the idea of learning ontologies. Ontologies are logical theories
and declarative by nature. Machine learning is in principle concerned with de-



veloping analytical models that explain data. In its supervised fashion (compare
[14]), such models serve prediction purposes, i.e. for classifying novel examples. In
unsupervised learning, one aims to discover regularities or patterns in data such as
homogeneous groups or clusters (see [15]) or general associations (see for instance
[16]). Many techniques from unsupervised machine learning such as clustering and
mining associations have been applied to ontology learning. Mädche and Staab
have for example used association rules to discover relations between (lexicaliza-
tions) of concepts (compare [17]) and Cimiano et al. have used clustering tech-
niques to group and hierarchically arrange words (see [18]). Most of the papers
in this volume also apply machine learning techniques in some way, in particular
clustering (Brunzel, Poesio et al.), classification (Poesio et al.), memory-based
learning (Tanev et al.) as well as induction of patterns from examples (Pantel et
al., Alfonseca et al.). However, analytical models as considered in machine learn-
ing are generally not declarative in the sense of a logical theory. Some branches of
machine learning research have indeed aimed at learning declarative logical theo-
ries from data. This is the case for example for Inductive Logic Programming [19].
However, theories learned from data through ILP differ crucially from ontologies.
The latter reflect a shared understanding of a domain of interest, produced as the
byproduct of reflection and consensus within a certain community and thus rep-
resent a commitment to a specific conceptualization. For logical theories derived
inductively from data, it seems unclear in how far they can be seen as shared
or as really expressing a view. The most promising way of applying inductive
techniques seems to be in ontology refinement. First blueprints in this direction
can be found in the works of Lisi [20] and Rudolph et al. [21]. In general, it seems
to us that an important avenue for future machine learning work in ontology
learning is to systematically analyze the question how inductively derived mod-
els, classifications, relations etc. can support an ontology engineer to formulate or
refine their conceptualization in the form of an ontology, seeing ontology learning
always as an interactive and cooperative process between an ontology engineer
and a system (see also the definition of ontology learning in [22]).

The knowledge representation community has focused traditionally on meth-
ods for efficient reasoning and inference, but to a large extent neglected the fol-
lowing issues: i) integrating insights from linguistics into ontology development
(with the exception of some of the work on DOLCE [23]) ii) integrating ontology
learning into methodologies for engineering ontologies, iii) integrating knowledge
representation and inferencing paradigms which are closer to the way knowledge
is expressed in human language (notable exceptions being the work on computing
with words of Zadeh [24], the work on natural logic [25] or the conceptual graphs
of Sowa [26]). The linguistics community has in fact developed category systems
based on linguistic principles that could be integrated into ontologies, for example
Vendler’s verb categories [27] or the so called ‘Aktionsarten’ [28]. Ontologists have
largely neglected such distinctions which might be useful exactly in bridging the
gap between text and knowledge. While there is some work on integrating ma-
chine learning into traditional knowledge acquisition and engineering methodolo-
gies such as CommonKADS [29], the integration of ontology learning with more
recent ontology engineering methodologies such as On-To-Knowledge [30], DILI-
GENT [31] or METHONTOLOGY [32]) has not been approached to a satisfactory



extent. A first step in this direction is included in this volume (Paslaru-Bontas et
al.) Methodological issues related to the interplay between linguistic analysis and
ontology engineering are also addressed in this volume (Aussenac-Gilles et al.)

Finally, the contribution from the user interface community is urgently needed
in ontology learning. We have argued above that ontology learning cannot be, by
its very nature, fully automatic. On the contrary, ontology engineering is a highly
interactive task in which a user interacts with a system that presents empirical
textual evidence in support of the human task of modelling a particular domain.
Novel user interface paradigms are needed here. First blueprints considering us-
ability aspects can be found in the work of Wang et al. [33] and Missikoff et al.
[34]. Unfortunately, we have no contribution on this included in this volume.

In summary, ontology learning research in which the ”ontology” is taken
serious requires a joint effort of various communities. Through this volume we
therefore aim at forging stronger bonds between these by presenting promising
research from the different communities in one collection. In this way we hope to
have contributed to the development of a more integrated and cross-disciplinary
approach to ontology learning. We hope that this book will stimulate further
research in the field and encourage researchers to increasingly tackle also the
harder challenges in ontology learning as outlined above.

Paul Buitelaar, Philipp Cimiano
Saarbrücken/Karlsruhe, November 2007
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Foreword

Gregory GREFENSTETTE a

a Commissariat l’Energie Atomique, CEA LIST, Saclay, France

Humans can use the internet easily thanks to World Wide Web browsers,
which hide operating system details behind intuitive interfaces. In little over a
decade, a world of ordinary people have become computer literate, using the
internet to communicate, to find information, and for sundry daily tasks, such
as buying books and travel. In the same time, billions of web pages have been
created. And even with this glut of pages to wade through, people are good at
finding and using information for their various needs.

Though we would like to have the computer understand things as we do,
navigating the billions of web pages internet without our constant direction, and
understanding and seeing matches as we do, this is beyond current computer
technology. Computers, even though they house and transmit this information,
are not very good at understanding and manipulating it.

The un-intelligence of computers comes from their basic functioning. Com-
puters are good at matching zeros and ones. Their circuits can tell when things are
exactly alike. But a computer is not good at looking through variety and detect-
ing similarity. Take, for example, these two sentences which might describe the
same event: Thieves stole a valuable Picasso last night and Armed robbers made
off with an invaluable Cubist-period painting yesterday. We humans can recognize
the similarity in them, since we know that Picasso produced Cubist paintings,
that thieves/robbers and made off/stole are near synonyms, and that last night
is part of yesterday. But for a computer, there is little in the text that matches.
A computer has no model of these basic facts and relations. The computer needs
lists of similar things, and the context to know when similarity holds and does
not hold. It needs an explicit list of items in a domain, and an explicit list of
relations between them. It needs a representation of text in which similar things
are expressed in identical language.

The response of the computer scientist has been the idea of building a Se-
mantic Web in which the information appearing on the Web would also contain
additional annotation understandable by a machine. To make information un-
derstandable to a machine, it must be reduced to a space where similar things
look exactly the same, in a zero and one sense. The variety of expression that
humans use (and understand) in the description of something has to be reduced
to a canonical set of words and expressions. The fact that a robber is a thief has
to explicitly appear in a hierarchy of words that describes when one thing is a
type of another thing. The relations between things in these lists have to be ex-
plicitly listed. The computer has to know that Picasso was a painter and that
painters paint paintings by looking up these facts in a computer-manipulable data
structure.



For the Semantic Web, an ontology is a data structure that describes the
vocabulary in a certain domain, and that specifies the relation between the ele-
ments in that domain. The computer can exploit this structure because all the
things that the computer needs to know are explicitly listed, or can be deduced
from the links between items. For example, if the ontology contains the explicit
relation that thieves steal and the explicit link that a robber is a type of thief, it
can deduce that robbers steal. The promise of the Semantic Web is that future
web pages will be annotated not only with bright colours and fancy fonts as they
are now, but with annotation extracted from large domain ontologies that specify,
to a computer in a way that it can exploit, what information is contained on the
given web page. The presence of this information will allow software agents to
examine pages and to make decisions about content as humans are able to do
now.

This book describes the state-of-the-art in computer-based ontology construc-
tion and evaluation.

The classic method of building an ontology is to gather a committee of experts
in the domain to be modelled by the ontology, and to have this committee agree
on which concepts cover the domain, on which terms describe which concepts, on
what relations exist between each concept and what the possible attributes of each
concept are. The chapter written by Simperl et al. outlines the steps in building
a functional ontology, with a description of tools available at each stage, and a
detailed case study involving automating part of the ontology learning process.

All ontology learning systems begin with an ontology structure, which may
just be an empty logical structure, and a collection of texts in the domain to be
modelled. If the ontology is not empty, then existing terms and relations in the
ontology can be used to create patterns to recognize new terms, and new relations
between terms. An ontology learning system can be seen as an interplay between
these three things: an existing ontology, a collection of texts, and lexical syntactic
patterns, such as A stole B. Existing items in the ontology can be used to gather
new texts, and to identify lexical patterns between ontology items in the text.
Texts can be exploited by identifying new terms that should be added to the
ontology, and new relations between existing terms. And new lexical patterns can
be found by analyzing new texts, finding where and in what syntactic or lexical
context known ontology items occur. With the ontology items, we find new texts.
With the text, we find new patterns between existing ontology items. And with
the new patterns, we find new ontology items.

One can also start from a simple list of domain terms, not yet structured
in an ontology, as shown in the chapter by Navigli and Velardi. They describe
how to take a domain glossary, using the Art and Architecture thesaurus as their
example, and then to bootstrap an ontological structuring of these terms using
part of an existing ontology, using the CIDOC core ontology for cultural heritage
information exchange as their model.

If one does not have a term list, but only large document collections from
the domain of interest, then term recognition techniques are used to find the
entities to be stored in the ontology. A number of chapters in this book deal
with recognizing the new elements that should go into a domain ontology (often
called ontology population) and finding new relations between them (ontology



learning). Ruiz-Casado et al. demonstrate what can be done if the domain texts
have a certain structure already. They treat Wikipedia, an evolving large scale
user-modifiable dictionary. Since Wikipedia has a cross-linking structure, and a
predictable format for subject identification and classification of articles, they
exploit this structure to identify and class entities. They also attack the prob-
lem of disambiguating entities and extracting semantic relations between entities.
Brunzel also uses document structure, using the HTML markup around words
as an indication of what sequences of words should be candidates for ontology
terms. Co-occurrence of terms in similar parts of the HTML structure are clues
for discovering synonymy and sibling relations between these terms.

Pantel and Pennacchiotti, with their Espresso algorithm, show how new en-
tities can be recognized and added to a knowledge base as defined in an ontology.
They describe an iterative processes, starting with a few seed relations like poodle
is a dog, then inducing new lexical syntactic patterns, selecting good patterns,
and extracting new terms and relations. They also probe the web with their high-
precision but low yield patterns to find more instances of terms and relations
than could have been found in their local document collections. Each element
in an ontology might also have a list of databases-like attributes, for example,
date-of-birth, location, etc. Two chapters, by Tanev and Magnini and by Poesio
and Almuhareb, describe other techniques for finding entity attributes and en-
tity classes by probing the Web, which allow ontologies to be filled out using the
largest document collection known. Aussenac-Gilles et al. detail their TERMI-
NAE platform that implements four steps in the ontology building process using
term recognition: adding new text to a document collection in a domain, extract-
ing terms and relations, organizing these concepts in the network, and producing
a normalized structure that can feed an ontology.

Sometimes one begins with an existing ontology, populated with entities, and
one wants to enrich the ontology model automatically, by creating new relations
between these entities. Ciaramita et al. demonstrate this approach by taking an
existing molecular biology ontology GENIA, and showing how the known con-
cepts, coupled with natural language processing technology and a corpus of text
from that domain, can be used to extract new relations between these concepts.
They then evaluate the validity of these newly learned relations for the domain.

Ontologies can describe more than just terms, attributes and the relations
between terms. A popular language for describing ontologies is the Web Ontology
Language OWL. OWL provides a rich logical description language for organizing
concepts, such as being able to define disjoint sets, existence relations, and other
logical conditions, that allow a computer to reason over the terms and relations
found explicitly in an ontology, in order to deduce new information that might
not be physically present on a web page, or in its Semantic Web annotations, but
which are implicitly present because of the relations contained in the ontology. The
chapter by Völker at al. explores the possibilities of learning these more complex
logical relations, studying the cases of learning logical OWL representations of
defining sentences (such as Enzymes are proteins that catalyse chemical reactions)
and of learning disjoint classes of ontology objects.

All of the above tools and methods for learning ontologies can be evaluated.
Dellschaft and Staab cover the range of options for evaluating the quality of the



techniques discussed in this book. Maynard et al. discuss evaluation, especially of
entity discovery in ontology learning. They introduce a new measure, the Balanced
Distance Metric, which measures the accuracy of placing a new term in an existing
ontology hierarchy of terms, and show that it captures human intuition of quality
better than existing measures.

Millions of human beings have contributed to making the World Wide Web
a new and accessible repository of human knowledge. The promise of the Seman-
tic Web is to make this information accessible and automatically exploitable by
computers, too. The Semantic Web will only be a reality if we can create struc-
tured, unambiguous ontologies that model domain knowledge that computers can
handle. The creation of vast arrays of such ontologies, to be used to mark-up web
pages for the Semantic Web, can only be accomplished by computer tools that
can extract and build large parts of these ontologies automatically. This book
provides the state-of-art of many automatic extraction and modelling techniques
for ontology building. The maturation of these techniques will lead to the creation
of the Semantic Web.
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The XTREEM Methods for Ontology
Learning from Web Documents

Marko Brunzel
DFKI GmbH (German Research Centre for Artificial Intelligence GmbH)

Trippstadter Strasse 122, 67663 Kaiserslautern, Germany
marko.brunzel@dfki.de

Abstract. Ontology Learning is up to now dominated by techniques which use
text as input. There are only few methods which use a different data source. The
techniques which use highly structured data as input have the disadvantage that
such data sources are rare. On the other side, there are enormous amounts of Web
content present today.

We present the XTREEM (Xhtml TREE Mining) methods which enable Ontol-
ogy Learning from Web Documents. Those methods rely on the semi-structure of
Web Documents. The added value of Web document markup is exploited by the
XTREEM methods. We show methods for the acquisition of terms, synonyms and
semantic relations.

The XTREEM techniques are based on the structure of Web documents; they
are domain and language independent. There is no need for NLP software nor for
training. They do not rely on domain or document collection specific resources or
background knowledge, such as patterns, rules or other heuristics; nor do they rely
on manually assembling a document collection.

1. Introduction

In this chapter we present the XTREEM (Xhtml TREE Mining) methods for Ontology
Learning from Web Documents. The XTREEM methods tackle different layers of the
Ontology Learning Layer Cake [1,2]. In particular we show techniques for obtaining (1)
terms, (2) synonyms and (3) semantic relations.

(1) Terms: XTREEM-T (XTREEM for Terms) finds domain specific vocabularies.
XTREEM-T is able to find single word and multiword terms by means of a frequency
statistic. The domain focus is as for all XTREEM approaches given by a simple query
for which a Web document collection is obtained. We will show a manual evaluation on
the results of XTREEM-T.

(2) Synonyms: XTREEM-S (XTREEM for Synonyms) aims to find promising can-
didates for synonymy. This is done by a standard procedure for synonym acquisition
upon the innovative Group-By-Path data sets. The Group-By-Path methods which is de-
scribed in section 3 provides a way to access Web documents which is different to tra-
ditional document processing. We will test weather the GBP data is helpful on synonym
detection. We will perform an evaluation against a gold standard synonym reference.

(3) Semantic Relations: Almost all existing approaches for the acquisition of se-
mantic relations focused on direct hierarchical relations. Those sub-ordination relations



exists between super-concepts and their sub-concepts. Between the sub-concepts of a
common super-concepts also a co-ordination relation exists. Those sibling relations can
be learned with statistics and data mining upon Group-By-Path data sets. XTREEM-
SG, XTREEM-SP, XTREEM-SC and XTREEM-SA are methods which aim to structure
terms on sibling relations.

Those methods are relying on the markup which is present in Web documents. Since
the structure of Web documents is not bound to particular domains and languages the
XTREEM methods are subsequently domain and language independent. In contrast to
many other methods, they are working with a vocabulary of multiword terms.

In the following section we will present related work. Then we describe the Group-
By-Path method. That method is the core operation within other XTREEM approaches
described in the later sections. Then we will we provide explanations and experimental
results of the XTREEM-T method in section 4, for XTREEM-S in section 5 as well as
for the XTREEM approaches for obtaining sibling relations in section 6.

2. Related Work

First we present related work with respect to Ontology Learning from Web docu-
ments.Then we present related work regarding the usage of Web document structure.
Then related work for the particular XTREEM approaches is presented.

Most of the existing ontology learning methods are used to perform ontology learn-
ing from text. For a overview on this topic see [1]. Even if those methods are processing
semi-structured data, e.g., HTML Web documents, they are removing the markup and
process plain text.

On the other side, there are those methods [3,4] where highly structured data such
as dictionaries, database schema or UML schema are used as input. Those approaches
have the disadvantage, that such highly structured data is rare.

A rather recent subfield of ontology learning uses semi-structured documents as
input data [5]. There the added value, which is given by nowadays omnipresent semi-
structured documents in HTML and XML standard, is incorporated. Kruschwitz [6,7]
used the markup sections of Web documents to learn a domain model. The method of Kr-
uschwitz uses the markup, but not the paths. In [8] list itemizations of HTML documents
are used for acquiring hyponymy relations.

Besides the amount of structure which can be observed on the input data on, one can
also identify subfields of ontology learning which are of relevance to our work as they
use Web data[9,10].

2.1. Methods that use XML Structure

The idea of using structural similarities [11,12], including path structures of XHTML/XML
documents, is used for several goals, such as clustering documents on structural similar-
ities [13,14,15]. In contrast, we use the path information to infer siblings. The constitu-
tion of the paths is not used itself; no comparison with paths from other documents is
performed with our approach.



2.2. Related Work on Terminology Acquisition

For an overview on terminology acquisition see [16,17,18]. With approaches relying
on syntactic chunks (e.g., parser generated), XTREEM-T shares “finding boundaries on
term expressions”; with n-gram based statistical approaches XTREEM-T shares the in-
corporation of large amounts of documents.

Compared to the 90’s, when many of the terminology acquisition systems have been
developed, now there is a big amount of (manually) marked-up Web content available.
Nowadays there are mainly activities on term acquisition approaches in the biomedical
domain [19,20], where special, high quality text corpora are used. But those approaches
designed for rather pure text are not general applicable. The approaches, designed for
high quality text, are likely to struggle with the noise present in Web documents, since
conversion can not be expected to be perfect; Web documents navigational elements
make the task even more different from pure text methods. The conversion from semi-
structured text to pure plain text also eliminates information. This information we regard
as valuable for term acquisition and not only for interpretation by the browser rendering
the Web content. In [7] the markup of Web documents is used to learn a domain model,
therefore also boundaries created by Web document structure are used, but not for the
purpose of term acquisition.

In the field of ontology learning there are the approaches of [21,22,23,24,25] which
tackle the terminology acquisition step seriously.

2.3. Related Work on Synonymy Detection

The detection of information about synonyms (synonym detection / synonym mining)
deals with the task of finding words which are interchangeable. For this purpose the dis-
tributional hypothesis of Harris [26] is used, e.g, [27,28,29,30]. From Dorow [31] we
have obtained the revised hypothesis that for terms to synonyms, they are only required
to have similar contexts. LSA [32] was successfully applied for finding synonyms ac-
cording to the TOEFL test [33].

2.4. Related Work on Detection of Sibling Relations

Upon plain text, Hearst patterns [34] are used to find relations among terms in text
collections by means of matching several patterns. Also co-hyponym relations can be
found with this approach. However the disadvantage is that such patterns are rare, the
coverage is low, even on big document collections. Cimiano et al. also discover (co-
)hyponym relations by finding and analyzing examples of Hearst patterns on the WWW
[35,36]. Cimiano et al. did not exploit the markup of Web documents, which are treated
like regular plain text.

The acquisition of co-hyponym semantics from text with association measures is
,e.g., performed by [37], but there the document structure is not used.

Now we present our own prior work. In [38] XTREEEM, an initial version of an
approach using the Group-By-Path approach was introduced. There K-Means clustering
was used to obtain sibling groups. This approach worked on an open vocabulary, the
evaluation was only exemplary by human inspection. In [39] the Group-By-Path method
was described formally and an evaluation against gold standards was conducted. There



clustering was used for processing. This method was called XTREEM-SG (XTREEM
for Sibling Groups) since this methods aimed to obtain sets of sibling terms. In [40]
additional additional term clustering is performed.

In [41], we presented XTREEM-SP (XTREEM for Sibling Pairs). XTREEM-SP is a
method which focused on finding pairs of strongly related siblings by means of statistical
association measures. A comprehensive overview on associations measures is given by
Evert in [42]. In particular we use χ2-association. Using χ2-association for finding col-
locations is mentioned in [43], though its application in computational linguistics goes
far back in time. Maedche [44,45] also incorporated association calculation, but he used
the traditional Bag of Words vector space model, the structure of Web documents was
not incorporated, he did not address siblings relations. In [46] we additionally applied
frequent itemset mining to find n-ary sibling associations.

3. Web Content and the Group-By-Path Operation

The XTREEM methods are based on the markup that is present in almost all Web doc-
uments. Web documents are usually coded in the HTML standard. Authors use different
nested tags to structure pieces of information in Web documents, as shown in table 1.

Now we describe the Group-By-Path operation [39] which is the core operation for
all other XTREEM methods (with exception of XTREEM-T). Specifically we use the
following definitions.

Table 1. Semantically related terms, located in different paragraphs or separated by other terms

Headings, located in different 
paragraphs 

Highlighted keywords, separated by normal text 

… 
<h2>WordNet</h2> 
<p>Was developed 
…</p> 
<h2>Germanet</h2> 
<p>Analogous …</p> 
… 

… <p> … there are different 
important standards for building 
the <strong>Semantic Web</strong>. 
… is <strong>RDF</strong>. … 
<strong>RDFS </strong> adds … 
whereas <strong>OWL </strong> is … 
</p> … 

 

Definition 1 (Web document) A Web document or Web page d is a semi-structured
document following the W3C XHTML standard1.

XHTML is an XML dialect, wherein the former HTML standard has been adopted
to meet the XML requirements. Traditional legacy HTML documents are converted to
XHTML documents, as is also done by all popular Web browsers. Hence, an XHTML
document can be seen as a tree, text is represented by leaf nodes and the intermediate
nodes are markup elements. We use the term text span to denote the textual contents, the
character data sequences of XML elements. The XML elements formed by the tags we
will denote as markup elements or tags.

1http://www.w3.org/TR/xhtml1/



<html> 
<html><head> 
<html><head>… 
<html></head> 
<html><body> 
<html><body><h1>Lexical Resources …</h1> 
<html><body><p>…</p> 
<html><body><h2>WordNet</h2> 
<html><body><p>Was developed …</p> 
<html><body><h2>Germanet</h2> 
<html><body><p>Analogous to WordNet for the English …</p> 
<html><body>… 
<html></body> 
</html> 

 Figure 1. A XHTML Document viewed as a collection of Tag Path - Text-Span Pairs

Definition 2 (Tag Path) Let M be the set of tags supported by XHTML and let d be a

Web document according to Def. 1. A tag path p in d is a sequence of tags leading from

the root tag element of d to a text span in d, i.e., p has the form p =< m1,m2, . . . ,mv >,

where mi ∈M(i = 1, . . . , v).

We use the notation (p, e) to indicate that e is the text span to which p leads.

By this definition, p is a branch of an XHTML tree; for each mi, mi+1 (i =
1, . . . , v − 1) it holds that mi is the tag surrounding mi+1. A tag path is therefore a

special kind of XPath2 expression. Moreover, a document d is a collection of pairs of the

form (p, e), where p is a tag path and e is the text span to which p leads. For example,

consider the document in figure 1: In line 8, we see the tag path <html><body><h2>

leading to the text span Wordnet.

Let B = {e1, . . . , er} be a set of text spans. For one document several B can be

found by the following Group-By-Path algorithm (Algorithm 1). This is different to tra-

ditional “text treatment”, where for one text unit (e.g., document, paragraph or sentence)

a corresponding “Bag of Words” is obtained. Here a B is obtained for each distinct path

p of a document d. Let A = {B1, . . . , Bt} be the collection which contains the sets of

text spans. The following algorithm reflects the way A is obtained from d. This grouping

operation is the core of the XTREEM procedures.

2http://www.w3.org/TR/xpath/



Algorithm 1 The Group-By-Path Algorithm [39] on a XHTML Web Document
Input: Web document d
Output: Collection A of sets of text spans Bi = {e1, . . . , et}

1: extract from d the set Y = Y (D) of (p, e)-pairs, where p is a tag path according
to Definition 2: and e is its target text span)

2: A = Ø
3: let Z be the set of tag paths in Y
4: for all p ∈ Z do
5: set B = {e|(p, e)inY }
6: insert B to A
7: end for

return A

This algorithm creates all tag paths which lead to an text span (XML text element)
in the Web document tree. Then those text spans are grouped together, which share a
common tag path.

Now d is represented as a collection of text span sets. This operation is used in the
methods described in section 5 and section 6.

Summary: The Group-By-Path approach performs a transition of a Web document
from a tree, to a collection of “tag path” / “text span” pairs to a collection of text span
sets.

4. Acquisition of Topic specific Vocabulary with XTREEM-T

The core of our approach is in the exploitation of Web document structure to find sibling
relations. This procedure is described in section 6. To find those sibling relations many
Web documents are processed. Then we investigate if those Web documents can also be
used to find terms which are afterwards to be structured by sibling relations.

Up-to-date domain specific vocabularies are valuable resources; e.g., for the appli-
cation fields ontology learning or text-mining. Usually such domain specific resources
are not available; manually crafting the vocabulary without support of suited tools is
infeasible. Though the acquisition of terms is the basic layer in ontology learning, it is
important since the subsequent layers rely on the vocabulary and it is therefore desirable
to obtain also valuable multiword terms from the beginning.

Automatically acquiring a vocabulary is the subject of term extraction, also referred
to as term acquisition. Terms constituted by more than one word are also called multi-
word terms. The vocabulary to be acquired should include single word and multiword
term expressions. The vocabulary we want to extract should not necessarily be limited
to noun constructs also verbs and adjectives can be important for the lexical layer of an
ontology.

Terminology acquisition, relying on statistics of large document collections, is en-
abled by the fact that large amounts of textual content are readily available. Within Web
documents some “sequences of text” occur frequently “marked-up” by tags. We will
show, that ordering the “sequences of text” according to their frequency in the collection
separates promising term candidates from ordinary text spans. This makes this straight-



forward approach transparent. There are no hidden triggers which prevent the practical
applicability for other domains and languages.

The terms obtained from Web documents are expected to be especially suited in the
context of learning ontologies for the Semantic Web, since the concepts/terms from such
an ontology should label Web content again. Shared markup can be used to facilitate
shared conceptualizations.

There are many methods from the field of terminology acquisition tackling the ob-
jective of extracting term expressions. The adoption of existing methods to a new domain
is laborious. This drawback exacerbated the broad incorporation in application areas like
ontology learning and text mining. In contrast, our XTREEM-T approach does not rely
on rules and background knowledge. XTREEM-T is domain and language neutral and
operates on easily obtainable Web documents.

The availability of a corpus is normally a prerequisite. For some domains it is possi-
ble to get big document collections (e.g. Medline), for other topics assembling a feasible
document collections is a problem on its own. Since the Web is a big source of content
for nearly all topics one can think of, using the Web seems to be an alternative, espe-
cially when the document collection is not itself of interest, as it is sometimes the case
for ontology learning.

4.1. Foundations of XTREEM-T

Term extraction is based on finding boundaries which separate promising candidates
from not relevant sequences of tokens. Our approach uses the boundaries available in
Web documents. Those boundaries are mostly manually created by millions of Web con-
tent authors. These boundaries are explicit through the markup in semi-structured Web
documents. Though the markup is usually not created to make term boundaries explicit,
large amounts of such markup boundaries can be helpful for terminology acquisition.

4.1.1. Term Boundaries from Web Content

Web content marked up with HTML tags contains textual data such has ‘‘Here is
<EM>marked up text</EM>’’. The angle bracket limited tags, enclose sequences
of text. Table 1 shows a exemplary fractions of (X)HTML Web content, figure 2 depicts
a list of text spans obtained from the content of the second column of table 1 by chunking
on the markup tags. When considering bigger amounts of Web content treated in this
manner, we postulate that promising term expressions are more frequent and can there-
fore be obtained from a frequency statistic. E.g., only the text spans in line 2, 4, 5 and 7
are likely to become frequent within amounts of other text spans from a Web document
collection.

4.2. The XTREEM-T Procedure

The data flow diagram depicted in figure 3 gives an overview of the XTREEM-T ap-
proach for obtaining a domain specific vocabulary (including multiword terms) from
Web document collections.

In the following the individual steps of the XTREEM-T procedure are described.



1: ... there are different important standards for building the
2: Semantic Web
3: . ... is
4: RDF
5: RDFS
6: adds... whereas
7: OWL
8: is...

Figure 2. List of Text-Spans derived from the XHTML code of the right Column of Table 1
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Figure 3. Flow Diagram for XTREEM-T - Vocabulary Detection from Web documents

4.2.1. Step 1 - Querying & Retrieving:

The XTREEM procedure operates on medium size (thousands of documents) and large
size (millions of documents) Web document collections. Such a Web document collec-
tion is obtained by querying an Archive+Index facility on a query. The Archive+Index
facility is a large collection of Web documents, obtained by Web crawling, whereupon
a index is created. The query constitutes the domain of interest whereupon seman-
tics should be discovered. It should therefore encircle the documents which are sup-
posed to entail domain relevant content, e.g., ‘‘tourism*’’ or ‘‘myocardial
infarction’’.

The Web document collection should be big enough to contain manifold occurrences
of the desired concepts. This is not supposed to be a small manually handcrafted docu-
ment collection; bigger amounts of Web content which have an appropriate coverage of
the domain are more desirable. Here, recall is more important than precision. To obtain
such a comprehensive Web document collection, alternatively a focused Web crawl can
be performed. The Archive+Index Facility can be easily replaced by obtaining Web doc-
ument references from the public search engine API’s of the major Web search engines.

4.2.2. Step 2 - Conversion:

Most of the present Web documents do not yet fully comply with the proposed W3C
standards. Non conformant documents are converted to XHTML documents as is done



by all popular Web browsers. This step is not primarily necessary for the objective of
finding term expressions, but it ensures consistency, for every opening tag a correspond-
ing closing tag is present, and eases the handling of Web documents in the next step.

4.2.3. Step 3 - Markup Exploitation:

The Web document can be interpreted as a collection of alternating sequences of textual
data and markup sections (tags). We will refer to the textual sequences of text which are
not markup as text spans. Only those text spans are of further interest for XTREEM-T.
Multiple occurrences of whitespace in text spans are normalized to a single whitespace
character; leading and trailing whitespace of text spans is removed. Additionally one
may perform a cleaning of the text spans. For our experiments we only used alphabetic
characters to eliminate punctuation and numbers, all characters have been converted to
lower case. The text spans are constituted by different numbers of tokens and can also be
seen as word n-grams of variable length.

4.2.4. Step 4 - Text-Span Counting:

For the text spans, obtained from the Web documents in Step 3, a frequency statistics is
created. This frequency statistics contains text spans constituted by different numbers of
whitespace separated tokens mixed together. For practical settings it is feasible to limit
the length of the text spans to 5 to 10 tokens.

4.2.5. Step 5 - Order By Frequency:

From the text span frequency statistics a list of candidate term expressions is generated
by ordering text spans according to their frequency within the Web document collection.
According to our hypothesis, the top ranked text spans are term expressions. No stop
word removal is required.

4.3. Experiments and Evaluation for XTREEM-T

The term acquisition research field lacks an agreed evaluation vocabulary. Even if such
an evaluation vocabulary would be available, it would likely be bound to a specific doc-
ument collection. For large Web document collection is also not feasible to manually
assemble a gold standard which can then be used as a reference. As for other Web data
driven approaches, a evaluation as it is usually expected for traditional corpus driven
processing is not possible. E.g., though the retrieval quality of the major internet search
engines is quite different, this difference was not measured quantitatively. This is due to
several circumstances of Web data driven approaches. The amount of data is enormous,
and it is not even clear what one would regard as a useful result. Despite that the quality
can not be measured exactly, human users experience significant differences.

Because of the lacking gold standard vocabulary and the problems of evaluating Web
data driven approaches, we will perform an exemplary manual evaluation on samples of
term candidates. For our experiments we will vary:

• the domain of the vocabulary
• the size of the document collection
• the rank-range where evaluation is performed



4.3.1. Experimental Settings

Table 2 gives an overview of the experimental settings used for the evaluation. For all
queries the XTREEM-T procedure was run. In the following we will refer to the 5 set-
tings with Q1 to Q5. A “setting” is hereby created by a query which results in a Web
document collection.

The rather small Web document collections resulting from Q1 and Q3 are obtained
by querying the Web service API of Google. The other document collections, retrieved
by the queries Q2, Q4 and Q5, are obtained by performing large domain focused Web
crawls, ranging from several hundred thousands (Q4) to 10 million documents (Q2, Q5).

The processing was limited to term expressions of up to a length of 4 tokens (uni-
grams, bigrams, trigrams and quadgrams) since this is usually the upper bound used for
term acquisition. For inspection, subsets of the most frequent text spans have been se-
lected as term candidates. The human expert judged, whether the term candidate can be
regarded as a valid expression - in the context of the corresponding domain.

For all settings Q1 to Q5 the top 1000 most frequent text spans have been evaluated.
Additionally for Q5 also the text spans with rank 10001 to 11000 and 50001 to 51000
have been inspected to investigate the decrease of quality on low ranks.

Table 2. Domains reflected by query phrases and the resulting number of Web documents used for the
experiments

Query
Name

Domain Query Phrase Number of Docu-
ments

Q1 Ontology On-
tologies Semantic
Web

ontology OR ontologies OR “semantic Web”3 3,974

Q2 Ontology Ontolo-
gies

“ontolog*” 272,588

Q3 Myocardial In-
farction

“acute myocardial syndrome” OR “myocardial syndrome”
OR “acute myocardial” OR “myocardial infarction” OR
“acute myocardial infarction”

1,037

Q4 Myocardial In-
farction

“myocardial*” 42,768

Q5 Tourism “accommodation” 1,612,108

4.3.2. Evaluation Criteria

The precision is the relative number of accepted candidates to the overall number of
candidates evaluated.

precision= #accepted
#accepted + #rejected

If the human expert was in doubt about a term candidate, it was rather regarded as
rejected to be on the safe side.

4.3.3. Experimental Results

In figure 4 we see a exemplary list of obtained term candidates. Table 3 shows the preci-
sion obtained in the evaluation. The first 5 rows show the obtained results on the top 1000



most frequent text spans, evaluated whether they are domain relevant term expressions
or not. The best results are obtained for Q5 with a precision of 77%. This is also the
largest document collection. The high precision on the Web document collection from
the tourism domain can be explained by the fact that many of the accepted terms are
valid geographic expressions such as new zealand, venice or sunshine coast.
Whether to regard such candidates as good or bad is an open issue, depending on the
task. The worst results stem from Q2 with a precision of 40%. These lower results can
be explained by the fact that the keyword, which constituted the document collection, is
polysemous: there are a couple of terms belonging to “ontology in philosophy” such as
martin heidegger and philosophy of mind and not to “ontology in computer
science”. This shows the influence of assembling a document collection. Focusing search
results by eliminating not wanted senses can be relatively easily done by adopting the
query which constitutes the domain Web document collection.

Then we also evaluated lower rank regions of frequent text spans for Q5. There the
precession values are lower than for the top 1000 most frequent text spans, but still rea-
sonable good. The still high number of term expressions regarded as relevant is indica-
tory of the following not astonishing finding. Without further domain restrictions the vo-
cabulary of the tourism domain (given by the query phrase “accommodation”) is rather
large. A vocabulary for the tourism domain, where also many proper names can be found
is likely to consist of many thousands or even hundred thousands of terms. This is also
the reason why an evaluation against the vocabulary of known tourism gold standard on-
tologies is not feasible since most of the acquired term candidates are not within the gold
standard though they are valid domain relevant term expressions.

When looking at the results for multiword term expressions separately (numbers
in parenthesis of table 3), it can bee seen that also multiword terms are captured with
reasonable quality. For the lower evaluated rank regions, the results for multiword terms
are even above those for unigrams.

Table 3. Evaluation results for term candidates, in parenthesis the results for multiword terms are shown
additionally isolated

Query
Name

Order Crite-
rion

Evaluated Rank
Region

Accepted Rejected Precision

Q1 frequency 1-1000 512 (148) 488 (165) 51% (47%)
Q2 frequency 1-1000 396 (60) 604 (223) 40% (21%)
Q3 frequency 1-1000 522 (214) 478 (277) 52% (44%)
Q4 frequency 1-1000 530 (197) 470 (256) 53% (43%)
Q5 frequency 1-1000 793 (240) 207 (93) 79% (72%)
Q5 frequency 10001-11000 619 (485) 381 (224) 62% (68%)
Q5 frequency 50001-51000 522 (497) 478 (300) 52% (62%)

4.4. Conclusion for XTREEM-T

In all performed experiments on term acquisition with XTREEM-T can be said: that
approximately at least half of the candidates are regarded as relevant term expressions.



... , software, conferences, index, daml oil, phone,
site map, registration, tutorials, table of contents,
figure, about us, help, conclusion, call for papers,

services, artificial intelligence, program, at, university,
main, see, project, education, java, am,

ieee intelligent systems, pm, topic maps, more, price,
pages, see also, archives, background, privacy policy,

download now, feedback, tools, ontoWeb, iswc, applications,
availability, daml, uml, trackback, summary, technology,

information retrieval, knowledge representation,
dublin core, books, platforms, ...

Figure 4. Exemplary list of obtained Term Expressions; Rank 80 to Rank 132 of Candidate Term Expressions
for Document Collection 1

5. Acquisition of Synonyms with XTREEM-S

Synonyms are words with the same meaning or very similar meaning like car and au-
tomobile. Synonym words should be interchangeable in certain contexts. The acquisi-
tion of information about synonymy of terms is an important task in the field of lexical
knowledge acquisition.

The hypothesis is that good synonym candidates to be synonyms are words which
nearly never occur together but which have a very similar context. E.g., car occurs often
together with bike and bus. automobile occurs often together with bike and bus.
But car and automobile occur together rather seldom.

In [31], it was shown that this thesis does not hold true regularly. This is for certain
circumstances. One reason is hat author’s change between synonyms in a narrow distance
of textual context window. It is also not uncommon that two synonymous words are used
in close coordination, e.g., “Consequence in the form of penalty and punishment
is the subject of the next chapter.” (Example taken from [31]). Dorow revised the thesis
that synonymous words do not occur together (first order association), to only require
synonymous words to have a similar context (second order association). This was done
on regular consecutive plain text. Since our GBP [39] approach enables to obtain sets of
terms which have a different “constitution bias” than traditional text treatment (e.g., Bag
of Words (BOW), the vector space model), we want to examine whether this data type
yields suitable results by means of the updated hypothesis that synonymous words have
similar contexts (second order association).

We will introduce XTREEM-S (XTREEM for Synonyms) an approach for obtaining
information about synonymy between terms of a given vocabulary. XTREEM-S uses a
standard procedure for calculation of second order association on a data set based on
the GBP algorithm [39] described in section 3. In an experiment we will demonstrate
that this approach is able to perform well in finding terms which are good candidates as
synonyms compared to the traditional Bag of Words vector space model.

5.1. The XTREEM-S procedure

For finding synonyms by means of statistical processing the hypothesis of Dorow [31]
is that candidates for synonyms are terms which occur together with a similar context



(of terms). The overall procedure for XTREEM-S is shown in the data flow diagram of
figure 6.

Query

Web Document 
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I
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WebArchiv 
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II

Figure 5. Data Flow Diagram for XTREEM-S: Obtaining a Association Statistics for Synonymy Detection

5.1.1. Step 1 - Querying & Retrieving:

The first step is the same as those of XTREEM-T, described in section 4.2.1. For a given
query, a Web document collection is obtained. For our evaluation, the query “tourism
OR tourist’’ was used to obtain a Web document collection of the tourism domain.
This query resulted in a document collection of 1,468,324 documents.

5.1.2. Step 2 - Group-By-Path:

For each document the Group-By-Path algorithm [39], described in section 3 is applied.
As result we obtain the collection of 13,177,526 text-span sets.

5.1.3. Step 3 - Filtering:

For the following steps we only consider all text-spans which are contained in a given
vocabulary. Further we are only processing text span sets with an cardinality of at least
two, other wise no co-occurrence can be observed at all.

As the vocabulary to be processed we took the terms of two tourism gold standard
ontologies45. Both ontologies did not contain synonyms; therefore we additionally added
the synonyms obtained for the basic vocabulary from Wordnet. This was done to ensure,
that for the terms of the vocabulary a synonym relation exists for most of the terms. The
enhanced vocabulary consists of 1786 terms. The synonyms which have been obtained
from Wordnet are also used for evaluation as gold standard synonym reference.

From the 13,177,526 text-span sets found in the Group-By-Path step, 864,431 sib-
ling term sets, which are constituted by at least two terms of the vocabulary, have been
obtained.

4http://www.aifb.uni-karlsruhe.de/WBS/pci/TourismGoldStandard.isa
5http://www.aifb.uni-karlsruhe.de/WBS/pci/getess tourism annotation.daml



5.1.4. Step 4 - Vectorization:

The text-span sets obtained in the previous step are then spanned over the feature space.
The feature space is given by the input vocabulary. For each term of the input vocabulary
there is a corresponding vector spanned over all contexts (tag paths).
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DocumentA<html><body><h2> 1 1 0 0 … 
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 Figure 6. Exemplary Fragment of a Vectorization

5.1.5. Step 5 - Association Calculation I:

For each pair wise combination of terms, the corresponding similarity is calculated by
similarity function S1. With S1 the similarity of the corresponding context vectors is
calculated. As a result, one obtains a symmetric matrix A1 where the pair wise term
similarities are stored. This matrixA1 represents the first order association among terms.
Similarity is given by joint occurrence within the same contexts.

As similarity function of our evaluation we used the cosine similarity.

5.1.6. Step 6 - Association Calculation II:

The matrix obtained by step 5 can also be treated as a list of vectors. For every term, there
is a vector with the first order association to all other terms. Now, for each combination
of first order association vectors, the similarity is calculated again by similarity function
S2. The result is then stored in a matrix A2. This matrix A2 represents the second order
association among terms. Similarity is given by similar co-occurrence profiles (first order
association vectors).

As similarity function of our evaluation for second order association calculation we
used again cosine similarity.

5.2. Experiments and Evaluation for XTREEM-S

5.2.1. Evaluation Methodology

For the evaluation of synonymy detection in computational linguistics, there is the recent
trend to use the TOEFL task. In this task, one has to select a synonymous word out of a
given sets of 5 terms. For the evaluation of synonymy detection in the context of ontology
learning, this is an unrealistic scenario, since for ontology learning usually a mid size
vocabulary of several hundreds terms is to be processed. Choosing synonym candidates
out of thousand candidate terms is much harder than to choose a synonym candidate out
of 5. Instead we will perform an evaluation where no restriction is undertaken. This is a



much harder task, but this fits better to the context of ontology learning where no prior
restriction can be expected in real world settings.

We will perform a gold standard evaluation. As reference, the synonym relations
from Wordnet have been used. The synonym groups (synsets) obtained from Wordnet
have been transformed into a collection of term pairs which stand in a synonym relation.
The evaluation has a bias against the automatically generated results since Wordnet (the
reference) also contains synonyms for other domains than the used tourism domain.

Object of the evaluation is a ranked list of automatically obtained concepts pairs,
whereas the ranking is given according to the second order association strength of the
term pairs. For each automatically obtained terms pair, it can be determined if this rela-
tion is also supported by the reference which gives a positive count. If a term pair is not
supported by the reference a negative count is assumed. With this, for each position in
the ranked list, recall and precision can be calculated.

5.2.2. Evaluation Criteria:

The recall is the number of already seen true synonym pairs (#positive) to the num-
ber of synonym pairs given by the reference (#overall). The precision is the number
of true synonym pairs (#positive) to the number of seen automatically generated pairs
(#positive+ #negative).

recall = #positive
#overall

precision = #positive
#positive+#negative

For a ranked list of associated term pairs a chart line can be obtained by a series of
measurements on precision values for several numbers of seen candidate term pairs. We
evaluated the top-N candidate term pairs for several N. N increases from the left to the
right (N=10, 20, 30, . . . , 100, 200, 300, . . . , 1000, 2000, 3000,. . . , 10000) .

5.2.3. Evaluation Results

In figure 7 the results of our experiment are shown. The GBP approach is contrasted to the
traditional Bag of Words approach. GBP performs better than BOW. For the alternative
BOW method, there are no synonyms at all within the top 100 evaluated candidate term
pairs. For higher numbers of evaluated term pairs the lines approach to each other on low
level. For GBP there is a region ranging up to the first top 400 synonym candidates, where
a precision of over 10 percent can be achieved. This means: there is a rather small number
of synonyms which can be found with an acceptable precision. Compared to the overall
number of synonyms which are supposed to be present according to the reference, this is
quit a small fraction. The corresponding recall values are low, e.g., while observing 400
term pairs, with a precision of 10.97 percent, the recall is only 3.09 percent. To obtain a
recall of 9.43 percent, 10000 candidate pairs have to be inspected; the precision is then
only 1.33 percent, which is practically unacceptable. For the traditional BOW approach
the results are even worse.

The recall which was achieved with an acceptable precision is too low to present
it in a diagram. This is a circumstance which is common to automatic approaches for
findings synonyms; they can only find a small fraction of synonym relations.
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5.3. Conclusion for XTREEM-S

On one side, with GBP a better quality was achieved than with a traditional Bag of Words
approach. But even those improved results are bad for finding all synonyms which are
to be found ideally. One can state that it is possible to find a rather small number of
synonyms with acceptable precision.

6. Acquisition of Semantic Sibling Relations

The main contribution of XTREEM is in the field of obtaining semantic sibling relations.

6.1. Sibling Relations

Most approach for the acquisition of semantic relations focused on direct hierarchical
relations. Those sub-ordination relations exists between super-concepts and their sub-
concepts. E.g., in figure 8, between A and B and between A and C as well as between A
and D a Sub-ordination Relation exists. Between B and C, B and D and between C and
D a Co-ordination Relation can be observed. The co-ordination relation can be referred
to as as Sibling Relation. To a set of siblings which are all siblings to each other we refer
to as sibling group.

Prominent examples of semantic sibling relations are co-Hyponymy and co-
meronymy. E.g., the hyponyms of a common hypernym can be referred to as co-
hyponyms. Co-meronymy refers to the meronyms (parts) of a common holonym (whole).
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6.2. Finding Sibling Relations

For finding semantic sibling relations from GBP data, several processing types are possi-
ble. In figure 9 the general procedure is shown: Upon a given Web document collection,
the Group-By-Path operation is applied. As an intermediate result, a collection of syn-
tactically motivated sibling text-spans is obtained. By means of statistics and data min-
ing semantic sibling terms can be obtained. In the following we will describe process-
ing methods which we regard as most suitable for this task. Our description will not go
into the details, they can be obtained from comphrehensive descriptions in recent articles
[40,46].

Web Document Collection Sibling Text-Spans
(Syntactic Siblings)

Sibling Terms
(Semantic Siblings)Processing

Group
By

Path

Figure 9. General Data Flow Diagram for XTREEM Procedures. First the Group-By-Path operation is applied
upon a Web document Collection. Then the intermediate results are further processed ,e.g., by Clustering

One major distinction is if (1) binary sibling relations (sibling pairs) or if (2) n-ary
sibling relations (sibling groups) are to be found.

(1) Sibling Pairs: The most simple form is just counting the co-occurrence within
GBP generated terms sets. The co-occurrence frequency of terms can be used as a rough
indicator for those terms being siblings to each other. More sophisticated indicators of
association strength are the plethora of statistical association measures, which are used
in computational linguistics. A comprehensive overview on those associations measures
is given by Evert [42].

We performed and evaluated the acquisition of binary sibling relations with
XTREEM-SP (XTREEM for Sibling Pairs) in [41] and its successor XTREEM-SA
(XTREEM for Sibling Associations) in [46].



Sibling pairs are practically less interesting than sibling groups, but the calculation
methods used to find binary relations are computational cheaper than those for finding
n-ary relations.

(2) Sibling Groups: To find strong patterns of terms which co-occur as siblings,
one can on one side perform (a) frequent item set mining or (b) clustering.

(a) Frequent Item Sets: The acquisition of frequent item sets according to the Apri-
ori algorithm [47] is a method, where for a support threshold all frequent item sets satis-
fying this support criteria can be found. We applied this algorithm as described in [46].
The calculation of frequent item sets is computational cheaper than performing cluster-
ing, but the obtained results are significantly worse than those we obtained with cluster-
ing.

(b) Clustering: Clustering is an unsupervised machine learning method. There is a
plethora of different clustering algorithms. Several differentiations on characteristic of
clustering can be undertaken. One major distinction is the direction in which the data set
is to be clustered. On one side, similar records (e.g., documents, sentences or tag paths
(sibling term sets)) can be clustered together. For traditional text document clustering
this clustering direction is referred to as document clustering or row-row clustering. The
clustering algorithm works as a kind of lossy compression facility. The clusters have
to be labeled by incorporating some kind of clustering labeling strategy. On the other
side one can group similar terms (features) together. For traditional text clustering this
clustering direction is referred to as term clustering or column-column clustering. Here
clusters can be directly labeled with the terms constituting the cluster.

In [39] we have described XTREEM-SG where K-Means was used for perform-
ing row-row clustering (tag path clustering). In [40] we additionally performed column-
column clustering. Column-column clustering (term clustering) yielded considerable
better results than row-row clustering.

The automatic evaluation regarding a gold standard evaluation yielded an improve-
ment of the state of the art on finding sibling relations from 14.4 percent [36] to 21.47
percent with row-row clustering [39] and even better by column-column clustering with
22,93 percent [40].

Figure 10 depicts the list of clusters which have been obtained for a vocabulary from
the tourism domain. The size of the feature space is 693 terms. For K-Means the pa-
rameter K was chosen to be 200. Finally 128 clusters with at least 2 cluster members
have been generated. There were two big clusters of terms which could not be well sepa-
rated. The clusters shown in table 10 are constituted by 463 terms. As can be seen, there
are plenty clusters where the semantic coherence can be recognized. On the other hand,
there is still much room for optimization, since also many outliers can be found. The
row-row clustering (term clustering) which yielded the best results has the disadvantage,
that since clustering with hard cluster membership was used, terms can only occur in one
sibling context at a clustering. This is problematic since first terms can be polysemous
and second one term can have several valid sibling contexts. Incorporating a clustering
algorithm with soft cluster membership can improve this circumstance.

Further, clustering algorithms can be divided into hierarchical and non-hierarchical
algorithms. The K-Means algorithm which has been mentioned before produces a flat
partitioning. In contrast, hierarchical clustering algorithms produce a hierarchy of clus-
ters. Hierarchical clusterings can be further distinguished into divisive (top-down) and
agglomerative (bottom-up) approaches.
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Figure 10. Resulting Sibling Groups, produced by Term Clustering upon GBP Data

We have already applied Bi-Secting-K-Means, a divisive hierarchical clustering al-
gorithm on row-row clustering. The results are worse than those obtained by K-Means
[48]. But using Bi-Secting-K-Means which produces a hierarchy of clusters has the ad-
vantage, that the human user which consumes the clusters can browse the cluster hier-
archy more easily than a long list of clusters. In the data flow diagram of figure 11 a
procedure for obtaining a hierarchy of sibling groups by means of hierarchical clustering
is shown.

Further we are investigating the application of agglomerative hierarchical clustering.
The preliminary results show that agglomerative clustering yields better results (regard-



ing sibling relations based on XTREEM/GBP) than K-Means or Bi-Secting-K-Means.
Agglomerative clustering has the major drawback, that the complexity of the algorithm
is n2̂ log n, which in contrast to K- Means with its linear complexity is impractical for
such data sets as those we have used in our experiments.
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Figure 11. Data-Flow Diagram of the XTREEM-SGH procedure. A Hierarchy of Sibling Groups is acquired
by applying Hierarchical Clustering upon a data set of Sibling text spans found by the Group-By-Path approach

For the vectorization which is used for clustering, usually a term weighting like TF-
IDF [49] is performed. In [50] we have presented a domain relevance enhanced term
weighting approach which is especially created for performing term weighting upon GBP
data sets. This term weighting is a enhancement of the existing IDF weighting; addition-
ally a domain relevance score is incorporated. The term frequencies which are used for
IDF weighting are different for GBP data sets, on a certain fraction of tag paths also un-
desired terms are captured. To dim the influence of those terms also external information,
which has been obtained by comparing the frequency in the domain document collection
to the frequency in the general language, is incorporated.

6.3. Conclusion for finding Semantic Siblings

As we have shown in various publications, it is possible to find meaningful semantic
sibling relations upon GBP generated term sets. Regarding a gold standard evaluation,
the state of the art quality could be significantly improved. The best results for findings
sibling groups have been obtained by performing term clustering [40]. This was done by
using a clustering algorithm with an hard cluster membership. To overcome the limitation
that a term can only belong to one sibling group in term clustering, it is desirable to
incorporate a clustering algorithm with soft cluster membership.

The amount of clusters to be generated influences the abstraction forced on the con-
stitution of the resulting sibling groups. For real world settings the expert may decide to
handle the tradeoff between reachable quality and the amount of generated information
according to his objectives of how detailed the semantics should be. This gold standard
evaluation does not capture this aspect, but this can be seen by manually inspecting the
results. Cimiano and Staab reported that the results of their approach get better quality



valuation by a human expert inspection; the same holds true for the results obtained with
XTREEM. The found siblings are surprisingly meaningful. On the other side this is not
astonishing, the results are based on many thousands, often hand crafted, manifestations
on the WWW.

Since the XTREEM algorithms for finding sibling relations rely on Web document
structure, the algorithms are language and domain independent. A further important ad-
vantage of those algorithms is that they can process multiword terms in the same way as
words.

7. Conclusion and Future Work

In this chapter we have presented different methods for performing term, synonym and
sibling extraction for ontology learning from Web documents. We have shown that sev-
eral tasks in the ontology learning process can be successfully conducted using the struc-
ture of Web documents on a large scale.

First we showed that the markup of Web documents can be used to infer term ex-
pressions. The conclusion of a manual evaluation is that around half of the top ranked
term candidates are indeed useful terms.

Then we showed that it is possible to extract a rather small fraction of synonyms
with reasonable precision. The acquisition of synonyms at higher recall remains a diffi-
cult research task. Our finding that statistics based on Group-By-Path performed better
than the traditional Bag of Words method should encourage further research, e.g., by
incorporating more sophisticated processing methods.

Then we gave an overview on several methods which can be applied to obtain se-
mantic sibling relations. The best results we could obtain are based by term clustering.
Further improvements can be expected by hierarchical clustering algorithms. The ac-
quisition of sibling semantics was up to now relative rare. For a complete acquisition
of a term/concept hierarchy it is further desirable to combine our methods which per-
form well on finding co-ordination relations with methods that perform well on finding
super-ordination sub-ordination relations.

We have shown the approach for the acquisition of terms, synonyms and siblings in
isolation. For a practical setting, the terms found by XTREEM-T can be used as the input
vocabulary for XTREEM-S and for the XTREEM approaches finding sibling relations.

All XTREEM approaches have the advantage that since they work on the structure of
Web documents, they are language and domain independent. There is no need for existing
background knowledge nor for training. Even the Web document collection whereupon
the processing is performed can be obtained automatically from the Web.

The limit of the XTREEM approaches is that terms which are not or only rarely
marked-up in the Web, because they may not be suited to be used solely, can not be iden-
tified. It is an issue of future work to investigate which fraction of a domain vocabulary
and the corresponding semantic relations can not be captured this way.
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Abstract. When extracting information about concepts from the Web, the problem
is not recall, but precision: trying to identify which properties of a concept are
genuinely distinctive. We discuss a series of experiments in empirical ontology
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1. Introduction

The availability of huge amounts of textual data about concepts on the Web and in other
web-size corpora has kickstarted a new area of research usually called ontology learning
from text, which has the ambitious goal of developing methods for extracting from text
full ontologies–or at least, taxonomies of conceptual knowledge. As this volume testifies,
ontology learning from text is a very active area of research, and very many systems
performing this task have been developed, including OntoLearn [1], Text2Onto [2] and
other systems discussed in the volumes in this collection.

Our research is at the boundaries between ontology learning proper and work on
(nominal) lexical acquisition in Computational Linguistics CL [3,4,5,6,7,8], in that the
approach we are pursuing is perhaps best described as ‘lexical acquisition meets relation
extraction’. In some sense, our goals are more modest than those of systems like On-
toLearn or Text2Onto: we are only interested in clustering what in psychology are called
(nominal) basic categories such as dog, cat, car, and truck into what psychologists
call their superordinate categories, such as animal or vehicle. From another point of
view, however, our goal is quite ambitious: to carry out a form of what we call empirical
ontology–namely, to use computational methods to gain insights into concepts that can
supplement the use of evidence from psychology and the neural sciences in providing a
test for theories of ontology.



Perhaps the most distinctive feature of the methods discussed in this paper is that
we defined the relations to be extracted on the basis of views developed in Artificial
Intelligence AI, linguistics, and philosophy about the ‘intrinsic’ properties of concepts –
that we will call attributes. In other words, we believe that not all information is equally
important to build good concept descriptions: from the clustering perspective at least–
the perspective of identifying which concepts are similar, and which ones have distinct
superordinate categories– ‘less is more’: not all information that can be gathered from a
corpus is equally important, not even all semantic information.

The structure of this paper is as follows. We begin with a quick overview of work on
concepts, on lexical acquisition, and on relation extraction. We then discuss first our un-
supervised, then our supervised methods for building concept descriptions. A discussion
follows.

2. Background

Concepts are viewed as complex mental objects characterized by a number of attributes
or features in most theories of concepts developed in philosophy, psychology, linguistics
and Artificial Intelligence (AI), even in those theories derived from the work of Wittgen-
stein and Rosch that do not subscribe to the view that concepts can be ‘defined’ in the
Aristotelian sense.

The notion of ‘attribute’ assumed in philosophical work is typically semantic. For
instance, according to Aristotle (in Metaphysics) the nature of an object can be described
by four ‘causes’: the material cause (the material of which the object is composed), the
agentive cause (what causes the object’s movement or creation), the formal cause (what
a thing is planned and intended to be –its essence and form), and the final cause (“that
for the sake of which a thing exists, or is done”). This view of the nature of objects was
adopted in linguistics by Pustejovsky [9], who developed Generative Lexicon theory
according to which an integral part of a lexical entry is its qualia structure in the sense of
Aristotle. Pustejovsky’s qualia structure consists of four (types of) roles corresponding to
Aristotle’s four causes. The formal role is a complex of attributes specifying what type
of object the concept denotes–its ‘intrinsic qualities’. These include both its supertypes
(its 〈isa〉) relations and attributes specifying its form. For instance, in the case of the
concept book, the formal roles include the fact that a book is a physical object with
certain qualities such as 〈shape〉 and 〈color〉. The second role is the constitutive role,
specifying the stuff and parts that an object consists of. Again, in the case of book, the
constitutive roles include the fact that a book is made of paper, that it has chapters and
an index, etc.. The telic role specifies the purpose of the object–e.g., in the case of a
book, reading. Finally, the agentive role specifies how the object was created: e.g., in
the case of a book, by writing.

In Artificial Intelligence, theories of concepts based on a semantic notion of attribute
have been developed in the area of formal ontology. For instance, Guarino [10] developed
a theory of attributes according to which there are two types of attributes: relational
and non-relational. Relational attributes include qualities such as 〈color〉 and 〈position〉
and relational roles such as 〈son〉 and 〈spouse〉. Non-relational attributes include parts
such as 〈wheel〉 and 〈engine〉. Activities such as reading and writing for a book are not
viewed as attributes in Guarino’s classification. Description logics [11], the latest form



of the approach to semantic networks developed by Brachman, Levesque, and colleagues
in papers such as [12], are logics developed to define concepts in terms of subsumption
relations (isa links) and attributes.

Work on (nominal) concept acquisition from corpora in computational linguistics,
on the other hand, is usually based on the distributional view of meaning derived from
Wittgenstein via Firth [13], according to which the meaning of a word is specified by
the other words with which this word co-occurs, not necessarily through the mediation
of deeper semantic notions. This view of meaning led to the vector space model of se-
mantic representation, proposed by Salton et al. [14] to represent the meaning of doc-
uments in Information Retrieval, but then adopted as a view of lexical meaning in the
pioneering work of Schuetze [6], and then in work such as [4,5]. These models have
proven rather successful at modelling synonymy, as shown e.g., by the results obtained
on the TOEFL test [15]. Starting at least with Grefenstette [3], however, a modified view
of vectorial spaces have been developing, in which the syntactic relation between a word
and its neighbors (in the sense of dependency grammar) is taken into account in defining
proximity [7,8].

In parallel with these efforts, however, there has been in CL a line of work dedicated
to work on (supervised and unsupervised) extraction of semantic relations, beginning
with the seminal work of Hearst [16] who developed unsupervised methods for the ex-
traction of hyponymy relations using patterns. Hearst’s proposals on hyponymy were fol-
lowed up in [17,18], and additional work was carried out on part-of relations [19,20,21]
and on other relations as part of the ACE program.2

More recently still, these methods for relation extraction have begun to be applied
to ontology construction and population [22,23,24]; see also the papers in this volume,
particularly the chapters by Aussenac et al., Pantel and Pennacchiotti, and Voelker et al..
Our own approach [25,26,27,28,29] belongs to this line of work attempting to combine
the two types of research: using relation extraction techniques to extract the ‘features’ to
be used to describe vectors, but for ontology learning rather than ontology population.
(We discuss related work in a later section.)

3. Attribute-based concept descriptions: an unsupervised approach

3.1. Attributes and values in concept descriptions

When less data were available–e.g., when extracting relational information from the Penn
Treebank as done by Caraballo [17], the 64 million-word corpus used by Lin [7], or even
from the 100 million-word British National Corpus used by [20]– one cannot afford to
be choosy: every bit of information was necessary. But now, working with the Web or
Web-sized corpora,3 too much information is the problem.

Our approach to concept extraction is therefore based on the principle that some-
times ‘less is more’: extract only ‘intrinsic’ properties of concepts, as opposed to all in-
formation about them that can be found in a corpus. (This, of course, is predicated on the

2http://www.nist.gov/speech/tests/ace/index.htm
3We are not aware of any study attempting to establish what exactly is the threshold at which the phenomenon

we are pointing out–elimination or reduction of the data sparsity problem, excessive data richness–begins to
be displayed; we would guess not before 10 giga words.



assumption that there are more ‘essential’ properties of concepts–a point to which we
will return in the discussion.) Specifically, what distinguishes our own approach to using
relation extraction to acquire concept descriptions is the attempt to extract from corpora
‘attributes’ of concepts and their ‘values’, instead of all relations, being guided in this by
works such as [10] and [9].

The methods for extracting attributes proposed in [25,26] are based on the observa-
tion that many such properties are dependent concepts realized using relational or func-
tional nouns, and can therefore be used in constructions of the form “the X of the Y”.
Parts such as 〈wheels〉, for instance, are generally dependent concepts, hence the fact
that cars have 〈wheels〉 can be expressed using the construction “the WHEEL of the
CAR”. This point can already be found in [30], where we can find the following test for
attribute-hood. According to Woods, A is an attribute of concept C if we can say:

VALUE is a/the ATTRIBUTE of CONCEPT,

For example, the fact that we can say:

brown is a color of dogs

suggests that 〈color〉 may be an attribute of dog. Relational nouns potentially expressing
attributes also occur in possessive constructions, as in “the CAR’s WHEEL”. On the basis
of this observation, we extracted possible concept attributes searching in the Web for the
two constructions above.4

Many concepts are characterized by special values of certain attributes: e.g., while
all fruit have a 〈color〉 attribute, bananas are typically yellow, whereas strawberries are
typically red. Thus we aimed to include in our concept descriptions, in addition to infor-
mation about possible attributes of concepts, information about values of such attributes
which are particularly distinctive of that concept.

It turns out that the contruction proposed by Woods above is not very common, even
when the Web is used as a corpus. We found less than 500 instances of the constructions
“VAL is the ATTR of CONCEPT” or “the ATTR of the CONCEPT is VAL” [29]. The
construction suggested in [32],

“the VAL1 or VAL2 ATTR”,

(as in “the RED or WHITE COLOR”) has very high precision (almost 80%) but does not
have very high recall either: we could not find in the Web any values for 3 out of 10 very
common attributes [29]. So in the end we settled for considering as potential ‘values’ all
prenominal modifiers occurring in constructions of the form:

“the VALUE CONCEPT is”

as in “the RED CAR is”. This of course meant that we included among the ‘values’ a
number of modifiers that could not really be considered values of any particular attribute
(e.g., “trained” as a modifier of “horse”) as well as a lot of information that is best
described as collocational (e.g., “Trojan, Arabian, hobby” for “horse” again); we return
to this point in the discussion.

4 We looked for other constructions using the methods proposed by Hearst [31], but such constructions
resulted in much lower precision for little recall gain.



3.2. Experimental results: text patterns

We tested the hypothesis that we would obtain better concept descriptions by concentrat-
ing on the constructions expressing information about attributes and values in a series
of experiments discussed in [25,26,29,33]. We tested two ways of identifying these con-
structions: using simple textual patterns, as done in [31,19], and using a (dependency)
parser–specifically the RASP parser developed by Briscoe and Carroll [34].

In all of the experiments described in this section we used the t-test as defined by [8]
as a ranking function, defined as follows, where ti,j is the output weighted frequency for
the concepti and the featurej , N is the overall frequency, and C is a count function:

ti,j ≈
C(concepti,featurej)

N − C(concepti)×C(featurej)
N2√

C(concepti,featurej)
N2

Our own tests confirmed Curran and Moens’ finding that this measure outperformed
other measures including simple frequency, mutual information, log likelihood ratio, and
χ2. As a similarity function we used the version of the Jaccard coefficient defined by
[8] and shown below, where tm,i and tn,i are the weighted co-occurrence frequencies
between conceptm and conceptn with featurei, respectively.

Jaccard(conceptm, conceptn) =
∑

i(tm,i × tn,i)∑
i(tm,i + tn,i)

Again, our results confirmed those by Grefenstette and by Curran and Moens that
extended Jaccard outperforms other similarity measures including the cosine and Lin’s
similarity function [7]. We also always used as our clustering algorithm Repeated Bi-
sections [35], a variant of K-means clustering, as implemented in the CLUTO clustering
tool [36], as again we found it outperformed other clustering algorithms that we tested
including EM, agglomerative clustering, and COBWEB.

In a preliminary experiment [25], we only used text patterns to extract information
about the attributes and values of 214 relatively common nouns associated with synset
belonging to 13 different WordNet classes. For finding attributes we used the following
two Google patterns:

"the * of the C R"

"the C’s * R"

where C is a concept, R is a restrictor such as is and was, and the wildcard denotes an
unspecified attribute. For values we used the following Google pattern:

"[a|an|the] * C R"

In this experiment we found that attributes were as informative as values but that to
achieve the best performance it was necessary to include in the concept descriptions a
combination of the highest ranked attributes and values.

In a second esperiment [26] we compared attribute / value extraction using text pat-
terns and using a parser. For this experiment we used a dataset of 402 concepts covering



all 21 WordNet unique beginners, and balanced for frequency (1/3 of the concepts in the
set are high frequency as measured from the BNC, 1/3 are medium-frequency, 1/3 are
low frequency) and ambiguity (1/3 of the concepts are highly ambiguous in the sense of
having more than 4 senses in WordNet, 1/3 have between 2 and 3 senses, 1/3 have only 1
sense). (The dataset is shown in Appendix A.) The results were measured using purity
and entropy, both of which measure the extent to which clusters are ‘uniform’, and are
defined as follows.

Let Sr be a cluster, nr the size of cluster Sr, q the number of classes in the dataset,
ni

r the number of concepts from the ith class that were assigned to the rth cluster, n the
total number of concepts, and k is the number of clusters. Then the purity of cluster Sr,
P (Sr), is the ratio of the number maxi(ni

r) of elements in the ‘dominant’ category for
Sr–the category with the greatest number of elements in that cluster–to the number nr of
elements in that cluster. A cluster containing only elements from one class will have pu-
rity 1. The entropy of cluster Sr, E(Sr), is the standard entropy– a more comprehensive
measure, that takes into account the entire distribution of categories in the cluster. Over-
all entropy and purity are the weighted sum of individual cluster entropies and purities
respectively.

Entropy =
k∑

r=1

nr

n
E(Sr), where E(Sr) = − 1

log q

q∑
i=1

ni
r

nr
log

ni
r

nr

Purity =
k∑

r=1

nr

n
P (Sr), where P (Sr) =

1
nr

maxi(ni
r)

The results using textual patterns (the same as in the first experiment) are shown in
Table 1.

Measures Attributes Values Attributes
and Values

21 Classes (402 Concepts)
Purity 0.657 0.567 0.677
Entropy 0.335 0.384 0.296
Vector Size 24,178 94,989 119,167

Table 1. Clustering results using textual patterns

Here, we find that using vectors of attributes we can get better results than using
vectors of ‘values’, even with vectors of a quarter of the size. And again, the best results
are obtained by combining attributes and ‘values’.

Looking at per-category purity, we find that we obtain perfect purity for edible fruit,
vehicle, illness. Purity is above .8 for animal, chemical element, creator, feeling and
monetary unit–almost all concrete categories. The worse purity is for abstract categories;
among these, the worse two are motivation and time, with purity less than .4.

3.3. Experimental results: using a dependency parser

Text patterns are rigid: a pattern like “the * of the C is” cannot match, for instance, the
construction “the SPEED of John’s CAR is”. Using a parser and finding instances of the



construction by searching in its output would allow us to find more constructions. On
the other hand, this might introduce more errors, as well as making the method more
language-dependent as we don’t have dependency parsers for all languages.

For the second part of the experiment, we collected the documents found using the
text patterns in the first part of the experiment, extracted the sentences that contained
instances of the desired concept, and parsed them with RASP, obtaining results such as
those shown in Figure 1.

(detmod, strawberry, the) (dobj, like, strawberry)
(detmod, strawberry, a) (ncmod, fruit, strawberry)
(ncsubj, be, strawberry) (ncmod, strawberry, wood)
(ncmod, strawberry, fresh) (ncsubj, grow, strawberry)
(ncmod, strawberry, wild) (dobj, eat, strawberry)
(ncmod, plant, strawberry) (ncsubj, have, strawberry)
(xcomp, be, strawberry) (ncmod, strawberry, frozen)
(ncmod, strawberry, whole) (ncmod, strawberry, cup)
(ncmod, strawberry, ripe) (ncmod, strawberry, red)
(ncmod, strawberry, cultivated) (dobj, have, strawberry)
(iobj, with, garnish, strawberry) (ncmod, of, variety, strawberry)
(detmod, strawberry, an) (ncmod, strawberry, modern)
(ncmod, variety, strawberry) (ncmod, cultivar, strawberry)
(dobj, slice, strawberry) (ncsubj, grow, strawberry, obj)
(ncmod, strawberry, large) (ncmod, strawberry, big)

Figure 1. The most frequent grammatical relations for strawberry

RASP gives us the opportunity to study the usefulness for concept description of
many other types of constructions in addition to those tested in the experiments with text
patterns. The text patterns essentially extracted from text two (approximated) instances
of what in RASP is called the ncmod grammatical relations: attribute patterns extracted
cases which RASP would parse as

(ncmod, of, ATTR, CONCEPT),

(as in (ncmod, of, color, strawberry)), whereas value patterns extract
cases that RASP would parse as

(ncmod, CONCEPT, VAL)

as in (ncmod, strawberry, red). However, many other types of grammatical
relations have been included in concept descriptions in the literature on using syntax-
based relations for concept descriptions [3,7,8], including in particular direct objects
and subjects. We could now compare the effect of using these additional grammatical
relations. The results are shown in Table 2.

As the table shows, using all grammatical relations as part of the concept descrip-
tions results in less purity than using only attributes and values–around a third of the
features collected using RASP– or indeed just using attributes–less than a tenth of all fea-
tures. In other words, these results indicate that “less is more”: adding more information
not necessarily results in better concept descriptions. The table also shows that using a
parser results in slightly better performance than using text patterns, at the expense of
less language-independence.



Measure Grammatical relations subset

Attribute Value Direct Obj Subj Attribute All
and Value

Purity 0.656 0.600 0.613 0.555 0.701 0.614
Entropy 0.320 0.360 0.391 0.413 0.296 0.360
Vector Size 20,285 52,486 6,318 11,002 72,771 276,501

Table 2. Clustering results using different subsets of grammatical relations

4. Supervised attribute extraction

4.1. A first classification scheme for attributes

The patterns used for attributes in the experiments above match constructions expressing
all sorts of semantic relations other than attribute-concept. The range of semantic rela-
tions expressed by the “the X of the Y” construction is illustrated in Figure 2 with ex-
amples of ‘attributes’ of deer collected by our unsupervised system discussed in Section
3. As the figure shows, this construction is used to express partitions of sets (hence the
name partitive construction), ordinals, ‘picture of’ relations, naming, and other more
complex relations. While some of this information may be considered highly distinctive
of a concept like deer (e.g., it is hard to imagine that one would find discussions of the
meaning of bismuth), none of it can be considered as expressing an ‘attribute’ of deer,
in the intuitive sense of a ‘defining property’ of the concept.

the rest / majority of the deer
the first / last of the deer
the picture / image / photos of the deer
the cave / mountain / lake of the deer
the meaning of the deer [in Western philosophy / ... ]

Figure 2. Semantic relations expressed using the “the X of the Y” construction.

In order to make further progress towards the goal of extracting concept descriptions
containing only ‘proper’ attributes, and excluding information such as those in Figure
2, it is necessary to be more clear about what we mean with ‘attributes’–i.e., to have a
theory of attributes, or at least a classification scheme specifying which relations count
as proper attributes of concepts and which ones instead do not. Having this theory, or the
classification, would allow us to develop supervised or unsupervised theories of concept
extraction.

Unfortunately although the notion of ‘attribute’ has been part of philosophical the-
ories of concepts and knowledge in philosophy since at least Aristotle, no fully worked
out theory of attributes exists, nor a classification of attributes covering all concepts, in
part also because philosophy and psychology tend to concentrate on a few categories of
concepts. Partial theories can however be found in works such as [10] and [9] discussed
earlier; these works can serve as a starting point for our study. (Inversely, one would hope
of course that work on ontology extraction from text might contribute to formal work on
ontology.)



Out of the two proposals of Guarino and Pustejovsky we developed a classifica-
tion scheme for attributes that considers a relation in which a concept participates as an
attribute if it belongs to one the following types:

qualities. These relations include Guarino’s qualities and (some of) Pustejovsky’s for-
mal roles: e.g., the 〈weight〉 / 〈fusibility〉 / 〈solubility in Aqua Regia〉 of gold.

parts. These relations include Guarino’s non-relational attributes, and Pustejovsky’s
constitutive roles, including that is parts such as the 〈wheel〉 of the car or the 〈 leg〉
of the animal, and ‘stuff’ such as the 〈gold〉 of the ring.

related objects. These relations relate objects to other independent objects with which
however they are in strong association, such as the 〈nest〉 of the bird, and include
Guarino’s non-relational attributes other than parts and relational roles.

activities. These relations include Pustejovsky’s telic and agentive roles such as the
〈reading〉 and 〈writing〉 of the book, but also other important activities such as the
〈publication〉 of the book.

related agents. Finally, these relations relate objects to agents that perform the activities
above, such as the 〈writer〉, 〈reader〉 or 〈publisher〉 of a book.

Notice that 〈isa〉 relations were not included among attributes, although most work on
ontology learning concentrates on this type of information [31,17]. This is in part pre-
cisely because there is no lack of insightful work on this topic, in part because this in-
formation plays a different epistemological function in the definition of concepts, in the
sense of [37].

4.2. New experiments

In [28] we discussed the results obtained using a supervised classifier to classify potential
attributes extracted from the Web in the five classes above, as well as the class ‘not-an-
attribute’.

We collected from the Web 20,000 candidate attributes for the 402 concepts in the
dataset, kept the 4,728 that occurred more than 20 times, and collected for all of them
four types of information:

morphological features, extracted through heuristics, such as the information that a par-
ticular noun might be derived from an adjective or a verb, which is useful to iden-
tify qualities and activities respectively [38];

question patterns, that is, the frequencies obtained by querying the Web with questions
of the form “What is the ATTR of CONCEPT” or “When is the ATTR of CON-
CEPT”;

features of features, i.e., the top attributes of these potential attributes, extracted using
the same patterns that we used to extract attributes; and finally

feature use, that is, information about the respective frequency of the use of these nouns
as attributes (“the ATTR of the *”) or concepts (“the * of the CONCEPT”).

We then hand-classified 1,155 of these feature vectors into six classes (the five classes
above, and ‘not an attribute’), and we trained two classifiers: a binary one just making
the decision attribute / not attribute, and one classifying attributes into one of five classes.
We evaluated these classifiers in three ways: (i) through cross-validation over the 1,155



hand-annotated features, (ii) by running them over around 400 additional feature vectors
and hand-evaluating the results, and (iii) by using them to filter the potential attributes
and clustering the original concepts using only the remaining attributes.

The binary classifier achieved an accuracy of 81.82% as evaluated through cross-
validation, which corresponds to an F value of .892 at recognizing attributes and .417 at
recognizing non-attributes. About the same results were obtained over the additional 400
attributes.

The 5-way classifier achieved an accuracy of around 80% at cross-validation, cor-
responding to an F value over .8 for quality, activity, and part / related object, of .95 for
related agent, and .538 for not-an-attribute. Accuracy over the additional 400 attributes
however was significantly lower at around 70%.

Table 3 compares the results obtained when clustering concepts using all attributes–
i.e., the results with all attributes shown in Table 1– (second column) with the results
obtained by filtering attributes using simple heuristics (third column) and, finally, the
results obtained when clustering after having removed the attributes classified as ‘not-
attributes’ by the binary classifier.

All Heuristic Filtering by
Candidate Attributes filtering classification

Purity 0.657 0.672 0.693
Entropy 0.335 0.319 0.302
Vector size 24,178 4,296 3,824

Table 3. Clustering with a supervised classifier

As the table shows, removing ‘non-attributes’ resulted in a significant improvement
in the purity of the clustering. (The difference between the value of purity using all
candidate attributes and using filtering by classification is significant.)



5. Related work

As mentioned above, relation extraction techniques have been used in work on ontology
population such as [22,23,39]. The techniques used in these systems are primarily un-
supervised, and the focus is on developing methods for acquiring new patterns for ex-
tracting the relevant information, as in KNOWITALL [23]. [39] propose an unsupervised
method, but introduce a measure of the reliability of pattern used to identify which of
the patterns found by the system are reliable.

The work most closely related to ours is probably Cimiano and Wenderoth’s work
on extracting qualia structures [40]. Cimiano and Wenderoth are also concerned with
ontology learning rather than ontology population, and developed a completely unsuper-
vised approach to extracting qualia structures by developing specific patterns for each of
Pustejovsky’s qualia. Apart from their approach being unsupervised, the main difference
from the present work is that Cimiano and Wenderoth do not use the extracted informa-
tion to build vectors for clustering purposes, hence the main evaluation is not in terms
of clustering performance, but by comparing the information thus extracted with what is
found in the literature, and by human evaluation.

6. Discussion

In a sense, the most exciting aspect of this type of research is that we can revisit all sorts
of old philosophical chestnuts, but with the guidance of empirical evidence.

One example of ‘philosophical’ question is the question of what is an ‘attribute’.
We most certainly do not think that we found the definitive characterization of the no-
tion of attribute. What we do think we have is evidence that attempting to identify the
types of semantic relations that go under the name of ‘attributes’ or ‘qualia’ does seem
useful from an ontology learning perspective (i.e., to draw a distinction between ‘basic
categories’). One might even wonder whether this work provides empirical evidence for
Aristotle’s notion of ‘essence’–in the sense that concepts may have ‘essential properties’
that are best in distinguishing them from other concepts. (Of course, for some applica-
tions one may want to collect all available data about concepts.)

Another important question is how far to go in the direction of obtaining purely
‘semantic’ concept descriptions. The concept descriptions obtained with the methods
discussed in this paper mix semantic and distributional information; would it make sense
to try to ‘clean up’ these descriptions further? Again, perhaps a distinction needs to be
drawn between information to be used for clustering concepts (which may be in part
distributional) and information about the concepts to be used for question-answering
purposes.

Up until now the terms ‘concept’ and ‘noun’ have been treated as synonymous, but
of course this is not the case. A noun like palm will be associated with many concepts
(e.g., 4 synsets in WordNet). This is to say that the concept descriptions obtained with
the methods discussed here need to be discriminated in order to obtain actual concepts;
we propose methods for doing this in [41,29].

Future work will include improving upon our theory of attributes, extracting addi-
tional types of information, trying out recent developments in semi-supervised relation
extraction, and developing better evaluation methods.
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A. The 402 concepts dataset

WordNet Category Concepts
Unique Beginner

animal animal bear, bull, camel, cat, cow, deer,
dog, elephant, horse, kitten, lion, monkey,
mouse, oyster, puppy, rat, sheep, tiger,
turtle, zebra

possession assets allocation, allotment,
capital, credit, dispensation, fund, gain,
gold, hoard, income, interest, investment,
margin, mortgage, payoff, profit, quota,
taxation, trove, venture, wager

natural atmospheric airstream, aurora, blast, clemency, cloud,
phenomenon phenomenon cloudburst, crosswind, cyclone, drizzle, fog,

hurricane, lightning, rainstorm, sandstorm,
shower, snowfall, thunderstorm, tornado,
twister, typhoon, wind

substance chemical element aluminium, bismuth, cadmium, calcium,
carbon, charcoal, copper, germanium,
helium, hydrogen,
iron, lithium, magnesium, neon, nitrogen,
oxygen, platinum, potassium, silver,
titanium, zinc

person creator architect, artist, builder, constructor,
craftsman, designer, developer, farmer,
inventor, maker, manufacturer, musician,
originator, painter, photographer, producer,
tailor

location district anchorage, borderland, borough, caliphate,
canton, city, country, county, kingdom, land,
metropolis, parish, prefecture, riverside,
seafront, shire, state, suburb, sultanate,
town, village

natural object edible fruit apple, banana, berry, cherry, grape, kiwi,
lemon, mango, melon, olive, orange, peach,
pear, pineapple, strawberry, watermelon

Table 4. The balanced dataset of 402 concepts used in the experiments (I)



WordNet Category Concepts
Unique Beginner

plant tree acacia, casuarina, chestnut, cinchona, coco,
conifer, fig, hornbeam, jacaranda, lime,
mandarin, mangrove, oak, palm, pine,
pistachio, rowan, samba, sapling, sycamore,
walnut

artifact vehicle aircraft, airplane, automobile, bicycle, boat,
car, cruiser, helicopter, motorcycle, pickup,
rocket, ship, truck, van

feeling feeling anger, desire, fear, happiness, joy, love,
pain, passion, pleasure, sadness, sensitivity,
shame, wonder

act game baccarat, basketball, beano, bowling, chess,
curling, faro, football, golf, handball, keno,
lotto, nap, raffle, rugby, soccer, softball,
tennis, volleyball, whist

state illness acne, anthrax, arthritis, asthma, cancer,
cholera, cirrhosis, diabetes, eczema, flu,
glaucoma, hepatitis, leukemia, malnutrition,
meningitis, plague, rheumatism, smallpox

relation legal document acceptance, assignment, bill, bond, check,
cheque, constitution, convention, decree,
draft, floater, law, licence, obligation,
opinion, rescript, sequestration, share,
statute, straddle, treaty

quantity monetary unit cent, cordoba, dinar, dirham, dollar, drachma,
escudo, fen, franc, guilder, lira, mark,
penny, peso, pound, riel, rouble, rupee,
shilling, yuan, zloty

motivation motivation compulsion, conscience, deterrence,
disincentive, dynamic, ethics, impulse,
incentive, incitement, inducement, life,
mania, morality, motivator, obsession,
occasion, possession, superego, urge,
wanderlust

Table 5. The balanced dataset of 402 concepts used in the experiments (II)



WordNet Category Concepts
Unique Beginner

cognition pain ache, backache, bellyache, burn, earache,
headache, lumbago, migraine, neuralgia,
sciatica, soreness, sting, stinging, stitch,
suffering, tenderness, throb, toothache,
torment

attribute physical property chill, coolness, deflection, diameter,
extension, glow, heaviness, length, mass,
momentum, plasticity, poundage, radius,
reflexion, shortness, snap, stretch,
temperature, visibility, weight

event social occasion ball, celebration, ceremony, commemoration,
commencement, coronation, dance, enthronement,
feast, fete, fiesta, fundraiser, funeral,
graduation, inaugural, pageantry, party, prom,
rededication, wedding

group social unit agency, branch, brigade, bureau, club,
committee, company, confederacy, department,
divan, family, house, household, league,
legion, nation, office, platoon, team, tribe,
troop

shape solid concavity, corner, crinkle, cube, cuboid,
cylinder, dodecahedron, dome, droop, fluting,
icosahedron, indentation, jag, knob,
octahedron, ovoid, ring, salient, taper,
tetrahedron

time time aeon, date, day, epoch, future, gestation,
hereafter, menopause, moment, nonce, period,
quaternary, today, tomorrow, tonight,
yesterday, yesteryear

Table 6. The balanced dataset of 402 concepts used in the experiments (III)
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Abstract. The automatic extraction of ontologies from text and lexical resources
has become more and more mature. Nowadays, the results of state-of-the-art on-
tology learning methods are already good enough for many practical applications.
However, most of them aim at generating rather inexpressive ontologies, i.e. bare
taxonomies and relationships, whereas many reasoning-based applications in do-
mains such as bioinformatics or medicine rely on much more complex axiomatiza-
tions. Those are extremely expensive if built by purely manual efforts, and methods
for the automatic or semi-automatic construction of expressive ontologies could
help to overcome the knowledge acquisition bottleneck. At the same time, a tight
integration with ontology evaluation and debugging approaches is required to re-
duce the amount of manual post-processing which becomes harder the more com-
plex learned ontologies are. Particularly, the treatment of logical inconsistencies,
mostly neglected by existing ontology learning frameworks, becomes a great chal-
lenge as soon as we start to learn huge and expressive axiomatizations. In this chap-
ter we present several approaches for the automatic generation of expressive on-
tologies along with a detailed discussion of the key problems and challenges in
learning complex OWL ontologies. We also suggest ways to handle different types
of inconsistencies in learned ontologies, and conclude with a visionary outlook to
future ontology learning and engineering environments.

Keywords. Ontology Learning, Reasoning, Ontology Evolution, Ontology
Engineering

1. Introduction

During the last decade ontologies have become an important means for knowledge inter-
change and integration. They are used for corporate knowledge management, web portals
and communities, semantic search, and web services. A couple of ontology languages
have emerged as wide-spread means for ontology representation - among them the web
ontology language, OWL, which provides a powerful formalism for knowledge repre-
sentation and reasoning. OWL was proposed as a world-wide standard by the W3C com-
mittee, and several subsets of the OWL language with different expressivity have been
defined in order to meet the demands of a great variety of semantic applications, and of
course the great vision of the semantic web.

However, the realization of the semantic web as envisioned by Tim-Berners Lee is
still hampered by the lack of ontological resources. Building ontologies is a difficult and
time-consuming task. It usually requires to combine the knowledge of domain experts

1Corresponding Author: Johanna Völker, Institut AIFB, Universität Karlsruhe (TH), 76128 Karlsruhe,
Germany; E-mail: voelker@aifb.uni-karlsruhe.de.



with the skills and experience of ontology engineers into a single effort with high demand
on scarce expert resources. We believe that this bottleneck currently constitutes a severe
obstacle for the transfer of semantic technologies into practice.

In order to address this bottleneck, it is reasonable to draw on available data, ap-
plying automated analyses to create ontological knowledge from given resources or to
assist ontology engineers and domain experts by semi-automatic means. Accordingly, a
significant number of ontology learning tools and frameworks has been developed aim-
ing at the automatic or semi-automatic construction of ontologies from structured, un-
structured or semi-structured documents. The current state-of-the-art in lexical ontology
learning is able to generate ontologies that are largely informal or lightweight ontologies
in the sense that they are limited in their expressiveness and often only consist of con-
cepts organized in a hierarchy. While less expressive, informal ontologies have proven
useful in certain application scenarios – an observation that also resonates with the so-
called Hendler hypothesis [1]: “A little semantics goes a long way.” – more and more
people tend to see the future of semantic technologies in application scenarios such as
e-business or bio-informatics which require large scale reasoning over complex domains.
These knowledge-intensive applications even more than the semantic web depend on the
availability of expressive, high-quality ontologies. However, both quality and expressiv-
ity of the ontologies which can be generated by the state-of-the-art ontology learning sys-
tems fail to meet the expectations of people who argue in favor of powerful, knowledge-
intensive applications based on ontological reasoning. While it might seem infeasible to
improve upon both at the same time, we argue that learning more expressive ontologies
(e.g. by adding disjointness axioms) does not only yield sufficiently good results, but
may also help in the task of automatic ontology evaluation, thus improving the overall
quality of learned ontologies.

In this chapter, we present two complementary approaches to the automatic gen-
eration of expressive ontologies suitable for reasoning-based applications. The first ap-
proach is essentially based on a syntactic transformation of natural language definitions
into description logic axioms. It hinges critically on the availability of sentences which
have definitory character, like “Enzymes are proteins that catalyse chemical reactions.”
Such sentences could be obtained e.g. from glossaries or software documentation related
to the underlying ontology-based application. We exemplify this approach with defini-
tions taken from a fishery glossary used in a case study at the Food and Agriculture
Organization of the United Nations (FAO).

The second approach relies on a machine learning classifier for determining dis-
jointness of any two classes. For its implementation, we developed a variety of different
methods to automatically extract lexical and logical features which we believe to provide
a solid basis for learning disjointness. These methods take into account the structure of
the ontology, associated textual resources, and other types of data sources in order to
compute the likeliness of two classes to be disjoint. The features obtained from these
methods are used to build an overall classification model which we evaluated against a
set of manually created disjointness axioms.

The support for reasoning is the major benefit of the use of expressive ontologies
grounded in logics. Reasoning can be used in different phases of the lifecycle of an on-
tology. At runtime, reasoning allows to derive conclusions from the ontology, e.g. for the
purpose of query answering over the ontology. At development time, reasoning can be
used to validate the ontology and check whether it is non-contradictory, i.e. free of log-



ical inconsistencies. The more expressive the ontology language, the more precisely the
intended meaning of a vocabulary can be specified, and consequently, the more precise
conclusions can be drawn. Introducing disjointness axioms, for example, greatly facili-
tates consistency checking and the automatic evaluation of individuals in a knowledge
base with regards to a given ontology.

Another particularly important topic for ontology learning is the challenge of deal-
ing with inconsistencies. The reason lies in the fact that all ontology learning approaches
generate knowledge that is afflicted with various forms of imperfection. The causes of
imperfection may already be in the data sources from which the ontologies are generated,
or they may be introduced by the ontology learning algorithms. To address this problem,
we illustrate in this chapter how ontology learning can be combined with consistent on-
tology evolution, a reasoning-supported process to guarantee that the learned ontologies
are kept consistent as the ontology learning procedures generate changes to the ontology
over time.

The chapter is structured as follows. In the subsequent section we provide a brief
introduction to the ontology language OWL and the main reasoning tasks in OWL as
a Description Logic. In Section 3 we present ontology learning methods for learning
expressive ontologies, particularly focusing on learning complex concept descriptions
and disjointness axioms as two expressive language elements. In Section 4 we critically
discuss the current state-of-the-art in learning expressive ontologies, analyzing problems
and open issues. In Section 5 we show how inconsistencies can be dealt with in the
context of ontology learning to guarantee a consistent evolution of the learned ontologies.
We then propose a way of integrating ontology learning and evolution into the ontology
lifecycle in Section 6. In Section 7 we present experiments in a concrete application
scenario in the domain of fishery ontologies before concluding in Section 8.

2. OWL Ontologies and Reasoning Tasks

Traditionally, a number of different knowledge representation paradigms have competed
to provide languages for representing ontologies, including most notably description log-
ics and frame logics. With the advent of the OWL Web Ontology Language, developed
by the Web Ontology Working Group and recommended by the World Wide Web Con-
sortium (W3C), a standard for the representation of ontologies has been created. Adher-
ing to this standard, we base our work on the OWL language (in particular OWL DL, as
discussed below) and describe the developed formalisms in its terms.

2.1. OWL as a Description Logic

The OWL ontology language is based description logics, a family of class-based knowl-
edge representation formalisms. In description logics, the important notions of a domain
are described by means of concept descriptions that are built from concepts (also referred
to as classes), roles (also referred to as properties or relations), denoting relationships
between things, and individuals (also referred to as instances). It is now possible to state
facts about the domain in the form of axioms. Terminological axioms make statements
about how concepts or roles are related to each other, assertional axioms (sometimes also
called facts) make statements about the properties of individuals of the domain.



We here informally introduce the language constructs of the description logic
SHOIN , the description logic underlying OWL DL. For the correspondence between
our notation and various OWL DL syntaxes, see [2]. In the description logic SHOIN ,
we can build complex classes from atomic ones using the following constructors:

• CuD (intersection), denoting the concept of individuals that belong to both C andD,
• C tD (union), denoting the concept of individuals that belong to either C or D,
• ¬C (complement), denoting the concept of individuals that do not belong to C,
• ∀R.C (universal restriction), denoting the concept of individuals that are related via

the role R only with individuals belonging to the concept C,
• ∃R.C (existential restriction), denoting the concept of individuals that are related via

the role R with some individual belonging to the concept C,
• ≥ nR , ≤ nR (qualified number restriction), denoting the concept of individuals that

are related with at least (at most) n individuals via the role R.
• {c1, . . . , cn} (enumeration), denoting the concept of individuals explicitly enumer-

ated.

Based on these class descriptions, axioms of the following types can be formed:

• concept inclusion axioms C v D, stating that the concept C is a subconcept of the
concept D,

• transitivity axioms Trans(R), stating that the role R is transitive,
• role inclusion axioms R v S stating that the role R is a subrole of the role S,
• concept assertions C(a) stating that the individual a is in the extension of the con-

cept C,
• role assertionsR(a, b) stating that the individuals a, b are in the extension of the roleR,
• individual (in)equalities a ≈ b, and a 6≈ b, respectively, stating that a and b denote the

same (different) individuals.

Using the constructs above, we can make complex statements, e.g. expressing that
two concepts are disjoint with the axiom A v ¬B. This axioms literally states that A
is a subconcept of the complement of B, which intuitively means that there must not be
any overlap in the extensions of A and B.

In the design of description logics, emphasis is put on retaining decidability of key
reasoning problems and the provision of sound and complete reasoning algorithms. As
the name suggests, Description Logics are logics, i.e. they are formal logics with well-
defined semantics. Typically, the semantics of a description logic is specified via model
theoretic semantics, which explicates the relationship between the language syntax and
the models of a domain.

An interpretation consists of a domain of interpretation (essentially, a set) and an in-
terpretation function which maps from individuals, concepts and roles to elements, sub-
sets and binary relations on the domain of interpretation, respectively. A description logic
knowledge base consists of a set of axioms which act as constraints on the interpreta-
tions. The meaning of a knowledge base derives from features and relationships that are
common in all possible interpretations. An interpretation is said to satisfy a knowledge
base, if it satisfies each axiom in the knowledge base. Such an interpretation is called a
model of the knowledge base. If there are no models, the knowledge base is said to be



inconsistent. If the relationship specified by some axiom (which may not be part of the
knowledge base) holds in all models of a knowledge base, the axiom is said to be en-
tailed by the knowledge base. Checking consistency and entailment are two standard rea-
soning tasks for description logics. Other reasoning tasks include computing the concept
hierarchy and answering conjunctive queries.

2.2. Approaches to Dealing with Inconsistencies

Standard entailment as defined above is explosive, i.e. an inconsistent ontology has all
axioms as consequences. Formally, if an ontology O is inconsistent, then for all axioms
α we have O |= α. In other words, query answers for inconsistent ontologies are com-
pletely meaningless, since for all queries the query answer will be true. To deal with
the issue of potential inconsistencies in ontologies, we can choose from a number of
alternative approaches [3]:

Consistent Ontology Evolution is the process of managing ontology changes by pre-
serving the consistency of the ontology with respect to a given notion of consistency. The
consistency of an ontology is defined in terms of consistency conditions, or invariants
that must be satisfied by the ontology. The approach of consistent ontology evolution
imposes certain requirements with respect to its applicability. For example, it requires
that the ontology is consistent in the first place and that changes to the ontology can be
controlled. In certain application scenarios, these requirements may not hold, and con-
sequently, other means for dealing with inconsistencies in changing ontologies may be
required.

Repairing Inconsistencies involves a process of diagnosis and repair: first the cause
(or a set of potential causes) of the inconsistency needs to be determined, which can
subsequently be repaired. Unlike the approach of consistent ontology evolution, repairing
inconsistencies does not require to start with a consistent ontology and is thus adequate
if the ontology is already inconsistent in the first place.

Reasoning with Inconsistent Ontologies does not try to avoid or repair the inconsis-
tency (as in the previous two approaches), but simply tries to “live with it” by trying to
return meaningful answers to queries, even though the ontology is inconsistent. In some
cases consistency cannot be guaranteed at all and inconsistencies cannot be repaired, still
one wants to derive meaningful answers when reasoning.

3. Learning Expressive OWL Ontologies

In the following we propose two complementary approaches to support the generation of
expressive ontologies suitable for reasoning-based applications. After a brief overview
of state-of-the-art methods for ontology learning we first present LExO, a prototypical
implementation supporting the automatic generation of complex class descriptions from
lexical resources (cf. Section 3.2). In Section 3.3, we focus on the task of creating dis-
jointness axioms, and describe a classification-based approach using a combination of
lexical and logical features for capturing disjointness.



3.1. Learning Ontology Elements and Basic Axioms

Ontology learning so far has focussed on the extraction of ontology elements such as con-
cepts, instances or relations, as well as simple axioms. In this section, we briefly present
some of the most frequently used methods for generating these types of primitives (for a
more complete survey see, e.g. [4]).

3.1.1. Ontology Elements

Concepts and Instances. Different term weighting measures such as TFIDF, relative
term frequency, entropy or C-value / NC-value [5] are used for identifying those terms
which are most relevant for the domain of interest. Whereas the domain is modeled by
a given document corpus each of the extracted noun phrases is assumed to represent ei-
ther a concept or an instance. The distinction between concepts and instances is typically
made depending on the part-of-speech information associated with its lexical represen-
tation, i.e. common and proper nouns.

General Relations. Approaches based on subcategorization frames rely on the assump-
tion that ontological relationships are mostly represented by verbs and their arguments.
Accordingly, selectional restrictions usually reflect domain and range restrictions of these
relations [6,7]. In this line, Navigli and Velardi [8] extract taxonomic and non-taxonomic,
i.e. general relations from glossaries and thesauri. Their approach is based on regular
expressions further restricted by syntactic and semantic constraints, as well as a word
sense disambiguation component which links extracted terms to WordNet. A more gen-
eral approach which also considers attributive descriptions of concepts has been devel-
oped by Poesio and Almuhareb [9] who evaluated the use of a machine learning clas-
sifier for selecting the most distinctive attributes and relations for each concept. Unla-
beled relations can be extracted by association rules which try to capture the semantic
correlation of two elements based on their co-occurrences in the corpus. Unlike relations
expressed by verbal or attributive phrases these anonymous relations have to be labeled
by the ontology engineer in a post-processing step [10]. In addition to these two kinds of
approaches, a number of methods for discovering particular types of relationships, e.g.
part-of relations [11], have been developed so far.

3.1.2. Axioms

Subclass-of Relations. Many approaches for learning subclass-of relationships exploit
hyponymy information in WordNet, or rely on Hearst patterns [12] as indicators for hy-
ponymy relationships. Moreover, methods based on hierarchical clustering [13,14,15]
and Formal Concept Analysis [16] have been developed for inducing taxonomies by
grouping concepts with similar lexical context. Lexical context in its simplest form con-
sists of the weighted co-occurrences of a term, but it may also include any kind of syn-
tactic dependencies such as predicates, or prepositional complements associated with a
given term.

Instance-of Relations. Distributional similarity, i.e. similarity based on lexical context,
can be considered as an indicator for certain paradigmatic relationships, which makes it a
suitable means for identifying, e.g. concept instantiation. Consequently, approaches such
as [17] assign instances to the semantically most similar class by computing the con-
textual overlap. Other approaches to learning instance-of relationships rely on manually
engineered or automatically acquired lexico-syntactic patterns [18,19].
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Figure 1. Dependency Tree (Minipar)

r u l e : r e l a t i v e c l a u s e {
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r e s u l t : [ e q u i v a l e n t 0 [ some 0−1 1 ] ]
r e s u l t : [ s u b O b j e c t P r o p e r t y O f 0 0−1]

}

Figure 3. Transformation Rules

3.2. Learning Class Descriptions

LExO2 (Learning EXpressive Ontologies) [20] is among the first approaches towards the
automatic generation of ontologies featuring the full expressiveness of OWL DL. The
core of LExO is a syntactic transformation of definitory natural language sentences into
description logic axioms.

Given a natural language definition of a class, LExO starts by analyzing the syntactic
structure of the input sentence. The resulting dependency tree is then transformed into
a set of OWL axioms by means of manually engineered transformation rules. In the
following, we provide a step-by-step example to illustrate the complete transformation
process. For more (and more complicated) examples please refer to Section 7.

3.2.1. Example

Here, we assume that we would like to refine the description of the class Farmer which
could be part of an agriculture ontology: A farmer is a person who operates a farm.

Initially, LExO applies the Minipar dependency parser [21] in order to produce a
structured output as shown in Figure 1. Every node in the dependency tree contains
information about the token such as its lemma (base form), its syntactic category (e.g. N
(noun)) and grammatical role (e.g. subj), as well as its surface position. Indentation in
this notation visualizes direct dependency, i.e. each child node is syntactically dominated
by its parent.

This dependency structure is now being transformed into an XML-based format (see
Figure 2) in order to facilitate the subsequent transformation process, and to make LExO
more independent of the particular parsing component.

The set of rules which are then applied to the XML-based parse tree make use of
XPath expressions for transforming the dependency structure into one or more OWL DL
axioms. Figure 3 shows a few examples of such transformation rules in original syntax.
Each of them consists of several arguments (e.g. arg_1:. . . ), the values of which are
defined by an optional prefix, i.e. a reference to a previously matched argument (arg_0),
plus an XPath expression such as /C[@role=’rel’] being evaluated relative to that prefix.
The last lines of each transformation rule define one or more templates for OWL axioms,
with variables to be replaced by the values of the arguments. Complex expressions such
as 0-1 allow for “subtracting” individual subtrees from the overall tree structure. A more
complete listing of the transformation rules we applied can be found further below.

2http://ontoware.org/projects/lexo/



<?xml v e r s i o n = " 1 . 0 " e n c o d i n g ="UTF−8"?>
< r o o t >

<C i d ="E1 " pos ="0" >
<VBE i d ="3" pos ="3" r o l e =" i " p h r a s e =" i s " base =" be ">

<N i d ="2" pos ="2" r o l e =" s " p h r a s e =" f a r m e r ">
<Det i d ="1" pos ="1" r o l e =" d e t " p h r a s e ="A"/ >

</N>
<N i d ="5" pos ="6" r o l e =" p red " p h r a s e =" p e r s o n ">

<N i d ="E3 " pos ="4" r o l e =" s u b j " base =" f a r m e r " a n t e c e d e n t ="2" / >
<Det i d ="4" pos ="5" r o l e =" d e t " p h r a s e =" a " / >
<C i d ="E0 " pos ="7" r o l e =" r e l ">

<N i d ="6" pos ="8" r o l e ="whn" p h r a s e ="who" a n t e c e d e n t ="5" / >
<V i d ="7" pos ="9" r o l e =" i " p h r a s e =" o p e r a t e s " base =" o p e r a t e ">

<N i d ="E4 " pos ="10" r o l e =" s u b j " base ="who" a n t e c e d e n t ="5" / >
<N i d ="9" pos ="12" r o l e =" o b j " p h r a s e =" farm ">

<Det i d ="8" pos ="11" r o l e =" d e t " p h r a s e =" a " / >
</N> </V> </C> </N> </VBE> </C> </ r o o t >

Figure 2. XML Representation of Dependency Tree

A minimal set of rules for building a complete axiomatization of the Farmer example
could be, e.g. Copula, Relative Clause and Transitive Verb Phrase (see Table 1). The
resulting list of axioms (see Figure 4) in KAON23 internal syntax is directly fed into
the ontology management system which interprets the textual representation of these
axioms, and finally builds an unfolded4 class description as shown in Figure 5.

[ e q u i v a l e n t l e x o : a _ f a r m e r l e x o : a _ p e r s o n _ w h o _ o p e r a t e s _ a _ f a r m ]
[ e q u i v a l e n t l e x o : a _ p e r s o n _ w h o _ o p e r a t e s _ a _ f a r m [ and l e x o : a _ p e r s o n l e x o : o p e r a t e s _ a _ f a r m ] ]
[ e q u i v a l e n t l e x o : o p e r a t e s _ a _ f a r m [ some l e x o : o p e r a t e s l e x o : a_farm ] ]

Figure 4. Resulting Axioms

[ e q u i v a l e n t l e x o : a _ f a r m e r [ and l e x o : a _ p e r s o n [ some l e x o : o p e r a t e s l e x o : a_farm ] ] ]

Figure 5. Class Description (unfolded)

Obviously, all parts of this class description have to be normalized. After the normaliza-
tion, the final, unfolded axiomatization in DL syntax reads:

Farmer ≡ Person u ∃operate.Farm

Additionally, it may be necessary to map the ontology elements of the axiomatiza-
tion to already existing content of the ontology before the results can be used to gen-
erate suggestions for ontology changes (cf. Section 6). As shown by the large body of
research done in the domain of ontology mapping, this task is not trivial at all. Semantic
ambiguities of labels (e.g. homonymy or polysemy), as well as the fact that a single en-
tity or axiom in the ontology can have arbitrarily many lexicalizations – differing even
in their syntactic category – make it necessary to consider a multitude of possible map-
pings. Moreover, idiomatic expressions, i.e. expressions the meaning of which cannot
be directly derived from the meaning of their individual components, need to be treated
properly. Therefore, in addition to integrating a state-of-the-art mapping framework, a
significant degree of user involvement will be unavoidable in the end (see Section 6).

3http://kaon2.semanticweb.org
4By unfolding, a term borrowed from logic programming, we mean transformations like that of {A ≡
∃R.B, C ≡ A uD} to {C ≡ ∃R.B uD}. The specific for of output which we receive allows us to remove
many of the newly generated class names by unfolding, in order to obtain a more concise output.



3.2.2. Transformation Rules

Table 1 gives an overview of the most frequently used transformation rules. Each row
in the table contains the rule name (e.g. Verb with Prepositional Complement) and an
expression describing the natural language syntax matched by that rule – like, for ex-
ample, V0 Prep0 NP (pcomp-n)0, where V0 represents a verb, Prep0 a preposition and
NP (pcomp-n) denotes a noun phrase acting as a prepositional complement. Please note
that these expressions are very much simplified for the sake of presentation. The last
column shows the OWL axioms generated in each case, where X denotes the atomic
class name represented by the surface string of the complete expression matched by the
regarding transformation rule.

It is important to emphasize that this set of rules is by no means exhaustive, nor does
it define the only possible way to perform the transformation. In fact, there are many
different modeling possibilities, and the choice and shape of the rules very much depends
on the underlying application, the domain of interest or individual modeling preferences
of the user (see example Tetraploid in Section 7).

Rule Natural Language Syntax OWL Axioms

Disjunction NP0 or NP1 X ≡ NP0 t NP1

Conjunction NP0 and NP1 X ≡ NP0 u NP1

Determiner Det0 NP0 X ≡ NP0

Intersective Adjective Adj0 NP0 X ≡ Adj0 u NP0

Subsective Adjective Adj0 NP0 X v NP0

Privative Adjective Adj0 NP0 X v ¬NP0

Copula NP0 VBE NP1 NP0 ≡ NP1

Relative Clause NP0 C(rel) VP0 X ≡ NP0 u VP0

Number Restriction V0 Num NP(obj)0 X ≡ =Num V0.NP0

Negation (not) not V0 NP0 X v ¬∃V0.NP0

Negation (without) NP0 without NP(pcomp-n)1 X ≡ NP0 u ¬with.NP1

Participle NP0 VP(vrel)0 X ≡ NP0 u VP0

Transitive Verb Phrase V0 NP(obj)0 X ≡ ∃V0.NP0

Verb with Prep. Compl. V0 Prep0 NP(pcomp-n)0 X ≡ ∃V0_Prep0.NP0

Noun with Prep. Compl. NP0 Prep0 NP(pcomp-n)1 X ≡ NP0 u ∃NP0_Prep0.NP1

. . . . . . . . .
Table 1. Transformation Rules

3.3. Learning Disjointness

The feasibility of learning disjointness based on simple lexical evidence in principle has
already been shown in [22]. However, our experiments indicate that a single heuristic is
not suitable for detecting disjointness with sufficiently high precision, i.e. better than an
average human could do.

An extensive survey which we performed in order to collect experience with model-
ing disjoint classes revealed several problems frequently encountered by users who try to
introduce disjointness axioms. Based on the results of this survey we developed a variety
of different methods in order to automatically extract lexical and logical features which
we believe to provide a solid basis for learning disjointness [27]. These methods take



into account the structure of the ontology, associated textual resources, and other types
of data sources in order to compute the likeliness of two classes to be disjoint. The fea-
tures obtained from these methods are used to train a classifier that decides whether any
given pair of classes is disjoint or not. In the remainder of this Section, we will describe
those features in more detail before concluding with a summary of our experiments and
evaluation results.

3.3.1. Taxonomic Overlap

In description logics, two classes are disjoint iff their “taxonomic overlap”5 must be
empty. Because of the open world assumption in OWL, the individuals of a class do not
necessarily have to exist in the ontology. Hence, the taxonomic overlap of two classes is
considered not empty as long as there could be common individuals within the domain
of interest which is modeled by the ontology, i.e. if the addition of such an individual
does not generate an inconsistency.

We developed three methods which determine the likeliness for two classes to be
disjoint by considering their overlap with respect to (i) individuals and subclasses in the
ontology – or learned from a corpus of associated textual resources – and (ii) Del.icio.us6

documents tagged with the corresponding class labels. An additional feature indicating
disjointness is computed by determining whether (iii) any of the classes is subsumed by
the other.

Ontology Individuals and subclasses which may serve as indicators for taxonomic
overlap can be imported either from an ontology, or from a given corpus of text doc-
uments. In the latter case, subclass-of and instance-of relationships are ex-
tracted by different algorithms provided by the Text2Onto7 ontology learning framework.
A detailed description of these algorithms can be found in [23]. All taxonomic relation-
ships – learned and imported ones – are associated with rating annotations rsubclass-of

(or rinstance-of respectively) indicating the certainty of the underlying ontology learning
framework in the correctness of its results. For imported relationships the confidence
is 1.0.

The following feature fsubclass−of models the confidence for a pair (c1, c2) to be not
disjoint based on the taxonomic overlap of c1 and c2 with respect to common subclasses
(and in a similar way for instances):

fsubclass−of (c1, c2) =

∑
cvc1uc2

(rsubclass-of(c, c1) · rsubclass-of(c, c2))∑
cvc1

rsubclass-of(c, c1) +
∑

cvc2
rsubclass-of(c, c2)

(1)

Del.icio.us Del.icio.us is a server-based system with a simple-to-use interface that al-
lows users to organize and share bookmarks on the internet. It associates each URL with
a description, a note, and a set of tags (i.e. arbitrary class labels). For our experiments,
we collected |U | = 75, 242 users, |T | = 533, 191 tags and |R| = 3, 158, 297 resources,
related by |Y | = 17, 362, 212 triples. The idea underlying the use of del.icio.us in this

5We use this notion to refer to the set of common individuals.
6http://del.icio.us
7http://ontoware.org/projects/text2onto/



case is that two labels which are frequently used to tag the same resource are likely to be
disjoint, because users tend to avoid redundant labeling of documents.

In this case, we compute the confidence that c1, c2 are not disjoint as

fdel.icio.us(c1, c2) =
|{d : c1 ∈ t(d), c2 ∈ t(d)}|∑

c∈C |{d : c1 ∈ t(d), c ∈ t(d)}|+
∑

c∈C |{d : c2 ∈ t(d), c ∈ t(d)}|
(2)

where C is the set of all classes and t(d) represents the set of del.icio.us tags asso-
ciated with document d. The normalized number of co-occurrences of c1 and c2 (their
respective labels to be precise) as del.icio.us tags aims at capturing the degree of associ-
ation between the two classes.

Subsumption A particular case of taxonomic overlap is subsumption, which provides
us with additional evidence with respect to the disjointness of two classes. If one class is
a subclass of the other we assume these two classes to be not disjoint with a confidence
equal to the likeliness rsubclass-of associated with the subclass-of relationship.

3.3.2. Semantic Similarity

The assumption that a direct correspondence between the semantic similarity of two
classes and their likeliness to be disjoint led to the development of three further meth-
ods: The first one implements the similarity measure described by [24] to compute the
semantic similarity sim of two classes c1 and c2 with respect to WordNet [25]:

fwordnet(c1, c2) = sim(s1, s2) =
2 ∗ depth(lcs(s1, s2))
depth(s1) + depth(s2)

(3)

where si denotes the first sense of ci, i ∈ {1, 2} with respect to WordNet, and
lcs(s1, s2) is the least common subsumer of s1 and s2. The depth of a node n in WordNet
is recursively defined as follows: depth(root) = 1, depth(child(n)) = depth(n) + 1.

The second method measures the distance of c1 and c2 with respect to the given
background ontology by computing the minimum length of a path of subclass-of
relationships connecting c1 and c2.

fontology(c1, c2) = min
p∈paths(c1,c2)

length(p) (4)

And finally, the third method computes the similarity of c1 and c2 based on their
lexical context. Along with the ideas described in [17] we exploit Harris’ distributional
hypothesis [26] which claims that two words are semantically similar to the extent to
which they share syntactic contexts.

For each occurrence of a class label in a corpus of textual documents (see prelimi-
naries of this section) we consider all the lemmatized tokens in the same sentence (ex-
cept for stop words) as potential features in the context vector of the corresponding class.
After the context vectors for both classes have been constructed, we assign weights to all



features by using a modified version of the TFIDF formula. It differs from the original
version in that it aims at measuring the significance of terms with respect to the classes
they co-occur with rather than the documents in which they are contained.

Let vc = (fc,1, ...fc,n), n ≥ 1 be the context vector of class c where each fc,j is the
frequency of token tj in the context of c. Then we define TFc,j = fc,j ·(

∑
1≤k≤n fc,k)−1

and DFj = |
∑

c′∈C fc′,j > 0|, where C is the set of all classes. Finally, we get
f ′c,j = TFc,j · log(|C| · (DFj)−1), hence v′c = (f ′c,1, ...f

′
c,n). Given the weighted con-

text vectors v′c1
and v′c2

the confidence in c1 and c2 being not disjoint is defined as
fcontext(c1, c2) = v′c1

· v′c2
· (‖v′c1

‖‖v′c2
‖)−1 which corresponds to the cosine similarity

of v′c1
and v′c2

.

3.3.3. Patterns

Since we found that disjointness of two classes is often reflected by human language,
we defined a number of lexico-syntactic patterns to obtain evidence for disjointness re-
lationships from a given corpus of textual resources. The first type of pattern is based
on enumerations as described in [22]. The underlying assumption is similar to the idea
described in section 3.3.1, i.e. terms which are listed separately in an enumeration mostly
denote disjoint classes. Therefore, from the sentence

The pigs, cows, horses, ducks, hens and dogs all assemble in the big barn, thinking
that they are going to be told about a dream that Old Major had the previous night.8

we would conclude that pig, cow, horse, duck, hen and dog denote disjoint classes.
This is because we believe that – except for some idiomatic expressions it would be
rather unusual to enumerate overlapping classes such as dogs and sheep dogs separately
which would result in semantic redundancy. More formally:

Given an enumeration of noun phrases NP1, NP2, . . . , (and|or) NPn we con-
clude that the concepts c1, c2, . . . , ck denoted by these noun phrases are pairwise dis-
joint, where the confidence fenumeration(c1, c2) for the disjointness of two concepts c1
and c2 is obtained from the number of evidences found for their disjointness in relation to
the total number of evidences for the disjointness of these concepts with other concepts.

The second type of pattern is designed to capture more explicit expressions
of disjointness in natural language by phrases such as either NP1 or NP2 or
neither NP1 nor NP2. For both types of patterns we compute the confidence for the
disjointness of two classes c1 and c2 as follows:

fpattern(c1, c2) =
freq(c1, c2)∑

j 6=1 freq(c1, cj) +
∑

i6=2 freq(ci, c2)
(5)

where freq(ci, cj) is the number of patterns providing evidence for the disjointness
of ci and cj with 0 ≤ i, j ≤ |C| and i 6= j.

3.3.4. Evaluation

We evaluated the approach by performing a comparison of learned disjointness axioms
with a data set consisting of 2,000 pairs of classes, each of them manually tagged by

8George Orwell, Animal Farm, Secker & Warburg, London, 1945



Table 2. Evaluation against Majority Vote 100% (ADTree)

Dataset P R F Acc Accmajority

+ − avg. + − avg. + − avg.

Experts 0.896 0.720 0.808 0.903 0.703 0.803 0.899 0.712 0.806 0.851 0.738
Students 0.866 0.790 0.828 0.942 0.599 0.771 0.903 0.681 0.792 0.851 0.734

Avg. 0.881 0.755 0.818 0.923 0.651 0.787 0.901 0.697 0.799 0.851 0.736

All 0.934 0.823 0.879 0.946 0.789 0.868 0.940 0.805 0.873 0.909 0.760

6 human annotators – 3 students and 3 ontology experts9. A 10-fold cross validation
against those pairs of classes which were tagged identically by all the annotators showed
an accuracy between 85.1% and 90.9%, which is significantly higher than the majority
baseline (cf. Table 2).

In order to find out which classification features contributed most to the overall per-
formance of the classifier we performed an analysis of our initial feature set with re-
spect to the gain ratio measure. The ranking produced for data set C clearly indicates
an exceptionally good performance of the features taxonomic overlap (Section 3.3.1),
similarity based on WordNet and lexical context (Section 3.3.2), and del.icio.us (Sec-
tion 3.3.1). The contribution of other features such as the one presented in Section 3.3.3
relying on lexico-syntactic patterns seems to be less substantial. However, as the classi-
fication accuracy tested on every single feature is always below the overall performance,
the combination of all features is necessary to achieve a very good overall result.

4. Discussion

The syntactic transformation proposed in Section 3.2 creates a set of OWL axioms which
can be used to extend the axiomatization of any given class in an ontology. Our naive
implementation of this approach is as simple as efficient, but obviously requires a signif-
icant amount of manual or automatic post-processing. This is to a major extent due to a
number of problems which relate to limitations of the linguistic analysis and the trans-
formation process, as well as fundamental differences between lexical and ontological
semantics. In the following we will discuss some of these problems in more detail, and
present possible solutions.

Although the transformation takes into account some aspects of lexical semantics,
it is certainly not capable of capturing much of the intension of the terms involved in
the natural language expression that serves as an input for the transformation process.
Much of the meaning of the resulting axioms is still brought in by the semantics of
the underlying natural language terms. This does not necessarily constitute a significant
problem as long as the semantics of the description logic expressions is sufficiently “in
line” with the lexical semantics of the terms involved in their formation. Actually, the
semantics of ontological elements – not of the constructs of the ontology language, but of
the classes, properties and instances defined by means of these constructs – will always
be grounded to some extent in natural language semantics.

9The complete data set is available from http://ontoware.org/projects/leda/.



As it is impossible to express all possible aspects of a concept’s meaning by virtue
of description logic axioms, natural language labels and comments undoubtedly play a
key role in ontological knowledge representation. In fact, an ontology without natural
language labels attached to classes or properties is almost useless, because without this
kind of grounding it is very difficult, if not impossible, for humans to map an ontology
to their own conceptualization, i.e. the ontology lacks human-interpretability.

However, a grounding of ontologies in natural language is highly problematic due
to different semantics and the dynamic nature of natural language. It is important to
mention that many problems linked to either of these aspects are not necessarily specific
to ontology learning approaches such as the one we present in this chapter. Since the way
people conceive and describe the world is very much influenced by the way they speak
and vice-versa (also known as the Sapir-Whorf hypothesis), ontology engineering is often
subject to our intuitive understanding of natural language semantics. Some problems
that relate to differences between ontological and lexical semantics are discussed in the
following.

Lexical Semantics. The semantics of lexical relations fundamentally differs from the
model-theoretic semantics of ontologies. While lexical relations such as hyponymy,
antonymy or synonymy are defined over lexemes, ontological relations are used for re-
lating classes.10 And it is not obvious in all cases how to map words – especially very
abstract notions – to classes, as their extension often remains unclear.

For practical reasons it might be sensible to assume a correspondence between lexi-
cal relations and some types of axioms. Indeed, traditional ontology learning approaches
often rely on information about hyponymy and synonymy for creating subsumption hier-
archies [12], or meronymy for identifying part-of relationships [28]. However, a one-to-
one mapping between lexical and ontological semantics is problematic for various rea-
sons. Just to mention a few of them, true synonymy is very rare if existent at all in natural
language. And since tiny differences in meaning may be significant depending on the
modeling granularity of an ontology, synonymy cannot always be mapped to equivalence
in a straightforward way. Second, lexical relations such as meronymy do not need to be
transitive even if their ontological counterparts are. It is also important to mention that
hyponymy in pattern-based ontology learning is often confused with para-hyponymy [29]
as those patterns are not able to capture the necessity condition which holds for regular
hyponymy11. Finally, one has to be aware of the fact that such a mapping between lexical
and model-theoretic semantics may affect the formal correctness of an ontology – even
more, if ontology learning or engineering exclusively relies on lexico-syntactic clues for
inferring lexical relationships. Due to the informal character of natural language it is no
trouble to say, for instance, “A person is an amount of matter”. But from the perspective
of formal semantics this might be problematic as pointed out by [30].

10For example, each of these classes could be associated with one or more natural language expressions
describing the intended meaning (intension) of the class. And still, since hyponymy is not “transitive” over
(near-)synonymy it is not necessarily the case that all mutually synonymous words associated with a subclass
are hyponyms of all synonymous words associated with its superclass.

11Interestingly, this necessity condition parallels the rigidity constraint as defined by the OntoClean method-
ology [30]. A tool such as AEON [36] could therefore help to automatically detect both, cases of formally
incorrect subsumption as well as para-hyponymy relationships (e.g. “A dog is a pet.”).



Dynamics of Natural Language. Further problems with respect to the use of natural
language in ontology engineering relate to the way in which semantics are defined. While
ontologies have a clear model-theoretic semantics, the semantics of lexical relations is
defined by so-called diagnostic frames, i.e. by typical sentences describing the context in
which a pair of words may or may not occur given a certain lexical relation among them.
This way of defining lexical relations does not guarantee for stable semantics, since nat-
ural languages, other than ontology representation languages, are dynamic. That means,
each (open-class) word slightly changes its meaning every time it is used in a new lin-
guistic context. These semantic shifts, if big enough, can affect the lexical relationships
between any pair of words. And considering that natural language expressions are regu-
larly used for the grounding of ontologies they can potentially lead to semantic “incon-
sistencies”, i.e. conflicting intensional descriptions. This kind of inconsistencies can be
avoided by more precise, formal axiomatizations of ontological elements. However, it is
an open issue how many axioms are required to “pin down” the meaning of a given class
or property.

The proposed approach for learning disjointness axioms (see Section 3.3) is affected
by similar problems as it relies among others upon ontology learning methods for cap-
turing the potential overlap of any two concepts. However, one of the main weaknesses
of this approach might be that it crucially depends on the quality of the manually created
training data sets. Our user study [27] revealed a number of difficulties and misunder-
standings human ontology engineers had while creating disjointness axioms. For exam-
ple, a simple taxonomy along with natural language labels was often not sufficient for
disambiguating the sense of a given concept. And people were confused if the intensions
of two concepts were disjoint while their extensions were not – or vice versa (e.g. Woman
and US President).

5. Dealing with Inconsistencies in Ontology Learning

One of the major problems of learning ontologies is the potential introduction of incon-
sistencies. These inconsistencies are a consequence of the fact that it is inherent in the
ontology learning process that the acquired ontologies represent imperfect information.

According to [31], we can distinguish three different causes of imperfection. Imper-
fection can be due to imprecision, inconsistency or uncertainty. Imprecision and incon-
sistency are properties of the information itself – either more than one world (in the case
of ambiguous, vague or approximate information) or no world (if contradictory conclu-
sions can be derived from the information) is compatible with the given information.
Uncertainty means that an agent, i.e. a computer or a human, has only partial knowledge
about the truth of a given piece of information. One can distinguish between objective
and subjective uncertainty. Whereas objective uncertainty relates to randomness refer-
ring to the propensity or disposition of something to be true, subjective uncertainty de-
pends on an agent’s opinion about the truth of some information. In particular, an agent
can consider information as unreliable or irrelevant.

In ontology learning, (subjective) uncertainty is the most prominent form of imper-
fection. This is due to the fact that the results of the different algorithms have to be con-
sidered as unreliable or irrelevant due to imprecision and errors introduced during the
ontology generation process. There exist different approaches for the representation of



uncertainty: Uncertainty can for example be represented as part of the learned ontologies,
e.g. using probabilistic extensions to the target knowledge representation formalism, or
at a meta-level as application-specific information associated with the learned structures.

Ignoring the fact that learned ontologies contain uncertain and thus potentially con-
tradicting information would result in highly inconsistent ontologies, which do not allow
meaningful reasoning. In the following we show how inconsistencies can be dealt with
in the process of ontology learning. In particular, we show how the concept of consistent
ontology evolution can be applied in the context of ontology learning. To begin with, we
define the notion of consistency more precisely.

5.1. Logical Consistency

Logical consistency addresses the question whether the ontology is “semantically cor-
rect”, i.e. does not contain contradicting information. We say logical consistency is satis-
fied for an ontologyO ifO is satisfiable, i.e. ifO has a model. Please note that because of
the monotonicity of the considered logic, an ontology can only become logically incon-
sistent by adding axioms: If a set of axioms is satisfiable, it will still be satisfiable when
any axiom is deleted. Therefore, we only need to check the consistency for ontology
change operations that add axioms to the ontology. Effectively, ifO∪{α} is inconsistent,
in order to keep the resulting ontology consistent some of the axioms in the ontology O
have to be removed or altered.

Example. Suppose, we have generated an ontology containing the following axioms:
Pig v Mammal, Human v Mammal, Human v Biped (humans walk on two
legs), Pig v Quadruped (pigs walk on two legs), Biped v ¬Quadruped (Bipeds and
Quadrupeds are disjoint), Pig(OldMajor). This ontology is logically consistent.

Suppose we now learn from some source that Old Major walks on two legs and want
to add the axiom Biped(OldMajor). Obviously, this ontology change operation would
result in an inconsistent ontology.

5.2. Consistent Ontology Evolution

As we have already discussed in Section 2.2, the most adequate approach to dealing with
inconsistencies in ontology learning is by realizing a consistent evolution of the ontology.
The goal of consistent ontology evolution is the resolution of a given ontology change in
a systematic manner by ensuring the consistency of the whole ontology. It is realized in
two steps:

1. Inconsistency Localization: This step is responsible for checking the consistency of
an ontology with the respect to the ontology consistency definition. Its goal is to find
"parts" in the ontology that do not meet consistency conditions;

2. Change Generation: This step is responsible for ensuring the consistency of the on-
tology by generating additional changes that resolve detected inconsistencies.

The first step essentially is a diagnosis process. There are different approaches how
to perform the diagnosis step [32]. A typical way to diagnose an inconsistent ontology
is to try to find a minimal inconsistent subontology, i.e. a minimal set of contradicting
axioms. Formally, we call an ontology O′ a minimal inconsistent subontology of O,



if O′ ⊆ O and O′ is inconsistent and for all O′′ with O′′ ⊂ O′, O′′ is consistent.
Intuitively, this definition states that the removal of any axiom from O′ will result in
a consistent ontology. A simple way of finding a minimal inconsistent subontology is
as follows: We start with one candidate ontology containing initially only the axiom
that was added to the ontology as part of the change operation. As long as we have
not found an inconsistent subontology, we create new candidate ontologies by adding
axioms (one at a time) that are in some way connected with the axioms in the candidate
ontology. One simple, but useful notion of connectedness is structural connectedness:
We say that axioms are structurally connected if they refer to shared ontology entities.
Once the minimal inconsistent ontology is found, it is by definition sufficient to remove
any of the axioms to resolve the inconsistency.

In our previous example, a minimal inconsistent subontology would consist
of the axioms Pig v Quadruped, Biped v ¬Quadruped, Pig(OldMajor), and
Biped(OldMajor). The removal of any of the axioms would result in a consistent ontol-
ogy.

While the removal of any of the axioms from a minimal inconsistent subontology
will resolve the inconsistency, the important question of course is deciding which axiom
to remove. This problem of only removing dispensable axioms requires some semantic
selection functions capturing the relevance of particular axioms. These semantic selec-
tion functions can for example exploit information about the confidence in the axioms
that allows us to remove "less correct" axioms. In the resolution of the changes we may
decide to remove the axioms that have the lowest confidence, i.e. those axioms that are
most likely incorrect. We are thus able to incrementally evolve an ontology that is (1)
consistent and (2) captures the information with the highest confidence. For details of
such a process and evaluation results, we refer the reader to [22].

Based on the discussions above, we can now outline an algorithm (c.f. Algorithm 1)
to ensure the consistent evolution of a learned ontology.

Algorithm 1 Algorithm for consistent ontology learning
Require: A consistent ontology O
Require: A set of ontology changes OC

1: for all α ∈ OC, rconf(α) ≥ t do
2: O := O ∪ {α}
3: while O is inconsistent do
4: O′ := minimal_inconsistent_subontology(O,α)
5: α− := α
6: for all α′ ∈ O′ do
7: if rconf(α′) ≤ rconf(α) then
8: α− := α′

9: end if
10: end for
11: O := O \ {α−}
12: end while
13: end for

Starting with some consistent ontology O, we incrementally add all axioms gener-
ated from the ontology learning process – contained in the set of ontology changes OC



– whose confidence is equal to or greater than a given threshold t. If adding the axioms
leads to an inconsistent ontology, we localize the inconsistency by identifying a minimal
inconsistent subontology. Within this minimal inconsistent subontology we then identify
the axiom that is most uncertain, i.e. has the lowest confidence value. This axiom will be
removed from the ontology, thus resolving the inconsistency. It may be possible that one
added axiom introduced multiple inconsistencies. For this case, the above inconsistency
resolution has to be applied iteratively.

5.3. Context Information for the Resolution of Inconsistencies

Besides the general notion of confidence used above, we may rely on various other forms
of contextual information to obtain a ranking of the axioms for the resolution of incon-
sistencies. In the following we discuss what kind of contextual information can be auto-
matically generated by the ontology learning algorithms:

Axiomatic support. The axiomatic support can be defined as the relative number of
times a particular axiom was generated by an ontology learning component. Since the
methods which are applied by such a component can generate axioms of different com-
plexity, it may be necessary to define the axiomatic support based on some normal form
of the axioms.

Provenance information. Whenever ontologies are automatically generated from
structured or unstructured resources, and in particular if these resources are part of the
World Wide Web, the reliability of the results depends on the trustworthiness and qual-
ity of these resources. Therefore, associating provenance information with the learned
ontology elements does not only increase the traceability of the results (as the user can
track individual elements back to the resources they have been extracted from), but also
helps to estimate the correctness of the results.

Mapping confidence. If the ontology learning task is to extend a given ontology (as
opposed to generating an ontology from scratch) it can be necessary to map all newly
introduced properties and class descriptions to already existing ontology elements. This
helps to avoid unnecessary extensions to the ontology, but at the same time introduces
additional uncertainty caused by incorrect mappings, as suggested in Section 3.2.

Rule reliability. Ontology learning approaches based on syntactic transformation rules
(c.f. Section 3.2.2), or lexico-syntactic patterns [18] often make certain assumptions
about the reliability of their rules or patterns. These (implicit or explicit) assumptions
typically being supported by empirical data can be used to estimate the correctness of
the ontology learning results.

Classifier confidence. Supervised ontology learning approaches such as the one pre-
sented in Section 3.3 rely on a classification model built from training examples. The
classifier that can be constructed from this model will make predictions for previously
unseen data (e.g. instances to be classified as belonging to a certain class, or pairs of
classes being disjoint or not) with a confidence value that depends on the classifier type.

Relevance. In general, ontology learning from text is based on the assumption that the
domain of interest, i.e. the domain to be modeled by the learned ontology, is given by
means of the underlying document corpus. It therefore seems natural that approaches



such as [34] try to evaluate the quality, and in particular the domain coverage, of learned
ontologies by comparing them to the corpus. Similarly, the relevance of an individual on-
tology element can be estimated based on the pieces of evidence (e.g. explicit mentions)
in the corpus.

6. Integrating Learning and Evolution into the Ontology Lifecycle

In this section we sketch our vision of a semi-automatic ontology engineering process,
which integrated our previously described methods for ontology learning and evolution
along with an elaborate methodology. We describe the potential role of our approaches
within this scenario and identify the missing components.

Figure 6. Ontology Evolution Process

The overall scenario we envision for the evolution of expressive OWL ontologies
is a semi-automatic cyclic process of ontology learning, evaluation and refinement as
depicted by Figure 6. The process starts with a relatively inexpressive ontology, possibly
a bare taxonomy, which is supposed to be enriched and refined to meet the requirements,
e.g. of a reasoning-based application. In each iteration of the process, the user selects
the class to be refined, and optionally specifies appropriate resources for the ontology
generation phase (Step 1) such as

• manual user input,
• comments contained in the ontology,
• definitions extracted from ontology engineering discussions by email or Wiki,
• software documentation of the underlying application,
• available glossaries and encyclopedias (e.g. Wikipedia), or
• textual descriptions of the domain which could be obtained by initiating a

GoogleTMsearch for definitions (e.g. “define: DNS”).



A tool such as LExO (cf. Section 3.2) can analyze the given resources to identify and
extract definitory sentences, i.e. natural language descriptions of the class previously
selected by the user. These definitions are parsed and transformed into OWL DL axioms
(Step 2) that can be presented to the user, if she wants to intervene at this point.

Otherwise, the system directly proceeds to the mapping phase which aims at relating
the newly generated entities and axioms to elements in the initial ontology (Step 3). The
outcome of this phase are a number of mapping axioms which can be added to the class
axiomatization after being confirmed by the user. Then, methods for consistent ontology
evolution check for logical inconsistencies or potential modeling errors (Step 4). Based
on the learned axiomatization and additional mappings the system now suggests ontol-
ogy changes or extensions to the user (Step 5). The user now revises the ontology by
modifying or removing some of the axioms (Steps 6 and 7), before the whole process
starts over again. Further entities, e.g. those introduced by previous iterations, can be
refined until the user or application needs are satisfied.

When validating the ontology, it is certainly necessary to consider aspects beyond
that of logical consistency. We point out two aspects which we judge to be of particu-
lar importance, namely how to aid the ontology engineer to ensure on the one hand a
sufficiently high quality of the ontology and on the other hand the completeness of the
modeling process in terms of the application domain.

Quality insurance will have to be based on previous work on the field of ontology
evaluation. Since the automatic generation of expressive ontologies can potentially lead
to a substantial increase in complexity, a simple manual revision of the ontology gen-
erated by a system such as the one described here might be infeasible. Therefore, we
believe that automatic techniques for ontology evaluation will play a crucial role in the
ontology learning and engineering cycle. These techniques could check, for instance, the
ontology’s coverage with respect to a domain-specific corpus [34] or its validity in terms
of the OntoClean methodology [36].

In order to ensure completeness of the modeling process with regard to the appli-
cation domain, a structured approach for an exhaustive exploration of complex relation-
ships between classes is required. This can be realized, for example, by employing meth-
ods like relational exploration [37], which is an adaptation of attribute exploration from
Formal Concept Analysis [38] to description logics. And finally, it might also be worth-
while to consider an integration of LExO with other learning approaches which could
compensate for some of its limitations, e.g. with respect to the learnability of particular
relations between roles [39], or disjointness axioms (see Section 3.3).

7. Experiments in an Application Scenario

In this section we discuss an application scenario of ontology learning in the context of
a case study in the fishery’s domain at the Food and Agriculture Organization (FAO) of
the UN.

The FAO Fisheries department has several information and knowledge organization
systems to facilitate and secure the long-term, sustainable development and utilization of
the world’s fisheries and aquaculture. In order to effectively manage the world’s shared
fish stocks and prevent overfishing, the FAO Fishery systems manage and disseminate
statistical data on fishing, GIS data, information on aquaculture, geographic entities, de-



scription of fish stocks, etc. However, even though much of the data is “structured”, it is
not necessarily represented in a formal way, and some of the information resources are
not available through databases but only as parts of websites, or as individual documents
or images. Therefore, many or even all of these data sources could be better exploited by
bringing together related and relevant information, along with the use of the fishery on-
tologies, to provide inference-based services for policy makers and national governments
to make informed decisions.

A particular application developed within the NeOn project12 is FSDAS (Fishery
Stock Depletion Alert System), an ontology-driven decision support system for fisheries
managers, assistants to policy makers and researchers. FSDAS will be a web-based in-
telligent agent that uses networked ontologies consisting of various fisheries, taxonomic,
and geographical ontologies to aid users in discovering resources and relationships re-
lated to stock depletion and to detect probabilities of over-fishing. Fisheries ontologies,
which bring together concepts from a number of existing knowledge organization sys-
tems, help to improve language-independent extraction and the discovery of informa-
tion. Their development will allow for managing the complexity of fishery knowledge
communities, their meaning negotiation and their deployment by worldwide authorities.

In order to achieve these goals, the ontological model needs to be shaped starting
from highly structured FAO information systems, and to develop a learning capacity
from this model to incorporate data and information from other less structured systems.
Here, ontology learning becomes an integral part of the lifecycle of the fishery ontology.
Further, in order for the FSDAS to be effective, it is important that the ontologies and re-
sources it builds on are maintained and kept up-to-date, and that when applying changes
to ontologies the consistency of the ontology is guaranteed.

7.1. Learning an Ontology for the Fishery Domain

We exemplify our approach by giving a number of axiomatizations automatically gener-
ated by means of LExO and the set of rules listed by Table 1. The example sentences are
not artificial, but were selected from a fishery glossary provided by FAO.

1. Data: Facts that result from measurements or observations.
Data ≡ Fact u ∃result_from.(Measurement t Observation)

2. InternalRateOfReturn: A financial or economic indicator of the net benefits expected
from a project or enterprise, expressed as a percentage.
InternalRateOfReturn ≡ (Financial t Economic) u indicator u ∃indicator_of.(Net u
Benefit u ∃expected_from.(Project t Enterprise)) u ∃expressed_as.Percentage

3. Vector: An organism which carries or transmits a pathogen.
Vector ≡ Organism u (carry t ∃transmit.Pathogen)

4. Juvenile: A young fish or animal that has not reached sexual maturity.
Juvenile ≡ Young u (Fish t Animal) u ¬∃reached.(Sexual uMaturity)

5. Tetraploid: Cell or organism having four sets of chromosomes.
Tetraploid ≡ (Cell t Organism) u=4 having.(Set u ∃set_of.Chromosomes)

6. Pair Trawling: Bottom or mid-water trawling by two vessels towing the same net.
PairTrawling ≡ (Bottom t MidWater) u Trawling u =2 trawling_by.(Vessel u
∃tow.(Same u Net))

12http://www.neon-project.org



7. Sustained Use: Continuing use without severe or permanent deterioration in the re-
sources.
SustainedUse ≡ Continuing u Use u ¬∃use_with.((Severe t Permanent) u
Deterioration u ∃deterioration_in.Resources)

8. Biosphere: The portion of Earth and its atmosphere that can support life.
Biosphere ≡ Portionu∃portion_of.((Earthu ItsuAtmosphere)u∃can_support.Life)

Some critical remarks and observations on the examples:

1. This is a simple example, which works out very well.
2. This example shows the complex axiomatizations which can be obtained using our

approach. Here (and in other examples) we note that adjectives are so far interpreted
as being intersective – we discuss this in Section 4. Another recurring problem is the
generic nature of the role of which we tried to solve by designing the transformation
rule in a way that it adds a disambiguating prefix to the preposition as a role name
(indicator_of ). Nevertheless, the output is a reasonable approximation of the intended
meaning and would serve well as suggestion for an ontology engineer within an inter-
active process as we draft in Section 6.

3. This is a Minipar parse error. The desired solution would be
Vector ≡ Organism u (∃carry.Pathogen t transmit.Pathogen).

4. Take particular attention to the handling of negation and of the present perfect tense.
5. The natural language sentence is actually ambiguous whether the number should be

read as exactly four or at least four, and the role name having is certainly not satisfac-
tory. Even more difficult is how set of chromosomes is resolved. A correct treatment
is rather intricate, even if modeling is done manually. The class name Chromosomes
should probably rather be a nominal containing the class name as individual – which
cannot be modeled in OWL DL, but only in OWL Full. Note also that the cardinality
restriction is used as a so-called qualified one, which is not allowed in OWL DL but is
supported by most DL reasoners.

6. Same is difficult to resolve. In order to properly model this sentence, one would have
to state that two different individuals of the class Vessel are connected to the same
instantiation of Net by means of the tow role. This is not expressible in OWL DL as in
the general case, such constructions would lead to undecidability.

7. Apart from the very generic role in and the problem with adjectives already men-
tioned, this is a complex example which works very well.

8. The possessive pronoun its would have to be resolved.

8. Conclusions

In this chapter we presented two conceptual approaches and implementations for learning
expressive ontologies. LExO (cf. Section 3.2) constitutes a lexical approach to generating
complex class descriptions from definitory sentences. It can be complemented by any
general purpose ontology learning framework, or more specific solutions such as the
approach presented in Section 3.3 aiming at the automatic generation of disjointness
axioms.

Although we see a great potential in learning expressive ontologies, the discussion
shows that there are still many open issues – technical, but also very fundamental ques-



tions. The most important ones according to our perception relate to the relationship of
lexical and ontological semantics. Given a purely syntactical transformation such as the
one presented in Section 3.2, it will be crucial to investigate at which stage of the process
and in which manner particularities of both semantics have to be considered. Finally, we
will have to answer the question where the principal limitations of our approaches with
respect to the expressivity of the learned ontologies really are. It is reasonable to assume
that at least some aspects of ontological semantics cannot (or not so easily) be captured
by purely lexical ontology learning methods. However, we believe that a combination of
lexical and logical approaches could help to overcome these limitations.

In any case, learning expressive ontologies for knowledge-intensive applications will
demand a tighter integration of learning and reasoning at both development time and
runtime. One of the most important questions is how potential inconsistencies in the
ontology can be dealt with by consistent ontology evolution, for example (see Section 5).
Finally, suitable methodologies for semi-automatic ontology engineering will be needed
in order to combine ontology learning, evaluation and reasoning.
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From Glossaries to Ontologies:
Extracting Semantic Structure from

Textual Definitions

Roberto NAVIGLI a,1 and Paola VELARDI a
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Abstract. Learning ontologies requires the acquisition of relevant domain concepts
and taxonomic, as well as non-taxonomic, relations. In this chapter, we present
a methodology for automatic ontology enrichment and document annotation with
concepts and relations of an existing domain core ontology. Natural language
definitions from available glossaries in a given domain are processed and regu-
lar expressions are applied to identify general-purpose and domain-specific rela-
tions. We evaluate the methodology performance in extracting hypernymy and non-
taxonomic relations. To this end, we annotated and formalized a relevant fragment
of the glossary of Art and Architecture (AAT) with a set of 10 relations (plus the
hypernymy relation) defined in the CRM CIDOC cultural heritage core ontology, a
recent W3C standard. Finally, we assessed the generality of the approach on a set
of web pages from the domains of history and biography.

Keywords. Ontology learning, Semantic relation learning, Glossary formalization

Introduction

The Semantic Web [1], i.e. the vision of a next-generation web where content is concep-
tually indexed, requires applications to process and exploit the semantics implicitly en-
coded in on-line and off-line resources. The large-scale, automatic semantic annotation
of web documents based on well-established domain ontologies would allow Semantic
Web applications to emerge and gain acceptance. Wide coverage ontologies are indeed
available for general applications (e.g. WordNet2, CYC3, SUMO4), however semantic
annotation in unconstrained areas seems still out of reach for state-of-the-art systems.
Domain-specific ontologies are preferable since they would limit the semantic coverage
needed and make the applications feasible.

Recently, certain web communities began to exploit the benefits deriving from the
application of Semantic Web techniques. Accordingly, they spent a remarkable efforts to
conceptualize their competence domain through the definition of a core ontology, i.e. a

1Corresponding Author: Roberto Navigli, Dipartimento di Informatica, Via Salaria, 113 - 00198 Roma Italy;
E-mail: navigli@di.uniroma1.it.

2http://wordnet.princeton.edu
3http://www.opencyc.org
4http://www.ontologyportal.org
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Figure 1. The different degrees of formalization: from unstructured textual content to ontology and logical
rules.

basic ontology consisting of the minimal concepts and relations required to understand
the other domain concepts. Relevant examples are in the area of enterprise modeling
[2,3] and cultural heritage [4]. Core ontologies are indeed a necessary starting point to
model in a principled way the concepts, relations and axioms of a given domain. But in
order for an ontology to be really usable in applications, it is necessary to enrich the core
structure with the thousands of concepts and instances that “make” the domain.

While several ontology learning approaches extract concepts and relation instances
directly from (web) documents, i.e. from unstructured texts (see the Chapter by Poesio
and Almuhareb), in this chapter we present a methodology which relies on the existence
of a domain glossary. In Figure 1 we show the different degrees of knowledge formaliza-
tion: from unstructured texts to terminologies, glossaries, thesauri, taxonomies, ontolo-
gies, and logic rules. Our assumption allows us to shift the focus from fully unstructured
texts to glossaries, which encode textual definitions for domain terms. This assumption
drastically reduces the chance of extracting inadequate information (especially, informa-
tion from inappropriate sources), and to focus on the formalization of textual definitions.
Specifically, the methodology presented hereafter automatically annotates a glossary G
with the semantic relations of an existing core ontology O . The annotation of documents
and glossary definitions is performed using regular expressions, a widely adopted text
mining approach. However, while in the literature regular expressions seek mostly for
patterns at the lexical and part-of-speech level, we defined expressions enriched with
syntactic and semantic constraints. A word sense disambiguation algorithm, SSI [5], is
used to automatically replace the high-level semantic constraints specified in the core
ontology with fine-grained sense restrictions, using the sense inventory of WordNet, a
general purpose lexicalized ontology. From each gloss g of a term t in the glossary G, we
extract one or more semantic relation instances R(Ct , Cw), where R is a relation in O ,
Ct and Cw are respectively the domain and range of R. The concept Ct corresponds to
its lexical realization t , while Cw is the concept associated with a word w in G, captured
by a regular expression.

The annotation process allows to automatically enrich O with an existing glossary
in the same domain of O , since each pair of term and gloss (t , g) in the glossary G



is transformed into a formal definition, compliant with O . Furthermore, the very same
method can be used to automatically annotate free text with the concepts and relations
of the enriched ontology O’. We experimented with our methodology in the cultural
heritage domain, since for this domain several well-established resources are available,
like the CIDOC-CRM core ontology, the Art and Architecture Thesaurus (AAT), and
others.

The chapter is organized as follows: in Section 1 we present the CIDOC and the
other resources used in this work. In Section 2 we describe in detail the ontology enrich-
ment algorithm. In Section 3 we provide a performance evaluation on a subset of CIDOC
properties and a sub-tree of the AAT thesaurus. Related literature is examined in Section
4.

1. Semantic and Lexical Resources in the Cultural Heritage Domain

In this section we describe the semantic and lexical resources in the cultural heritage
domain that have been used in this work.

1.1. The CIDOC CRM

We adopted as a core ontology O the CIDOC Conceptual Reference Model (CIDOC
CRM) [4], a formal core ontology whose purpose is to facilitate the integration and ex-
change of cultural heritage information between heterogeneous sources. It is currently
being elaborated to become an ISO standard. In its current version (4.0) the CIDOC in-
cludes 84 taxonomically structured concepts (called entities) and a flat set of 141 se-
mantic relations, called properties. Entities, i.e. concepts, are defined in terms of their
subclass and super-class relations in the CIDOC hierarchy, and an informal description
of the entity is provided. Properties are defined in terms of domain (the class for which
a property is formally defined) and range (the class that comprises all potential values of
a property), e.g.: property 46, labelled is composed of (forms part of), has E19 Physical
Object as domain and E42 Object Identifier as range.

To make the CIDOC CRM usable by a computer program, we replaced specifica-
tions written in natural language with formal ones. For each property R, we created a
tuple R(Cd , Cr ) where Cd and Cr are the domain and range entities specified in the
CIDOC reference manual.

1.2. The AAT thesaurus

We adopted as a domain glossary G the Art and Architecture Thesaurus (AAT), a con-
trolled vocabulary for use by indexers, catalogers, and other professionals concerned
with information management in the fields of art and architecture. In its current version,
it includes more than 133,000 terms, descriptions, bibliographic citations, and other in-
formation relating to fine art, architecture, decorative arts, archival materials, and ma-
terial culture. An example is reported in Table 1. We manually mapped the top AAT
concepts to CIDOC entities, as shown in Table 2. As a result, CIDOC properties can be
applied to connect pairs of concepts in AAT which satisfy the CIDOC domain and range
constraints, i.e. the CIDOC CRM can be used as a core ontology for AAT.



Table 1. An entry from the Art and Architecture Thesaurus (AAT) glossary.

Concept name: Maestà

Definition: Refers to a work of a specific iconographic type, depicting the Virgin Mary and Christ Child
enthroned in the center with saints and angels in adoration to each side. The type developed in Italy in
the 13th century and was based on earlier Greek types. Works of this type are typically two-dimensional,
including painted panels (often altarpieces), manuscript illuminations, and low-relief carvings.

Hierarchical Position:
Objects Facet

Visual and Verbal Communication
Visual Works

<visual works>
<visual works by subject type>

maestà

Table 2. Mapping between AAT and CIDOC.

AAT topmost CIDOC entities
Top concept of AAT CRM Entity (E1), Persistent Item (E77)
Styles and Periods Period (E4)
Events Event (E5)
Activities Facet Activity (E7)
Processes/Techniques Beginning of Existence (E63)
Objects Facet Physical Stuff (E18), Physical Object (E19)
Artifacts Physical Man-Made Stuff (E24)
Materials Facet Material (E57)
Agents Facet Actor (E39)
Time Time-Span (E52)
Place Place (E53)

1.3. Additional Resources

To apply semantic constraints on the words of a definition (as clarified in the next Sec-
tion), we need additional resources. WordNet [6] is used to verify that certain words in a
gloss fragment f satisfy the domain and range constraints of R(Cd , Cr ) in the CIDOC. In
order to do so, we manually linked the WordNet topmost concepts to the CIDOC entities.
For example, the concept E19 (Physical Object) is mapped to the WordNet synset “ob-
ject, physical object”. Furthermore, we created a gazetteer of named entities by extract-
ing names from DMOZ5, a large human-edited directory of the web, the Union List of
Artist Names6 (ULAN) and the Getty Thesaurus of Geographic Names7 (GTG) provided
by the Getty institute, along with the AAT.

5http://dmoz.org/about.html
6http://www.getty.edu/research/conducting_research/vocabularies/ulan/
7http://www.getty.edu/research/tools/vocabulary/tgn



2. Automated Ontology Enrichment: from Glossaries to Ontologies

In this Section we describe in detail the method for automatic semantic annotation and
ontology enrichment in the cultural heritage domain. Let G be a glossary, t a term in G
and g the corresponding natural language definition (gloss) in G. The main steps of the
algorithm are the following:

1. A pre-processing step (part-of-speech tagging and Named Entity Recognition).
2. Annotation of sentence segments with CIDOC properties.
3. Formalization of glosses.

2.1. Pre-processing

2.1.1. Part-of-speech tagging

Each input gloss is processed with a part-of-speech tagger, TreeTagger8. As a result, for
each gloss G = w1 w2 . . . wn , a string of part-of-speech tags p1, p2, . . . , pn is produced,
where pi ∈ P is the part-of-speech tag chosen by TreeTagger for word wi , and P = { N ,
A, V , J , R, C , P , S, W } is a simplified set of syntactic categories (respectively, nouns,
articles, verbs, adjectives, adverbs, conjunctions, prepositions, symbols, and wh-words).

2.1.2. Named Entity Recognition

We augmented TreeTagger with the ability to capture named entities of locations, organi-
zations, persons, numbers and time expressions. In order to do so, we use regular expres-
sions [7] in a rather standard way, therefore we omit details. When a named entity string
wi wi+1 . . . wi+ j is recognized, it is transformed into a single term and a specific part of
speech denoting the kind of entity is assigned to it (L for cities (e.g. Venice), countries
and continents, T for time and historical periods (e.g. Middle Ages), O for organizations
and persons (e.g. Leonardo Da Vinci), B for numbers, etc.).

2.2. Annotation of Sentence Segments with CIDOC Properties

We now present an algorithm for the annotation of gloss segments with properties
grounded on the CIDOC-CRM relation model. Given a gloss G and a property R9, we
define a relation checker cR taking as input G and producing as output a set FR of frag-
ments of g annotated with the property R: <R>f</R>. The selection of a fragment f
to be included in the set FR is based on different kinds of constraints:

• a part-of-speech constraint p( f , pos-string) matches the part-of-speech (pos)
string associated with the fragment f against a regular expression (pos-string),
specifying the required syntactic structure.

• a lexical constraint l( f , k, lexical-constraint) matches the lemma of the word in
k-th position of f against a regular expression (lexical-constraint), constraining
the lexical conformation of words occurring within the fragment f .

8TreeTagger is available from: http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
9In what follows, we adopt the CIDOC terminology for relations and concepts, i.e. properties and entities,

respectively.



• semantic constraints on domain and range sD( f , semantic-domain) and s( f , k,
semantic-range) are valid, respectively, if the term t and the word in the k-th
position of f match the semantic constraints on domain and range imposed by
the CIDOC, i.e. if there exists at least one sense of t , Ct , and one sense of w, Cw,
such that: Rkind−of ∗ (Cd , Ct ) and Rkind−of ∗ (Cr , Cw)10.

More formally, the annotation process is defined as follows: a relation checker cR
for a property R is a logical expression composed with constraint predicates and logical
connectives, using the following production rules:

cR → sD( f, semantic-domain) ∧ c′

R

c′

R → ¬c′

R |(c′

R ∨ c′

R)|(c′

R ∧ c′

R)

c′

R → p( f, pos-string)|l( f, k, lexical-constraint)|s( f, k, semantic-range)

where f is a variable representing a sentence fragment. Notice that a relation checker
must always specify a semantic constraint sD on the domain of the relation R being
checked on fragment f . Optionally, it must also satisfy a semantic constraint s on the
k-th element of f , the range of R. For example, the following excerpt of the checker for
the is-composed-of relation P46 in CIDOC:

cis-composed-of( f ) = sD( f, physical object#1)

∧p( f, "(V )1(P)2 R?A?C R J V N∗(N )3")

∧l( f, 1, " (̂consisting|composed|comprised|constructed)$")

∧l( f, 2, "of ") ∧ s( f, 3, physical object#1)

reads as follows: “the fragment f is valid if it consists of a verb in the set { consisting,
composed, comprised, constructed }, followed by a preposition ’of’, a possibly empty
number of adverbs, adjectives, verbs and nouns, and terminated by a noun interpretable
as a physical object in the WordNet concept inventory”. The first predicate, sD , requires
that also the term t whose gloss contains f (i.e., its domain) be interpretable as a physical
object.

Notice that some letter in the regular expression specified for the part-of-speech
constraint is enclosed in parentheses. This allows it to identify the relative positions of
words to be matched against lexical and semantic constraints, as shown graphically in
Figure 2.

The checker recognizes, among others, the following fragments (the words whose
part-of-speech tags are enclosed in parentheses are indicated in bold):

• (consisting)1 (of)2 semi-precious (stones)3 (matching part-of-speech string:
(V)1(P)2 J(N)3);

10 Rkind−of ∗ denotes zero, one, or more applications of Rkind−of .



(V)1(P)2R?A?[CRJVN ]*(N )3

(composed)1  (of)2  two or more (negatives)3

part-of-speech string

gloss fragment
Figure 2. Correspondence between parenthesized part-of-speech tags and words in a gloss fragment.

• (composed)1 (of)2 (knots)3 (matching part-of-speech string: (V)1(P)2(N)3).

As a second example, an excerpt of the checker for the consists-of (P45) relation is
the following:

cconsists−of ( f ) = sD( f, physical object#1) ∧ p( f, "(V )1(P)2 A?J N , V C∗(N )3")

∧l( f, 1, " (̂make|do|produce|decorated)$")

∧l( f, 2, " (̂of|by|with)$") ∧ ¬s( f, 3, color#1)

∧¬s( f, 3, activity#1)

∧(s( f, 3, material#1) ∨ s( f, 3, solid#1) ∨ s( f, 3, liquid#1))

recognizing, among others, the following phrases:

• (made)1 (with)2 the red earth pigment (sinopia)3 (matching part-of-speech
string: (V)1(P)2AJNN(N)3);

• (decorated)1 (with)2 red, black, and white (paint)3 (matching part-of-speech
string: (V)1(P)2JJCJ(N)3).

Notice that in both checkers cis−composed−of and cconsists−of semantic constraints
are specified in terms of WordNet sense numbers (material#1, solid#1 and liquid#1),
and can also be negative (¬color#1 and ¬activity#1). The motivation is that CIDOC
constraints are coarse-grained due to the small number of available core concepts: for
example, the property P45 consists-of simply requires that the range belongs to the class
Material (E57). Using WordNet for semantic constraints has two advantages: first, it is
possible to write more fine-grained (and hence more reliable) constraints, second, regular
expressions can be re-used, at least in part, for other domains and ontologies. In fact,
several CIDOC properties are rather general-purpose.

2.3. Formalization of Glosses

The annotations generated in the previous step are the basis for extracting property in-
stances to enrich the CIDOC CRM with a conceptualization of the AAT terms. In gen-
eral, for each gloss g defining a concept Ct , and for each fragment f ∈ FR of g anno-
tated with the property R: <R>f</R>, it is possible to extract one or more property
instances in the form of a triple R(Ct , Cw), where Cw is the concept associated with a
term or multi-word expression w occurring in f (i.e. its language realization) and Ct is
the concept associated with the defined term t in AAT. For example, from the definition
of tatting (a kind of lace) the algorithm automatically annotates the phrase composed of



knots, suggesting that this phrase specifies the range of the is-composed-of property for
the term tatting:

Ris−composed−of (Ctatting , Cknot )

In this property instance, Ctatting is the domain of the property (a term in the AAT
glossary) and Cknot is the range (a specific term in the definition g of tatting). Selecting
the concept associated with the domain is rather straightforward: glossary terms are in
general not ambiguous, and, if they are, we simply use a numbering policy to identify
the appropriate concept. In the example at hand, Ctatting = tatting#1 (the first and only
sense in AAT). Therefore, if Ct matches the domain restrictions in the regular expression
for R, then the domain of the relation is considered to be Ct . Selecting the range of a
relation is instead more complicated. The first problem is to select the correct words in
a fragment f . Only certain words of an annotated gloss fragment can be exploited to
extract the range of a property instance. For example, in the phrase “depiction of fruit,
flowers, and other objects” (from the definition of still life), only fruit, flowers, objects
represent the range of the property instances of kind depicts (P62).

When writing relation checkers, as previously described, we can add markers of
ontological relevance by specifying a predicate r ( f , k) for each relevant position k in
a fragment f . The purpose of these markers is precisely to identify words in f whose
corresponding concepts are in the range of a property. For instance, the checker (1)
cis−composed−of from the previous paragraph is augmented with the conjunction: ∧ r ( f ,
3). We added the predicate r ( f , 3) because the third parenthesis in the part-of-speech
string refers to an ontologically relevant element (i.e. the candidate range of the is-
composed-of property).

The second problem is that words that are candidate ranges can be ambiguous, and
they often are, especially if they do not belong to the domain glossary G. Considering
the previous example of the property depicts, the word fruit is not a term of the AAT
glossary, and it has 3 senses in WordNet (the fruit of a plant, the consequence of some
action, an amount of product). The property depicts, as defined in the CIDOC, simply
requires that the range be of type Entity (E1). Therefore, all the three senses of fruit in
WordNet satisfy this constraint. Whenever the range constraints in a relation checker
do not allow a full disambiguation, we apply the SSI algorithm [5], a word sense dis-
ambiguation algorithm based on structural pattern recognition, available on-line11. The
algorithm is applied to the words belonging to the segment fragment f and is based
on the detection of relevant semantic interconnection patterns between the appropriate
senses. These patterns are extracted from a lexical knowledge base that merges WordNet
with other resources, like word collocations, on-line dictionaries, etc. For example, in
the fragment “depictions of fruit, flowers, and other objects” the following properties are
created for the concept still_life#1:

Rdepicts(still_life#1, fruit#1)
Rdepicts(still_life#1, flower#2)
Rdepicts(still_life#1, object#1)

11SSI is an on-line knowledge-based WSD algorithm accessible from http://lcl.uniroma1.it/ssi. The on-line
version also outputs the detected semantic connections (as those in Figure 3).
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Figure 3. Semantic Interconnections selected by the SSI algorithm when given the word list: “depiction, fruit,
flower, object”.

Some of the semantic patterns supporting this sense selection are shown in Figure 3.
A further possibility is that the range of a relation R is a concept instance. We create

concept instances if the word w extracted from the fragment f is a named entity. For
example, the definition of Venetian lace is annotated as “Refers to needle lace created
<current-or-former-location> in Venice</current-or-former-location> [...]”. As a
result, the following triple is produced:

Rhas−current−or− f ormer−location(Venetian_lace#1, Venice:city#1)

where V enetian_lace#1 is the concept label generated for the term Venetian lace in the
AAT and Venice is an instance of the concept city#1 (city, metropolis, urban center) in
WordNet.

2.4. Taxonomy Validation

The ontology resulting from the methodology presented above can be viewed and vali-
dated with the aid of a web application developed in our laboratory, namely the Taxon-



Figure 4. A screenshot of TAV, a tool for the collaborative validation of taxonomies.

omy VAlidator (TAV)12. In Figure 4 we show a screenshot of the tool: the taxonomy is
shown in the left pane, whereas the right pane shows information about the selected con-
cept. Gloss fragments are highlighted in different colors, one for each distinct semantic
relation. The user can delete and move concepts up and down the taxonomy, and, more
in general, search and edit the ontology. The tool has been extensively used in our ex-
periments to assess the quality of the automatically-acquired taxonomic relations. In [8],
TAV has also been used in a collaborative way in the context of the INTEROP Network
of Excellence. However, the tool does not yet support the validation of non-taxonomic
relations.

12TAV is available from: http://lcl.uniroma1.it/tav



3. Evaluation

Evaluating the quality of ontologies is particularly difficult, due to the fact that there is
no prescribed way to account for a domain of interest (see the Chapter by Dellschaft and
Staab in this volume). In this section we provide an evaluation of the methodology for
taxonomic (Section 3.1) and non-taxonomic relations (Section 3.2). We further describe
an experiment to test the generality of the approach (Section 3.3).

3.1. Evaluation of Taxonomic Relation Learning

As a first experiment, we developed a relation checker for the is-a taxonomic relation
(i.e. hypernymy). We randomly selected 500 glosses from the Visual Works subtree of
the AAT thesaurus, and applied the relation checker to the pre-processed gloss to de-
termine its performance in the identification of the appropriate relation instances. Using
TAV (see Section 2.4), we calculated that the checker correctly identified 474 out of 500
hypernyms, achieving 94.8% accuracy.

In AAT, the hypernym relation is already available, since AAT is a thesaurus, not a
glossary. This allowed us to compare the extracted hypernyms with those already avail-
able in the thesaurus. When applying these patterns to the AAT we found that in 34% of
the cases the automatically extracted hypernym is the same as in AAT, and in 26% of the
cases, either the extracted hypernym is more general than the one defined in AAT, or the
contrary, with respect to the AAT hierarchy. This result quite favorably compares with
available results in the literature (see Section 4). Several kinds of gaps between textual
glosses and manually-defined hypernyms are thoroughly discussed by Ide and Véronis
[9].

3.2. Evaluation of Non-Taxonomic Relation Learning

It is commonly agreed that learning hypernyms is easier than learning non-taxonomic re-
lations. In this Section, we describe our experiments on several kinds of non-taxonomic
semantic relations from CIDOC-CRM. Since the CIDOC-CRM model formalizes a large
number of fine-grained properties (precisely, 141), we selected a subset of properties for
our experiments (reported in Table 3). We wrote a relation checker for each property
in the Table. By applying the checkers in cascade to a gloss g, a set of annotations is
produced. The following is an example of an annotated gloss for the term vedute:

Refers to detailed, largely factual topographical views, especially <has-time-span>18th-century
</has-time-span> Italian paintings, drawings, or prints of cities. The first vedute probably were
<carried-out-by>painted by northern European artists</carried-out-by> who worked <has
former-or-current-location>in Italy</has former-or-current-location><has-time-span>in
the 16th century</has-time-span>. The term refers more generally to any painting, drawing or
print <depicts>representing a landscape or town view </depicts> that is largely topographical
in conception.

Figure 5 shows a more comprehensive graph representation of the outcome for the con-
cepts vedute#1 and maestà#1 (see the gloss in Table 1).
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Figure 5. Extracted conceptualisation (in graphical form) of the terms maestá#1 and vedute#1 (sense numbers
are omitted for clarity).

To evaluate the methodology described in Section 2 we considered 814 glosses from
the Visual Works sub-tree of the AAT thesaurus13, containing a total of 27,925 words.
The authors wrote the relation checkers by tuning them on a subset of 122 glosses, and
tested their generality on the remaining 692. The test set was manually tagged with the
subset of the CIDOC-CRM properties shown in Table 3 by two annotators with adju-
dication (requiring a careful comparison of the two sets of annotations). We performed
two experiments: in the first, we evaluated the gloss annotation task, in the second the
property instance extraction task, i.e. the ability to identify the appropriate domain and
range of a property instance. In the case of the gloss annotation task, for evaluating each
piece of information we adopted the measures of “labeled” precision and recall. These
measures are commonly used to evaluate parse trees obtained by a parser [10] and allow
the rewarding of good partial results. Given a property R, labeled precision is the number
of words annotated correctly with R over the number of words annotated automatically

13The resulting OWL ontology is available at http://lcl.uniroma1.it/tav



Table 3. A subset of the relations from the CIDOC-CRM model.

Property Domain Range Example
P26 - moved to Move Place P26(installation of public sculpture, public

place)
P27 - moved from Move Place P27(removal of cornice pictures, wall)
P53 - has former
or current loca-
tion

Physical Stuff Place P53(fancy pictures, London)

P55 - has current
location

Physical Object Place P55(macrame, Genoa)

P46 - is com-
posed of (is part
of)

Physical Stuff Physical Stuff P46(lace, knot)

P62 - depicts Physical Man-
Made Stuff

Entity P62(still life, fruit)

P4 - has time span Temporal Entity Time Span P4(pattern drawings, Renaissance)
P14 - carried out
by (performed)

Activity Actor P14(blotted line drawings, Andy Warhol)

P92 - brought
into existence by

Persistent Item Beginning of Ex-
istence

P92(aquatints, aquatint process)

P45 - consists of
(incorporated in)

Physical Stuff Material P45(sculpture, stone)

with R, while labeled recall is the number of words annotated correctly with R over the
total number of words manually annotated with R.

Table 4 shows the results obtained by applying the checkers to tag the test set (con-
taining a total number of 1,328 distinct annotations and 5,965 annotated words). Note
that here we are evaluating the ability of the system to assign the correct tag to every
word in a gloss fragment f , according to the appropriate relation checker. We choose
to evaluate the tag assigned to single words rather than to a whole phrase, because each
misalignment would count as a mistake even if the most part of a phrase was tagged
correctly by the automatic annotator. The second experiment consisted in the evaluation
of the property instances extracted. Starting from 1,328 manually annotated fragments
of 692 glosses, the checkers extracted an overall number of 1,101 property instances. We
randomly selected a subset of 160 glosses for evaluation, from which we manually ex-
tracted 344 property instances. Two aspects of the property instance extraction task had
to be assessed:

1. the extraction of the appropriate range words in a gloss, for a given property
instance;

2. the precision and recall in the extraction of the appropriate concepts for both
domain and range of the property instance.

An overall number of 233 property instances were automatically collected by the
checkers, out of which 203 were correct with respect to the first assessment (87.12% pre-
cision (203/233), 59.01% recall (203/344)). In the second evaluation, for each property
instance R(Ct , Cw) we assessed the semantic correctness of both the concepts Ct and
Cw. The appropriateness of the concept Ct chosen for the domain must be evaluated,
since, even if a term t satisfies the semantic constraints of the domain for a property R,
it still can be the case that a fragment f in g does not refer to t, like in the following



Table 4. Precision and Recall of the gloss annotation task.

Property Precision Recall
P26 - moved to 84.95% (79/93) 64.23% (79/123)
P27 - moved from 81.25% (39/48) 78.00% (39/50)
P53 - has former or current location 78.09% (916/1173) 67.80% (916/1351)
P55 - has current location 100.00% (8/8) 100.00% (8/8)
P46 - composed of 87.49% (944/1079) 70.76% (944/1334)
P62 - depicts 94.15% (370/393) 65.26% (370/567)
P4 - has time span 91.93% (547/595) 76.40% (547/716)
P14 - carried out by 91.71% (343/374) 71.91% (343/477)
P92 - brought into existence 89.54% (471/526) 62.72% (471/751)
P45 - consists of 74.67% (398/533) 57.60% (398/691)

Average performance 85.34% (4115/4822) 67.81% (4115/6068)

example:

pastels (visual works) – Works of art, typically on a paper or vellum support, to which
designs are applied using crayons made of ground pigment held together with a binder,
typically oil or water and gum.

In this example, ground pigment refers to crayons (not to pastels). The evaluation of the
semantic correctness of the domain and range of the property instances extracted led to
the final figures of 81.11% (189/233) precision and 54.94% (189/344) recall, due to 9
errors in the choice of Ct as a domain for an instance R(Ct , Cw) and 5 errors in the se-
mantic disambiguation of range words w not appearing in AAT, but encoded in WordNet
(as described in the last part of Section 3).

3.3. Evaluating the Generality of the Approach

A final experiment was performed to evaluate the generality of the approach presented
in this chapter.

As already remarked, the same procedure used for annotating the glosses of a the-
saurus can be used to annotate web documents. Our objective in this last experiment was
to:

• Evaluate the ability of the system to annotate fragments of web documents with
CIDOC relations;

• Evaluate the domain dependency of the relation checkers, by letting the system
annotate documents not in the cultural heritage domain.

We selected 5 documents at random from an historical archive and an artist’s biogra-
phies archive14 including about 6,000 words in total, about 5,000 of which in the histor-
ical domain. We then ran the automatic annotation procedure on these documents and
we evaluated the result, using the same criteria as in Table 4. Table 5 presents the results
of the experiment. Only 5 out of 10 properties had at least one instance in the analysed
documents. It is remarkable that, especially for the less domain-dependent properties,

14http://historicaltextarchive.com and http://www.artnet.com/library



Table 5. Precision and Recall of a web document annotation task.

Property Precision Recall
P53 - has former or current location 79.84% (198/248) 77.95% (198/254)
P46 - composed of 83.58% (112/134) 96.55% (112/116)
P4 - has time span 78.32% (112/143) 50.68% (112/221)
P14 - carried out by 60.61% (40/66) - -
P45 - consists of 85.71% (6/7) 37.50% (6/16)
Average performance 78.26% (468/598) 77.10% (468/607)

the precision and recall of the algorithm is still high, thus showing the generality of the
method. Notice that the historical documents influenced the result much more than the
artist biographies, because of their reduced size.

In Table 5 the recall of P14 (carried out by) is omitted. This is motivated by the fact
that this property, in a generic domain, corresponds to the agent relation (“an active ani-
mate entity that voluntarily initiates an action”15), while in the cultural heritage domain
it has a more narrow interpretation (an example of this relation in the CIDOC handbook
is: “the painting of the Sistine Chapel (E7) was carried out by Michelangelo Buonarroti
(E21) in the role of master craftsman (E55)”). However, the domain and range restric-
tions for P14 correspond to an agent relation, therefore, in a generic domain, one should
annotate as “carried out by” almost any verb phrase with the subject (including pronouns
and anaphoric references) in the class Human.

4. Related Work and Conclusions

In this chapter we presented a method, based on the use of regular expressions, to auto-
matically annotate the glosses of a thesaurus, the AAT, with the properties (conceptual
relations) of a core ontology, the CIDOC-CRM. The annotated glosses are converted into
OWL concept descriptions and used to enrich the CIDOC.

Several methods for ontology population and semantic annotation described in lit-
erature (e.g. [11,12,13,14]) use regular expressions to identify named entities, i.e. con-
cept instances. Other methods extract hypernym relations using syntactic and lexical pat-
terns [15,16] or supervised clustering techniques [17]. Evaluation of hypernymy learning
methods is usually performed by a restricted team of experts, on a limited set of terms,
with hardly comparable results, usually well over 40% error rate [18,19]. When the eval-
uation is an attempt to replicate the structure of an already existing taxonomy, the error
rate is over 50-60% [20].

Semantic annotation with relations other than hypernymy are surveyed in [21], and
again, regular expressions are a commonly used technique. Reeve and Han’s survey
presents a table to compare systems performance, but in absence of well-established data
sets of annotated documents, a fair comparison among the various techniques is not pos-
sible. Similarly, comparing the performance of our system with those surveyed in [21] is
not particularly meaningful.

As far as the adopted ontology learning technique is concerned, in our work we auto-
matically formalize concepts (not simply instances or taxonomies, as in most literature)

15http://www.jfsowa.com/ontology/thematic.htm



compliant with the semantics of a well-established core ontology, the CIDOC (the inter-
ested reader can refer to the Chapters by Maynard et al. and by Tanev and Magnini in
this volume for ontology population techniques). In contrast, the entire area of Informa-
tion Extraction deals with the extensional acquisition of concepts (i.e. concept instances),
rather than with an intensional formalization.

The method presented in this chapter is unsupervised, in the sense that it does not
need manual annotation of a significant fragment of text. However, it relies on a set
of manually written regular expressions, based on lexical, part-of-speech, and semantic
constraints. The structure of regular expressions is rather more complex than in similar
works using regular expressions, especially for the use of automatically verified seman-
tic constraints. The issue is however how much these expressions generalize to other
domains:

1. A first problem is the availability of lexical and semantic resources used by the al-
gorithm. The most critical requirement of the method is the availability of sound
core ontologies, which hopefully will be produced by other web communities
stimulated by the recent success of CIDOC CRM. On the other side, in absence
of an agreed conceptual reference model, no large scale annotation is possi-
ble at all. As for the other resources used by our algorithm, glossaries, thesaura
and gazetteers are widely available in “mature” domains. If not, we developed
a methodology, described in [22], to automatically create a glossary in novel
domains (e.g. enterprise interoperability), extracting definition sentences from
domain-relevant documents and authoritative web sites.

2. The second problem is about the generality of regular expressions. Clearly, the
relation checkers that we defined are tuned on the CIDOC properties, however
many of these properties are rather general (especially locative and temporal re-
lations) and could easily apply to other domains, as demonstrated by the experi-
ment on automatic annotation of historical archives in Table 4. Furthermore, the
method used to verify semantic constraints is fully general, since it is based on
WordNet and a general-purpose, untrained semantic disambiguation algorithm,
SSI.

Finally, the authors are convinced that automatic pattern-learning methods often re-
quire non-trivial human effort just like manual methods (because of the need of anno-
tated data, careful parameter setting, etc.), and furthermore they are unable to combine in
a non-trivial way different types of features (e.g. lexical, syntactic, semantic). A practi-
cal example is the full list of automatically learned hypernymy-seeker patterns provided
in [16]. The complexity of these patterns is certainly lower than the regular expression
structures used in this work, and many of them are rather intuitive, they could have easily
written by hand. However, we believe that our method can be automated to some limited
degree (for example, semantic constraints can be learned automatically), a research line
we are currently exploring.
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Abstract. Manual ontology building in the biomedical domain is a work-intensive
task requiring the participation of both domain and knowledge representation ex-
perts. The representation of biomedical knowledge has been found of great use
for biomedical text mining and integration of biomedical data. In this chapter we
present an unsupervised method for learning arbitrary semantic relations between
ontological concepts in the molecular biology domain. The method uses the GE-
NIA corpus and ontology to learn relations between annotated named-entities by
means of several standard natural language processing techniques. An in-depth
analysis of the output evaluates the accuracy of the model and its potentials for text
mining and ontology building applications. The proposed learning method does
not require domain-specific optimization or tuning and can be straightforwardly
applied to arbitrary domains, provided the basic processing components exist.
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1. Introduction

Bioinformatics is one of the most active fields for text mining applications due to the
fast rate of growth of digital document collections such as Medline 2 where more than
500,000 publications are added every year. The ultimate goal of text mining in bioinfor-
matics is the automatic discovery of new knowledge about complex biomedical scientific
problems. As an example, Swanson & Smalheiser [1] discovered a previously unnoticed
correlation between migraine and magnesium by comparing complementary biomedical
literatures.

1Corresponding Author: Yahoo! Research Barcelona, Ocata 1, 08003, Barcelona, Catalunya, Spain; E-mail:
massi@yahoo-inc.com.

2Pubmed/Medline: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed



Current approaches to text mining are mainly based on the application of natural
language processing (NLP) and machine learning. Text mining concerns the acquisition
of relevant information contained within documents by means of information extraction
methods. The starting point is a conceptualization of the domain; e.g., a domain ontology,
which specifies relevant concepts as well as semantic relations, e.g., is-a, part-of, and
more complex relations encoding important interactions between concepts. Given the
domain ontology, information extraction techniques can be applied to recognize where,
in the documents, concepts are instantiated by specific entities, and where important
interactions are expressed by linguistic structures.

Several ontologies which define concepts and structural semantic relations (e.g., is-
a) are available. However, there is a need for ontologies that specify relevant arbitrary
semantic relations between concepts. In other words, information about fundamental
attributes of concepts and patterns of interactions between concepts, which constitutes
the basic “world-knowledge” relative to the specific domain. For example, that “Cell
express-the-receptor-for Protein” or that “Virus replicate-in Cell”. In this chapter we dis-
cuss a method for enriching an existing ontology with arbitrary semantic relations which
are strongly associated with ordered pairs of concepts. The method was originally intro-
duced in [2], here we present the original formulation of the learning method and ex-
perimental evaluation, and present additional discussion also concerning further devel-
opments of our method.

The method concerns the implementation of an unsupervised system that combines
an array of off-the-shelf NLP techniques such as syntactic parsing, collocation extrac-
tion and selectional restriction learning. The system was applied to a corpus of molec-
ular biology literature, the GENIA corpus [3], and generated a list of labeled binary re-
lations between pairs of GENIA ontology concepts. An in-depth analysis of the learned
templates shows that the model, characterized by a very simple architecture, has good
accuracy and can be easily applied in text mining and ontology building applications.

In the next section we describe the problem of learning relations from text and re-
lated work. In Section 3 we describe our system and the data used in our study in detail.
In Section 4 we discuss the evaluation of the system’s output.

2. Problem statement and related work

The GENIA ontology contains concepts related to gene expression and its regulation,
including cell signaling reactions, proteins, DNA, and RNA. Much work in bioinfor-
matics has focused on named-entity recognition (NER), or information extraction (IE)3,
where the task is the identification of sequences of words that are instances of a set of
concepts. As an example, one would like to recognize that “NS-Meg cells”, “mRNA”
and “EPO receptor” are, respectively, instances of the GENIA classes “Cell_line”,
“RNA_family_or_group” and “Protein_molecule” in Example 1 below:

(1) “Untreated [Cell_line NS-Meg cells] expressed [RNA_family_or_group mRNA] for
the [Protein_molecule EPO receptor]”

3The task of information extraction should in principle focus more on the identification of relations involving
entities. However, as Rosario & Hearst [4] point out much of the work in this area has in fact addressed
primarily the entity detection problem.



A natural extension of NER is the extraction of relations between entities. NER and
relation extraction can provide a better support for mining systems; e.g., patterns of en-
tities and relations could be compared across document collections to discover new in-
formative pieces of evidence concerning previously overlooked phenomena. Currently
most work on relation extraction in bioinformatics applies hand-built rule-based extrac-
tion patterns; e.g., Friedman et al. [5] on identifying molecular pathways and Šarić et
al. [6] on finding information about protein interactions by using a manually-built ontol-
ogy similar to that described in [7]. One limitation of rule-based information extraction
is that systems tend to have good precision but low recall. Machine learning-oriented
work has focused on extracting manually-compiled lists of target relations; e.g., Rosario
and Hearst [4] address the relation extraction problem as an extension of NER and use
sequence learning methods to recognize instances of a set of 6 manually predefined rela-
tions about “Diseases” and “Treatments”. These systems yield good precision and recall
but still requires sets of relations between classes be defined first.

Yet another problem which deals with semantic relations is that addressed by Craven
and Kumlien [8] who present a model for finding extraction patterns for 5 binary rela-
tions involving proteins. A similar work is that of Pustejovsky et al. [9] on automatically
extracting “inhibit” relations. Semantic relations have been used as templates, or guiding
principles, for the generation of database schemata [10]. Another application of onto-
logical relations is that of consistency checking of data in molecular biology databases
to individuate errors in the knowledge base (e.g., by checking the consistency of the
arguments) or to align different databases.

Text mining systems involving relations require predefined sets of relations that have
to be manually encoded, a job which is complex, expensive and tedious, and that as such
can only guarantee narrow coverage – typically a handful of relations and one pair of
classes, and thus neglect informative and useful relations. The goal of our system is to
automatically generate all relevant relations found in a corpus between all ontological
concepts defined in the ontology. Such systems would also be valuable to ontologists
since ontology building and evaluation are becoming more and more automatized activ-
ities and most of the corpus-based work has focused only on structural relations such as
is-a and part-of [11,12]. Another related problem is that of “ontologizing” automatically
harvested semantic relations, i.e., to link them to existing semantic repositories. Pantel
and Pennacchiotti [13], in this same volume, present an overview of the area and propose
an accurate method for this task.

Our approach is related to those of Reinberger et al. [14] and Rinaldi et al. [15].
Both works differ with ours in the following aspects. First, they both rely on heuristic
means to identify relations, Reinberger et al. focus on subject-verb-object patterns, while
the method of Rinaldi et al. identifies relations by means of manually-created patterns.
Our method is not limited to a pre-defined set of patterns, and propose a simple and clear
way for representing, ranking and selecting arbitrary relations. Secondly, we present a
simple and principled solution to assigning a score to candidate relations and filtering
out unreliable ones by means of hypothesis testing. Finally, we investigate a method
for generalizing the relations arguments to their superordinate classes based on corpus
evidence using techniques for learning selectional preferences. A closer comparison of
our method and Reinberger et al.’s, which describe a similar evaluation, can be found in
Section 4.
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Figure 1. Overview of the proposed relation learning system.

3. Learning relations from text

3.1. Overview

Figure 1 illustrates schematically our method. The system for learning relations takes as
input a corpus and a set of classes. A basic pre-processing step involves sentence split-
ting, tokenization, PoS tagging and lemmatization. The next step consists in identifying
entity mentions in the documents. Since the focus of the experiments presented in this
paper was the relations selection process we used the GENIA corpus in which named-
entities corresponding to ontology concepts have been manually identified4. However,
suitable corpus data can also be generated automatically using an appropriate NER sys-
tem and basic NLP tools. The corpus data is then parsed so that relations can be de-
fined and extracted based on the syntactic structure of the sentences. In this paper we
used a constituent syntactic parser [16], however for efficiency and simplicity, a viable
alternative would be to use directly a dependency parser since dependency treebanks
are nowadays available in several languages [17]. Using the dependency structure of the
sentence the methods generates a set of candidate relations which are assigned a score.
The relations for which there is strong supporting evidence in the corpus are selected and
can be added to the original ontology. Thus the model outputs a set of templates that in-
volve pairs of GENIA ontology classes and a semantic relation. For example, a template
might be “Virus infect Cell”. In the remaining of this section we illustrate the resources
used as input to our system, the GENIA corpus and ontology, and describe the system
components in detail.

3.2. Corpus and ontology concepts

The GENIA ontology was built to model cell-signaling reactions in humans with the goal
of supporting information extraction systems. It consists of a taxonomy of 46 nominal
concepts with underspecified taxonomic relations, see Figure 2. We refer to concepts
also with the terms “label” or “tag”. The ontology was used to semantically annotate

4The previous pre-processing steps, sentence segmentation, PoS tagging, etc., have been carried out as well.
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Figure 2. A small fraction of the GENIA ontology. Continuous lines represent unspecified taxonomic rela-
tions, dashed lines represent other regions.

biological entities in the GENIA corpus. We used version G3.02 consisting of 2,000
articles, 18,546 sentences, roughly half a million word tokens, and 36 types of labels.
This corpus has complex annotations for disjunctive/conjunctive entities, for cases such
as “erythroid, myeloid and lymphoid cell types”. We excluded sentences that contained
only instances of complex embedded conjunctions/disjunctions and also excessively long
sentences (more than 100 words). The final number of sentences was 18,333 (484,005
word tokens, 91,387 tags). Many tags have nested structures; e.g. “[Other_name [DNA IL-2
gene] expression]”. For these cases we only considered the innermost entities, although
the external labels contain useful information and should eventually be considered.

One potential drawback of the GENIA ontology is the relatively small number of bi-
ological concepts and their coarse granularity which causes groups of similar but distinct
entities to be assigned to the same class. Some relations fit very well to subsets of the
entities of the related concepts, whereas they don’t fit well for other entities of the same
concept. For example, the concept “DNA_domain_or_region” contains sequences with
given start and end positions, as well as promoters, genes, enhancers, and the like. Even
if promoters, genes, and enhancers are pieces of sequences too (with start and end posi-
tions), they also are functional descriptions of sequences. Therefore, different statements
can be made about such kinds of DNA domains or regions and (pure) sequences. The re-
lation “DNA_domain_or_region encodes Protein_molecule” makes sense for genes, but
not for enhancers, and may make sense or not for (pure) sequences, depending on their
(unknown) function. However, suitable annotated resources are scarce, and in this re-
spect the GENIA corpus is unique in that it provides extensive named-entity annotations
which can be used to train appropriate NER systems (cf. [18]). Recent work on exten-
sions and refinements of the GENIA ontology, such as xGENIA [19] may lead to aug-
menting the resolution of the output of system like ours, given the extended annotations
and classifications of concepts and relations.

3.3. Relations as dependency paths

The 18,333 sentences were parsed with a statistical constituent parser [16].5 Since we
are interested in relations that connect entities as chunks we want to avoid that the parser

5It took roughly three hours on a Pentium 4 machine to parse the target sentences.
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Figure 3. Parse tree for the sentence of Example 1. Entities are substituted with their tags. Phrases are la-
beled with their syntactic heads. The dependency graph is depicted with dashed directed edges pointing to the
governed element.

analyzes an entity that is split among different phrases. This can happen because entity
names can be fairly long, complex and contain words that are unknown to the parser. To
avoid this problem we substituted the entity tags for the actual named-entities; the result
can be seen in Figure 3 which shows the substitution and the relative parse tree for the
sentence of Example 1. Trees obtained in this way are simpler and don’t split entities
across phrases. Alternatively, if it is important to retrieve the internal structure of the
entities as well, the detected entities might be used as soft features rather than atomic
tokens, which can help the parser in dealing with unknown words (e.g., as in [20]).

For each tree we generated a dependency graph: each word6 is associated with one
governor, defined as the syntactic head7 of the phrase closest to the word that differs
from the word itself. For example, in Figure 3 “Cell_line” is governed by “express”,
while “Protein_molecule” is governed by the preposition “for”.

Similarly to what has been proposed for the task of recognizing paraphrase sen-
tences [22], the dependency structure can be used to formalize the notion of semantic
relation between two entities. A relation r between two entities ci and c j in a tree is the
path between ci and c j following the dependency relations. As an example, in Figure 3
the path between “Cell_line” and “Protein_molecule” is “←express→for→”. There is
a path for every pair of entities in the tree. Paths can be considered from both directions,
since the reverse of a path from A to B is a path from B to A. A large number of dif-
ferent patterns can be extracted, overall we found 172,446 paths in the dataset. For the
sake of interpretability of the system’s outcome we focused on a subset of these patterns.
We selected paths from ci to c j where j > i and the pivotal element, the word with
no incoming arrows, is a verb v. In addition we imposed the following constraints: ci is
governed by v under an S phrase (i.e., is v’s surface subject, SUBJ), e.g., “Cell_line” in
Figure 3; and one of the following six constraints holds:

1. c j is governed by v under a VP (i.e., is v’s direct object, DIR_OBJ), e.g.,
“RNA_family_or_group” in Figure 3;

2. c j is governed by v under a PP (i.e., is v’s indirect object, IND_OBJ), e.g. “Pro-
tein_molecule” in Figure 3;

6Morphologically simplified with the “morph” function from the WordNet library [21], plus morphological
simplifications from UMLS.

7The word whose syntactic category determines the syntactic category of the phrase; e.g., a verb for a verb
phrase (VP), a noun for a noun phrase (NP), etc.



3. c j is governed by v’s direct object noun (i.e., is a modifier of the direct object,
DIR_OBJ_MOD), e.g. “Virus” in “... influenced Virus replication”;

4. c j is governed by v’s indirect object noun (i.e., is the indirect object’s mod-
ifier, IND_OBJ_MOD), e.g., “Protein_molecule” in “..was induced by Pro-
tein_molecule stimulation”;

5. c j is governed by a PP which modifies the direct object (DIR_OBJ_MOD_PP);
e.g., “Protein_molecule” in “.. induce overproduction of Protein_molecule”;

6. c j is governed by a PP which modifies the indirect object (IND_OBJ_MOD_PP);
e.g., “Lipid” in “..transcribed upon activation with Lipid”.

In the sentence of the previous example, see Figure 3, we identify two good patterns:
“SUBJ←express→DIR_OBJ” between “Cell_line” and “RNA_family_or_group”, and
“SUBJ←express→for→IND_OBJ”, between “Cell_line” and “Protein_molecule”. It is
important to notice that this selection is only necessary for evaluation purposes. However,
all relations are retrieved and scored and could be used for mining purposes, although
they might not be easy to interpret by inspection. Overall we found 7,189 instances of
such relations distributed as follows:

Type Counts RelFreq
SUBJ-DIR_OBJ 1,746 0.243
SUBJ-IND_OBJ 1,572 0.219
SUBJ-DIR_OBJ_MOD_PP 1,156 0.161
SUBJ-DIR_OBJ_MOD 943 0.131
SUBJ-IND_OBJ_MOD_PP 911 0.127
SUBJ-IND_OBJ_MOD 861 0.120

The data contained 485 types of entity pairs, 3,573 types of patterns and 5,606 entity
pair-pattern types.

3.4. Ranking and selection of relations

Let us take A to be an ordered pair of GENIA classes; e.g. A = (Protein_domain,
DNA_domain_or_region), and B to be a pattern; e.g., B = SUBJ←bind→DIR_OBJ. Our
goal is to find relations strongly associated with ordered pairs of classes, i.e., bi-grams
AB. This problem is similar to finding collocations; e.g., multi-word expressions such
as ”real estate”, which form idiomatic phrases. Accordingly the simplest method would
be to select the most frequent bi-grams. However many bi-grams are frequent because
either A or B, or both, are frequent; e.g., SUBJ←induce→DIR_OBJ is among the most
frequent pattern for 37 different pairs. Since high frequency can be accidental and, ad-
ditionally, the method doesn’t provide a natural way for distinguishing relevant from
irrelevant bi-grams, we use instead a simple statistical method.

As with collocations a better approach is to estimate if A and B occur together more
often than at chance. One formulates a null hypothesis H0 that A and B do not occur
together more frequently than expected at chance. Using corpus statistics the probability
of P(AB), under H0, is computed and H0 is rejected if P(AB) is beneath the signifi-
cance level. For this purpose we used a chi-square test. For each observed bi-gram we
created a contingency table of the frequencies AB, ¬AB, A¬B, and ¬A¬B; e.g., for
A = Protein_molecule-DNA_domain_or_region, and B = SUBJ←bind→DIR_OBJ, the
table computed from the corpus contains the values 6, 161, 24 and 6,998 (for AB, ¬AB,
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Figure 4. The “Virus” concept with the selected and generalized relations, and related concepts, in the enriched
ontology.

A¬B, and ¬A¬B, respectively). The chi-square test compares the observed frequencies
vs. the frequencies expected under H0. Together with the test we use the log-likelihood
chi-squared statistic: 8

G2
= 2

∑
i, j

oi j log
oi j

ei j
(2)

where i and j range over the rows and columns of the contingency table, and the ex-
pected frequencies are computed off the marginal frequencies in the table. Hence the
value generated by the statistic can be used as a score to rank the candidate relations, and
a principled way of selecting the most reliable ones. In the previous example G2 is equal
to 16.43, which is above the critical value 7.88 for α = 0.005, hence B is accepted as
a relevant pattern for A. The following table shows the three highest ranked class pairs
for pattern B. There is strong evidence that entities of the protein type tend to bind DNA
locations, which is a reasonable conclusion:

(3)

B = SUBJ←bind→DIR_OBJ
A G2 Select
Protein_domain-DNA_domain_or_region 16.43 YES
Protein_family_or_group-DNA_d._or_r. 13.67 YES
Virus-Protein_molecule 7.84 NO

In our study we used α = 0.005. In general, α is an adjustable parameter which might
be set on held-out data in order to maximize an objective function. We also ignored bi-
grams occurring less than 2 times and pairs A, patterns B, occurring less than 4 times.
Overall there are 487 suitable AB pairs, 287 (58.6%) have a value for G2 higher than α.

3.5. Generalization of relations

Relations can share similar arguments as in the case of “bind” in Example (3) above,
where, in both significant cases, the direct object is “DNA domain or region” while the

8Dunning [23] argues that G2 is more appropriate than Pearson’s X2 with sparse data; here they produce
similar rankings.



subject is some kind of protein. This can be evidence that, in fact, there is a more general
relation holding between super-ordinates of the arguments found after relation ranking
and selection. Thus, it is desirable, when possible, to learn more general relations such as
“Protein SUBJ←bind→DIR_OBJ DNA”, because the learned ontology is more compact
and has greater generalization power, i.e., relations apply to more entities. Finding such
generalizations is similar to learning selectional restrictions of predicates, that is, the
preferences that predicates place on the semantic category of their arguments; e.g., that
“eat” prefers objects that are “foods”. Several methods have been proposed for learning
such restrictions; e.g., see [24] for an overview. We used the method proposed in [25]
which is both accurate and simple, and is also based on hypothesis testing and frequency
estimates related to those used in the relation selection step . We used the taxonomy
defined in the GENIA ontology, see Figure 2, to generalize arguments of the learned
patterns.9

Clark and Weir define an algorithm, top(c, r, s), which (adjusting the terminology
to our case) takes as input a relation r , a class c and a syntactic slot s, and returns a
class c′ which is c itself or one of its ancestors, whichever provides the best general-
ization for p(r |c, s). The method uses the chi-squared test to check if the probability
p(r |c, s) is significantly different from p(r |c′, s), where c′ is the parent of c. If this is
false then p(r |c′, s) is supposed to provide a good approximation for p(r |c, s), which
is interpreted as evidence that (r, s) holds for c′ as well. The procedure is iteratively ap-
plied until a significant difference is found. The last class considered is the output of the
procedure, the concept that best summarizes the class that r “selects” in syntactic slot s.
We computed the frequencies of patterns involving superordinate classes summing over
the frequencies, from the GENIA corpus, of all descendants of that class for that pattern.

For each relation r , slot s and class c, learned in the selection stage, we used
Clark and Weir’s method to map c to top(c, r, s). We again used the G2 statistic
and the same α value of 0.005. Using these maps we generalized, when possible,
the original 287 patterns learned. The outcome of this process was a set of 240 tem-
plates, 153 of which had generalized arguments. As an example, the templates above
“Protein_domain binds DNA_domain_or_region” and “Protein_family_or_group binds
DNA_domain_or_region” are mapped to the generalized template “Protein binds DNA”.
Figure 4 depicts the set of labeled relations the concept “Virus” is involved in, and the re-
spective paired concepts, after relation selection and generalization. As the figure shows
relations can involve generalized concepts; e.g., the right argument of the template“Virus
transactivate DNA” involves DNA, an internal node in the GENIA ontology (see Fig-
ure 2), which has been generalized automatically.

In [26] Cimiano et al. investigate further the issue of determining the appropriate
level of abstraction for binary relations extracted from a corpus and present a detailed
review of the existing techniques, suggesting also a new analysis of different evaluation
measures.

9Four of the 36 GENIA corpus class labels, namely, “DNA_substructure”, “DNA_N/A”,
“RNA_substructure” and “RNA_N/A”, have no entries in the GENIA ontology, we used them as subordinates
of ” DNA” and “RNA”, consistently with “Protein_N/A” and “Protein_substructure” which in the ontology are
subordinates of “Protein”.



4. Evaluation

We discuss now an evaluation of the model carried out by a biologist and an ontologist,
both familiar with GENIA. The biological evaluation focuses mainly on the precision of
the system; namely, the percentage of all relations selected by the model that, according
to the biologist, express correct biological interactions between the arguments of the
relation. From the ontological perspective we analyze semantic aspects of the relations,
mainly the consistency with the GENIA classes.

4.1. Biological evaluation

The output of the relation selection process (see Section 3.4) is a set of 287 patterns,
composed of an ordered pair of classes and a semantic relation. 91 of these patterns,
involving in one or both arguments the class “Other_name”, were impossible to evalu-
ate and excluded altogether. This GENIA class is a placeholder for very different sorts
of subconcepts, which have not yet been partitioned and structured. Relations involving
“Other_name” (e.g., “treat”) might prove correct for a subset of the entities tagged with
this label (e.g., “inflammation”) but false for a different subset (e.g., “gene expression”).
Of the remaining 196 patterns 76.5% (150) are correct, i.e., express valid biological facts
such as “Protein_molecule induce-phosphorylation-of Protein_molecule”, while 23.5%
(43) are incorrect, e.g. “Protein inhibit-expression-of Lipid”. Evaluation involved the ex-
haustive inspection of the original sentences to verify the intended meaning of the pattern
and spot recurring types of errors. Half of the mistakes (22) depend on how we handle
coordination, which causes part of the coordinated structure to be included in the rela-
tion. For example, the first two DNA entities in the noun phrase “DNA, DNA, and DNA”
are governed by the head DNA rather than by, say, the main verb. Thus wrong relations
such as “Protein bind-DNA DNA” are generated in addition to good ones such as “Pro-
tein bind DNA”. Fixing this problem would involve either a more sophisticated handling
of coordinated structures or, more simply, filtering out redundant relations in a post pro-
cessing step. Finally, 5 errors involved the class “Other_name” embedded somewhere
within the relation10, suggesting again generalizations that cannot be judged with enough
confidence. The remaining errors are probably due to sparse data problems. In this re-
spect it would probably be beneficial to apply a NER system to a larger unannotated cor-
pus to produce more data and consequently more reliable distributional information. Ar-
guably the use of automatically generated entity labels would introduce errors and noise
in the process, however it is reasonable to expect that significantly larger amounts of data
would generate larger numbers of good relations at the top of the relation rankings.

Finally, we notice that, although the GENIA ontology was intended to be a model of
cell signaling reactions, it lacks important concepts such as signaling pathway. This leads
to some errors as in the following case: "An intact TCR signaling pathway is required for
p95vav to function.". In this case we derive the relation: “Protein_molecule is-required-
for Protein_molecule” since only “TCR” is annotated as “Protein_molecule” neglecting
signaling pathway.

To the best of our knowledge we can compare these results with one other study.
Reinberger et al. [14] evaluate – also by means of experts – 165 subject-verb-object

10In other words, the label “Other_name” was found as part of the relation itself as in “Protein bind-
Other_name DNA”.



relations, extracted from data similar to ours11 but with a different approach. They report
an accuracy of 42% correct relations. Their method differs from ours in three respects:
relations are extracted between nouns rather than entities (i.e., NER is not considered),
a shallow parser is used instead of a full parser, and relations are selected by frequency
rather than by hypothesis testing. A direct comparison of the methods is not feasible.
However, if the difference in accuracy reflects the better quality of our method this is
likely to depend on any, or on a combination, of those three factors.

As far as the generalization of relations is concerned we first removed all re-
lations involving “Other_name” (40 out of 153), which do not have super-ordinates
nor subordinates, and evaluated if the remaining 113 generalized patterns were cor-
rect. Of these, 60 (53.1%) provided valid generalizations; e.g., “Protein_molecule
induce-phosphorylation-of Amino_acid_monomer” is mapped to “Protein induce-
phosphorylation-of Amino_acid_monomer”. Excluding mistakes caused by the fact
that the original relation is incorrect, over-generalization seems mainly due to the
fact that the taxonomy of the GENIA ontology is not simply a is-a hierarchy;
e.g., “DNA_substructure” is not a kind of “DNA”, and “Protein” is not a kind of
“Amino_acid”. Generalizations such as selectional restrictions instead seem to hold
mainly between classes that share a relation of inclusion. In order to support this kind of
inference the structural relations between GENIA classes would need to be clarified.

4.2. Ontological assessment

The 150 patterns validated by the expert are potential new components of the ontol-
ogy. We compiled GENIA, including the newly learned relations, in OWL (Ontology
Web Language [27]) to assess its properties with ontology engineering tools. Ignoring
“Other_name”, the GENIA taxonomy branches from two root classes: “Source” and
“Substance”. GENIA classes, by design, tend to be mutually exclusive, meaning that they
should be logically disjoint. Our main objective is to verify the degree to which the new
relations adhere to this principle.

To analyze the relations we map, “Source” and “Substance” to equivalent classes of
another more general ontology. Ideally, the alignment should involve an ontology of the
same domain such as TAMBIS [28]. Unfortunately TAMBIS scatters the subordinates of
“Source” (organisms, cells, etc.) across different branches, while “Substance” in TAM-
BIS does not cover protein and nucleic acid-related subordinates of “Substance” in GE-
NIA.12 In GENIA substances are classified according to their chemical features rather
than biological role, while sources are biological locations where substances are found
and their reactions take place. This distinction assumes a stacking of ontology layers
within the physical domain where the biological is superimposed to the chemical level.
This feature of GENIA makes it suitable for alignment with DOLCE-Lite-Plus (DLP,
http://dolce.semanticweb.org), a simplified translation of the DOLCE foundational on-
tology [29]. DLP specifies a suitable distinction between “chemical” and “biological”
objects. It features about 200 classes, 150 relations and 500 axioms and has been used in
various domains including bio-medicine [30].

We aligned “Source” and “Substance” to the biological and chemical classes in DLP.
There are 78 types of relations out of 150, 58% of them (45) occur only with one pair of

11The SwissProt corpus, 13 million words of Medline abstracts related to genes and proteins.
12Notice that we are not questioning the quality of TAMBIS, but only its fitness for aligning GENIA.



classes, i.e., are monosemous, while 33 have multiple domains or ranges, i.e., are polyse-
mous. Since the root classes of GENIA are disjoint we checked if there are polysemous
relations whose domain or range mix up subclasses of “Source” with subclasses of “Sub-
stance”. Such relations might not imply logical inconsistency but raise doubts because
they suggest the possibility that a class of entities emerged from the data, which is the
union of two classes that by definition should be disjoint. Interestingly, there are only
4 such relations out of 78 (5.1%); e.g., “encode”, whose subject can be either “Virus”
or “DNA”. In biology, DNA encodes a protein, but biologists sometimes use the verb
"metonymically". By saying that a virus encodes a protein, they actually mean that a
virus’ genome contains DNA that encodes a protein. The small number of such cases
suggests that relations emerging from corpus data are consistent with the most general
classes defined in GENIA.

At a finer semantic level relations are composed as follows: 54 (68%) are even-
tive, they encode a conceptualization of chemical reactions as events taking place in
biological sources; 81% of the relations between biological and chemical classes are
eventive, supporting the claim made in GENIA that biologically relevant chemical re-
actions involve both a biological and chemical object. Non-eventive relations have ei-
ther a structural (e.g. “Consist-of”), locative (“Located-in”), or epistemological meaning
(“identified-as”).

5. Discussion and conclusion

In this chapter we presented a study on learning semantic relations from text in the do-
main of molecular biology. We proposed a system, see Figure 1, which takes as input
a corpus of documents and a set of concepts, applies several language processing steps
and generates a set of candidate relations which are then ranked, selected and possibly
generalized by means of corpus statistics and hypothesis testing.

The method is based on the idea that relations can be represented as syntactic depen-
dency paths between an ordered pair of named-entities. The most complex steps of our
method thus involve parsing and entity detection. In this work we used a full constituent
parser, however relations can be straightforwardly extracted directly from dependency
trees for which accurate linear time parsers exist (e.g., see [20]). The other relatively
complex step involves entity detection, for which also accurate linear time algorithms ex-
ist; e.g., based on discriminative Hidden Markov Models. Therefore the pre-processing
computational cost of this dependency/entity-based approach is quite reasonable, while
for the other necessary NLP steps there exist good publicly available resources for En-
glish and also several other languages.

We empirically investigated our method using the GENIA corpus and ontology The
results of a biological and ontological analysis of the acquired relations are positive and
promising. Arguably this type of method works well if the goal is precision rather than
recall. That is, by imposing sufficiently conservative thresholds it is likely that the top
ranked results will be accurate. However, other aspects need to be addressed beyond
precision, in particular it would be important to evaluate the recall, i.e., the coverage,
of the system. This task is problematic because it requires, in principle, considering a
very large number of discarded relations. Other aspects that would be interesting to eval-
uate are the precision of alternative selection criteria, and the usefulness of automati-



cally learned relations in text mining. Another aspect which needs to be addressed is
the identification of synonymic relations; e.g., in the context of Protein-Protein interac-
tion “positively-regulate” is equivalent to “activate”, “up-regulate”, “derepress”, “stimu-
late” etc. As a start, by representing relations as dependency paths one could frame this
problem straightforwardly as that of finding paraphrases (e.g. as in [22]).

As a final remark, we highlight the fact that the method we propose can be applied
fully unsupervised and domain-independent. Our method involves only one adjustable
parameter, the confidence level α which can be set by default to standard conservative
level in hypothesis testing, here we used α = .005. Thus, by design, our method is, in
principle, language and domain independent, provided the necessary NLP tools exist,
although the quality of the output might differ in different domains.
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[30] J. Šarić, E. Ratsch, I. Rojas, R. Kania, U. Wittig, and A.Gangemi. Modelling gene expression. In
Proceedings of the Workshop on Models and Metaphors from Biology to Bioinformatics Tools, 2004.



Part IV: Ontology Population 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



NLP Techniques for Term Extraction and
Ontology Population

Diana MAYNARD 1, Yaoyong LI and Wim PETERS
Dept. of Computer Science, University of Sheffield, UK

Abstract.
This chapter investigates NLP techniques for ontology population, using a com-

bination of rule-based approaches and machine learning. We describe a method for
term recognition using linguistic and statistical techniques, making use of contex-
tual information to bootstrap learning. We then investigate how term recognition
techniques can be useful for the wider task of information extraction, making use
of similarity metrics and contextual information. We describe two tools we have
developed which make use of contextual information to help the development of
rules for named entity recognition. Finally, we evaluate our ontology-based infor-
mation extraction results using a novel technique we have developed which makes
use of similarity-based metrics first developed for term recognition.

Keywords. information extraction, ontology population, term recognition,

1. Introduction

In semantic web applications, ontology development and population are tasks of
paramount importance. The manual performance of these tasks is labour- and therefore
cost-intensive, and would profit from a maximum level of automation. For this purpose,
the identification and extraction of terms that play an important role in the domain under
consideration, is a vital first step.

Automatic term recognition (also known as term extraction) is a crucial component
of many knowledge-based applications such as automatic indexing, knowledge discov-
ery, terminology mining and monitoring, knowledge management and so on. It is particu-
larly important in the healthcare and biomedical domains, where new terms are emerging
constantly.

Term recognition has been performed on the basis of various criteria. The main
distinction we can make is between algorithms that only take the distributional properties
of terms into account, such as frequency and tf/idf [1], and extraction techniques that use
the contextual information associated with terms. The work described here concentrates
on the latter task, and describes algorithms that compare and measure context vectors,
exploiting semantic similarity between terms and candidate terms. We then proceed to
investigate a more general method for information extraction, which is used, along with
term extraction, for the task of ontology population.

1Corresponding Author: Diana Maynard: Dept. of Computer Science, University of Sheffield, 211
Portobello St, Sheffield, UK; E-mail: diana@dcs.shef.ac.uk



Ontology population is a crucial part of knowledge base construction and mainte-
nance that enables us to relate text to ontologies, providing on the one hand a customised
ontology related to the data and domain with which we are concerned, and on the other
hand a richer ontology which can be used for a variety of semantic web-related tasks such
as knowledge management, information retrieval, question answering, semantic desktop
applications, and so on.

Ontology population is generally performed by means of some kind of ontology-
based information extraction (OBIE). This consists of identifying the key terms in the
text (such as named entities and technical terms) and then relating them to concepts
in the ontology. Typically, the core information extraction is carried out by linguistic
pre-processing (tokenisation, POS tagging etc.), followed by a named entity recognition
component, such as a gazetteer and rule-based grammar or machine learning techniques.
Named entity recognition (using such approaches) and automatic term recognition are
thus generally performed in a mutually exclusive way: i.e. one or other technique is used
depending on the ultimate goal. However, it makes sense to use a combination of the two
techniques in order to maximise the benefits of both. For example, term extraction gen-
erally makes use of frequency-based information whereas typically named entity recog-
nition uses a more linguistic basis. Note also that a "term" refers to a specific concept
characteristic of a domain, so while a named entity such as Person or Location is generic
across all domains, a technical term such as "myocardial infarction" is only considered a
relevant term when it occurs in a medical domain: if we were interested in sporting terms
then it would probably not be considered a relevant term, even if it occurred in a sports
article. As with named entities, however, terms are generally formed from noun phrases
(in some contexts, verbs may also be considered terms, but we shall ignore this here).

The overall structure of the chapter covers a step by step description of the natural
task extension from term extraction into more general purpose information extraction,
and therefore brings together the whole methodological path from extraction, through
annotation to ontology population.

2. A Similarity-based Approach to Term Recognition

The TRUCKS system [2] introduced a novel method of term recognition which identified
salient parts of the context surrounding a term from a variety of sources, and measured
their strength of association with relevant candidate terms. This was used in order to
improve on existing methods of term recognition such as the C/NC-Value approach [3]
which used largely statistical methods, plus linguistic (part-of-speech) information about
the candidate term itself. The NC-Value method extended on the C-Value method by
adding information about frequency of co-occurrence with context words. The SNC-
Value used in TRUCKS includes contextual and terminological information and achieves
improved precision (see [4] for more details).

In very small and/or specialised domains, as are typically used as a testbed for term
recognition, statistical information may be skewed due to data sparsity. On the other
hand, it is also difficult to extract suitable semantic information from such specialised
corpora, particularly as appropriate linguistic resources may be lacking. Although con-
textual information has previously been used, e.g. in general language [5], and in the NC-
Value method, only shallow semantic information is used in these cases. The TRUCKS



approach, however, identifies different elements of the context which are combined to
form the Information Weight [2], a measure of how strongly related the context is to the
candidate term. This Information Weight is then combined with statistical information
about a candidate term and its context, acquired using the NC-Value method. Note that
both approaches, unlike most other term recognition approaches, result in a ranked list of
terms rather than making a binary decision about termhood. This introduces more flexi-
bility into the application, as the user can decide at what level to draw the cut-off point.
Typically, we found that the top 1/3 of the list produces the best results.

The idea behind using the contextual information stems from the fact that, just as a
person’s social life can provide valuable insight about their personality, so we can gather
much information about a term by analysing the company it keeps. In general, the more
similar context words are to a candidate term, the stronger the likelihood of the term
being relevant. We can also use this same kind of criteria to perform term disambiguation,
by choosing the meaning of the term closest to that of its context [6].

2.1. Acquiring Contextual Information

The TRUCKS system builds on the NC-Value method for term recognition, by incorpo-
rating contextual information in the form of additional weights. We acquire three differ-
ent types of knowledge about the context of a candidate term: syntactic, terminological,
and semantic. The NC Value method is first applied to the corpus to acquire an initial set
of candidate terms.

Syntactic knowledge is based on boundary words, i.e. the words immediately before
and after a candidate term. A similar method (the barrier word approach [7,8]) has been
used previously to simply accept or decline the presence of a term, depending on the
syntactic category of the barrier or boundary word. Our system takes this a stage further
by - rather than making a binary decision - allocating a weight to each syntactic cate-
gory based on a co-occurrence frequency analysis, to determine how likely the candidate
term is to be valid. For example, a verb occurring immediately before a candidate term
is statistically a much better indicator of a true term than an adjective is. By a "better
indicator", we mean that a candidate term occurring with this context is more likely to be
valid. Each candidate term is then assigned a syntactic weight, calculated by summing
the category weights for all the context boundary words occurring with it.

Terminological knowledge concerns the terminological status of context words. A
context word which is also a term (which we call a context term) is likely to be a better
indicator of a term than one which is not also a term itself. This is based on the premise
that terms tend to occur together. Context terms are determined by applying the NC-
Value method to the whole corpus and selecting the top 30% of the resulting ranked list
of terms. A context term (CT) weight is produced for each candidate term, based on its
total frequency of occurrence with other context terms.

The CT weight is formally described as follows:

CT (a) =

∑
dεTa

fa(d) (1)

where
a is the candidate term,
Ta is the set of context terms of a,



d is a word from Ta ,
fa(d) is the frequency of d as a context term of a.

Semantic knowledge is based on the idea of incorporating semantic information
about terms in the context. We predict that context words which are not only terms, but
also have a high degree of similarity to the candidate term in question, are more likely
to be relevant. This is linked to the way in which sentences are constructed. Semantics
indicates that words in the surrounding context tend to be related, so the more similar a
word in the context is to a term, the more informative it should be.

Our claim is essentially that if a context word has some contribution towards the
identification of a term, then there should be some significant correspondence between
the meaning of that context word and the meaning of the term. This should be realised as
some identifiable semantic relation between the two. Such a relation can be exploited to
contribute towards the correct identification and comprehension of a candidate term. A
similarity weight is added to the weights for the candidate term, which is calculated for
each term / context term pair. This similarity weight is calculated using a new metric to
define how similar a term and context term are, by means of their distance in a hierarchy.
For the experiments carried out in [4], the UMLS semantic network was used [9].

While there exist many metrics and approaches for calculating similarity, the choice
of measure may depend considerably on the type of information available and the in-
tended use of the algorithm. A full discussion of such metrics and their suitability can be
found in [4], so we shall not go into detail here. Suffice it to say that:

• Thesaurus-based methods seem a natural choice here, because to some extent they
already define relations between words.

• Simple thesaurus-based methods fail to take into account the non-uniformity of
hierarchical structures, as noted by [10].

• Methods such as information content [10] have the drawback that the assessment
of similarity in hierarchies only involves taxonomic (is-a) links. This means that
they may exclude some potentially useful information.

• General language thesauri such as WordNet and Roget’s Thesaurus are only really
suitable for general-language domains, and even then have been found to contain
serious omissions. If an algorithm is dependent on resources such as this, it can
only be as good as is dictated by the resource.

2.2. Similarity Measurement in the TRUCKS System

Our approach to similarity measurement in a hierarchy is modelled mainly on the EBMT
(Example-Based Machine Translation)-based techniques of Zhao [11] and Sumita and
Iida [12]. This is based on the premise that the position of the MSCA (Most Specific
Common Abstraction)2 within the hierarchy is important for similarity. The lower down
in the hierarchy the MSCA, the more specific it is, and therefore the more information
is shared by the two concepts, thus making them more similar. We combine this idea
with that of semantic distance [13,14,15]. In its simplest form, similarity is measured by
edge-counting – the shorter the distance between the words, the greater their similarity.
The MSCA is commonly used to measure this. It is determined by tracing the respective
paths of the two words back up the hierarchy until a common ancestor is found. The

2also known as Least Common Subsumer or LCS



Figure 1. Fragment of a food network

average distance from node to MSCA is then measured: the shorter the distance to the
MSCA, the more similar the two words. We combine these two ideas in our measure by
calculating two weights: one which measures the distance from node to MSCA, and one
which measures the vertical position of the MSCA. Note that this metric does of course
have the potential drawback mentioned above, that only involving taxonomic links does
mean the potential loss of information. However, we claim that this is quite minimal,
due to the nature of the quite restricted domain-specific text that we deal with, because
other kinds of links are not so relevant here. Futhermore, distance-based measures such
as these are dependent on a balanced distribution of concepts in the hierarchy, so it is
important to use a suitable ontology or hierarchy.

To explain the relationship between network position and similarity, we use the ex-
ample of a partial network of fruit and vegetables, illustrated in Figure 1. Note that this
diagram depicts only a simplistic is-a relationship between terms, and does not take into
account other kinds of relationships or multidimensionality (resulting in terms occurring
in more than one part of the hierarchy due to the way in which they are classified). We
claim that the height of the MSCA is significant. The lower in the hierarchy the two items
are, the greater their similarity. In the example, there would be higher similarity between
lemon and orange than between fruit and vegetable. Although the average distance from
lemon and orange to its MSCA (citrus) is the same as that from fruit and vegetable to
its MSCA (produce), the former group is lower in the hierarchy than the latter group.
This is also intuitive, because not only do lemon and orange have the produce feature in
common, as fruit and vegetable do, but they also share the features fruit and citrus.

Our second claim is that the greater the horizontal distance between words in the
network, the lower the similarity. By horizontal distance, we mean the distance between
two nodes via the MSCA. This is related to the average distance from the MSCA, since
the greater the horizontal distance, the further away the MSCA must be in order to be
common to both. In the food example, carrot and orange have a greater horizontal dis-
tance than lemon and orange, because their MSCA (produce) is further away from them



Figure 2. Fragment of the Semantic Network

than the MSCA of lemon and orange (citrus). Again, it is intuitive that the former are
less similar than the latter, because they have less in common.

Taking these criteria into account, we define the following two weights to measure
the vertical position of the MSCA and the horizontal distance between the nodes:

• positional: measured by the combined distance from root to each node
• commonality: measured by the number of shared common ancestors multiplied

by the number of words (usually two).

The nodes in the Semantic Network are coded such that the number of digits in the
code represents the number of leaves descended from the root to that node, as shown
in Figure 2, which depicts a small section of the UMLS Semantic Network. Similarity
between two nodes is calculated by dividing the commonality weight by the positional
weight to produce a figure between 0 and 1, 1 being the case where the two nodes are
identical, and 0 being the case where there is no common ancestor (which would only
occur if there were no unique root node in the hierarchy). This can formally be defined
as follows:

sim(w1...wn) =
com(w1...wn)

pos(w1...wn)
(2)



where
com(w1...wn) is the commonality weight of words 1...n
pos(w1...wn) is the positional weight of words 1...n.

It should be noted that the definition permits any number of nodes to be compared, al-
though usually only two nodes would be compared at once. Also, it should be made
clear that similarity is not being measured between terms themselves, but between the
semantic types (concepts) to which the terms belong. So a similarity of 1 indicates not
that two terms are synonymous, but that they both belong to the same semantic type.

3. Moving from Term to Information Extraction

There is a fairly obvious relationship between term recognition and information extrac-
tion, the main difference being that information extraction may also look for other kinds
of information than just terms, and it may not necessarily be focused on a specific do-
main. Traditionally, methods for term recognition have been strongly statistical, while
methods for information extraction have focused largely on either linguistic methods or
machine learning, or a combination of the two. Linguistic methods for information ex-
traction (IE), such as those used in GATE [16], are generally rule-based, and in fact use
methods quite similar to those for term extraction used in the TRUCKS system, in that
they use a combination of gazetteer lists and hand-coded pattern-matching rules which
use contextual information to help determine whether such "candidate terms" are valid, or
to extend the set of candidate terms. We can draw a parallel between the use of gazetteer
lists containing sets of "seed words" and the use of candidate terms in TRUCKS: the
gazetteer lists act as a starting point from which to establish, reject, or refine the final
entity to be extracted.

3.1. Information Extraction with ANNIE

GATE, the General Architecture for Text Engineering, is a framework providing support
for a variety of language engineering tasks. It includes a vanilla information extraction
system, ANNIE, and a large number of plugins for various tasks and applications, such
as ontology support, information retrieval, support for different languages, WordNet,
machine learning algorithms, and so on. There are many publications about GATE and
ANNIE – see for example [17]. This is not the focus of this paper, however, so we simply
summarise here the components and method used for rule-based information extraction
in GATE.

ANNIE consists of the following set of processing resources: tokeniser, sentence
splitter, POS tagger, gazetteer, finite state transduction grammar and orthomatcher. The
resources communicate via GATE’s annotation API, which is a directed graph of arcs
bearing arbitrary feature/value data, and nodes rooting this data into document content
(in this case text).

The tokeniser splits text into simple tokens, such as numbers, punctuation, symbols,
and words of different types (e.g. with an initial capital, all upper case, etc.), adding a
"Token" annotation to each. It does not need to be modified for different applications or
text types.



The sentence splitter is a cascade of finite-state transducers which segments the text
into sentences. This module is required for the tagger. Both the splitter and tagger are
generally domain and application-independent.

The tagger is a modified version of the Brill tagger, which adds a part-of-speech tag
as a feature to each Token annotation. Neither the splitter nor the tagger is a mandatory
part of the NE system, but the annotations they produce can be used by the semantic
tagger (described below), in order to increase its power and coverage.

The gazetteer consists of lists such as cities, organisations, days of the week, etc. It
contains some entities, but also names of useful key words, such as company designators
(e.g. "Ltd."), titles (e.g. "Dr."), etc. The lists are compiled into finite state machines,
which can match text tokens.

The semantic tagger (or JAPE transducer) consists of hand-crafted rules written in
the JAPE pattern language [18], which describe patterns to be matched and annotations
to be created. Patterns can be specified by describing a specific text string or annotation
(e.g. those created by the tokeniser, gazetteer, document format analysis, etc.).

The orthomatcher performs coreference, or entity tracking, by recognising rela-
tions between entities. It also has a secondary role in improving NE recognition by as-
signing annotations to previously unclassified names, based on relations with existing
entities.

ANNIE has been adapted to many different uses and applications: see [19,20,21] for
some examples. In terms of adapting to new tasks, the processing resources in ANNIE
fall into two main categories: those that are domain-independent, and those that are not.
For example, in most cases, the tokeniser, sentence splitter, POS tagger and orthographic
coreference modules fall into the former category, while resources such as gazetteers and
JAPE grammars will need to be modified according to the application. Similarly, some
resources, such as the tokeniser and sentence splitter, are largely language-independent
(exceptions may include some Asian languages, for example), and some resources are
more language-dependent, such as gazetteers.

3.2. Using contextual information to bootstrap rule creation

One of the main problems with using a rule-based approach to information extraction
is that rules can be slow and time-consuming to develop, and an experienced language
engineer is generally needed to create them. This language engineer typically needs also
to have a detailed knowledge of the language and domain in question. Secondly, it is easy
with a good gazetteer list and a simple set of rules to achieve reasonably accurate results
in most cases in a very short time, especially where recall is concerned. For example, our
work on surprise languages [20] achieved a reasonable level of accuracy on the Cebuano
language with a week’s effort and with no native speaker and no resources provided.
Similarly, [22] achieved high scores for recognition of locations using only gazetteer
lists. However, achieving very high precision requires a great deal more effort, especially
for languages which are more ambiguous than English.

It is here that making use of contextual information is key to success. Gazetteer
lists can go a long way towards initial recognition of common terms; a set of rules can
boost this process by e.g. combining elements of gazetteer lists together, using POS
information combined with elements of gazetteer lists (e.g. to match first names from a
list with probable surnames indicated by a proper noun), and so on. In order to resolve



ambiguities and to find more complex entity types, context is necessary. Here we build on
the work described in Section 2, which made use of information about contextual terms
to help decide whether a candidate term (extracted initially through syntactic tagging)
should be validated.

There are two tools provided in GATE which enable us to make use of contextual in-
formation: the gazetteer lists collector and ANNIC. These are described in the following
two sections.

3.3. Gazetteer lists collector

The GATE gazetteer lists collector [23] helps the developer to build new gazetteer lists
from an initial set of annotated texts with minimal effort. If the list collector is combined
with a semantic tagger, it can be used to generate context words automatically. Suppose
we generate a list of Persons occurring in our training corpus. Some of these Persons
will be ambiguous, either with other entity types or even with non-entities, especially in
languages such as Chinese. One way to improve Precision without sacrificing Recall is
to use the lists collector to identify from the training corpus a list of e.g. verbs which
typically precede or follow Persons. The list can also be generated in such a way that
only verbs with a frequency above a certain threshold will be collected, e.g. verbs which
occur less than 3 times with a Person could be discarded.

The lists collector can also be used to improve recognition of entities by enabling
us to add constraints about contextual information that precedes or follows candidate en-
tities. This enables us to recognise new entities in the texts, and forms part of a devel-
opment cycle, in that we can then add such entries to the gazetteer lists, and so on. In
this way, noisy training data can be rapidly created from a small seed corpus, without
requiring a large amount of annotated data initially.

Furthermore, using simple grammar rules, we can collect not only examples of enti-
ties from the training corpus, but also information such as the syntactic categories of the
preceding and following context words. Analysis of such categories can help us to write
better patterns for recognising entities. For example, using the lists collector we might
find that definite and indefinite articles are very unlikely to precede Person entities, so we
can use this information to write a rule stipulating that if an article is found preceding a
candidate Person, that candidate is unlikely to be a valid Person. We can also use lexical
information, by collecting examples of verbs which typically follow a Person entity. If
such a verb is found following a candidate Person, this increases the likelihood that such
a candidate is valid, and we can assign a higher priority to such a candidate than one
which does not have such context.

3.4. ANNIC

The second tool, ANNIC (ANNotations In Context) [24], enables advanced search and
visualisation of linguistic information. This provides an alternative method of searching
the textual data in the corpus, by identifying patterns in the corpus that are defined both
in terms of the textual information (i.e. the actual content) and of metadata (i.e. linguistic
annotation and XML/TEI markup). Essentially, ANNIC is similar to a KWIC (KeyWords
In Context) index, but where a KWIC index provides simply text in context in response
to a search for specific words, ANNIC additionally provides linguistic information (or
other annotations) in context, in response to a search for particular linguistic patterns.



Figure 3. ANNIC Viewer

ANNIC can be used as a tool to help users with the development of JAPE rules by
enabling them to search the text for examples using an annotation or combination of
annotations as the keyword. Language engineers have to use their intuition when writing
JAPE rules, trying to strike the ideal balance between specificity and coverage. This
requires them to make a series of informed guesses which are then validated by testing
the resulting ruleset over a corpus. ANNIC can replace the guesswork in this process
with a live analysis of the corpus. Each pattern intended as part of a JAPE rule can easily
be tested directly on the corpus and have its specificity and coverage assessed almost
instantaneously.

Figure 3 shows a screenshot of ANNIC in use. The bottom section in the window
contains the patterns along with their left and right context concordances, while the top
section shows a graphical visualisation of the annotations. ANNIC shows each pattern
in a separate row and provides a tool tip that shows the query that the selected pattern
refers to. Along with its left and right context, it also lists the name of documents that
the patterns come from. The tool is interactive, and different aspects of the search results
can be viewed by clicking on appropriate parts of the GUI.

ANNIC can also be used as a more general tool for corpus analysis, because it en-
ables querying the information contained in a corpus in more flexible ways than simple
full-text search. Consider a corpus containing news stories that have been processed with
a standard NE system such as ANNIE. A query like
{Organization} ({Token})*3 ({Token.string==’up’}|{Token.string==’down’}) ({Money}
| {Percent})
would return mentions of share movements like “BT shares ended up 36p” or “Marconi
was down 15%”. Locating this type of useful text snippets would be very difficult and
time consuming if the only tool available were text search. Clearly it is not just infor-
mation extraction and rule writing that benefits from the visualisation of contextual in-
formation in this way. When combined with the TRUCKS term extraction technique,
we can use it to visualise the combinations of term and context term, and also to in-
vestigate other possible sources of interesting context which might provide insight into
further refinement of the weights. We can also very usefully combine ANNIC with the



gazetteer list collector described in Section 3.3 in order to again visualise other sources
of contextual information worth collecting.

4. From Traditional to Ontology-Based Information Extraction

Ontology-Based IE (OBIE) is one of the technologies used for semantic annotation,
which is essentially about assigning to entities in the text links to their semantic descrip-
tions. This sort of metadata provides both class and instance information about the en-
tities. One of the important differences between traditional IE and OBIE is the use of a
formal ontology rather than a flat lexicon or gazetteer structure. This may also involve
reasoning.

4.1. OBIE Systems

There are a number of what we describe as ontology-oriented IE systems, which, unlike
ontology-based ones, do not incorporate ontologies into the system, but either use them
as a bridge between the IE output and the final annotation (as with AeroDAML) or rely
on the user to provide the relevant information through manual annotation (as with the
Amilcare-based tools).

AeroDAML [25] applies IE techniques to automatically generate DAML annota-
tions from web pages. It links proper nouns and common types of relations with classes
and properties in a DAML ontology. It makes use of an ontology in order to translate the
extraction results into a corresponding RDF model.

Amilcare [26] is an IE system which has been integrated in several different seman-
tic annotation tools, such as OntoMat [27], which combines a manual annotation tool
with an IE system running in the background. It uses supervised rule learning to adapt to
new domains and applications given human annotated texts (training data). It treats the
semantic annotations as a flat set of labels, thus ignoring the further knowledge in the on-
tology. Amilcare uses GATE’s NLP components in order to obtain linguistic information
as features for the learning process.

One of the problems with these annotation tools is that they do not provide the user
with a way to customise the integrated language technology directly. While many users
would not need or want such customisation facilities, users who already have ontologies
with rich instance data will benefit if they can make this data available to the IE compo-
nents. However, this is not possible when traditional IE methods like Amilcare are used,
because they are not aware of the existence of the user’s ontology.

The more serious problem however, as discussed in the S-CREAM system [27], is
that there is often a gap between the IE output annotations and the classes and properties
in the user’s ontology. The solution proposed by the developers was to write logical rules
to resolve this. For example, an IE system would typically annotate London and UK
as locations, but extra rules are needed to specify that there is a containment relation-
ship between the two. However, rule writing of this kind is too difficult for most users
and therefore ontology-based IE is needed, as it annotates directly with the classes and
instances from the user’s ontology.

In response to these problems, a number of OBIE systems have been developed.
Magpie [28] is a suite of tools which supports semantic annotation of web pages. It is



fully automatic and works by matching the text against instances in the ontology. The
SemTag system [29] is similar in approach to Magpie as it annotates texts by performing
lookup against the TAP ontology. It also has a second, disambiguation phase, where
SemTag uses a vector-space model to assign the correct ontological class or determine
that this mention does not correspond to a class in TAP. The problem with both systems is
that they are not able to discover new instances and are thus restricted in terms of recall.

The PANKOW system [30] exploits surface patterns and the redundancy on the Web
to categorise automatically named entities found in text with respect to a given ontol-
ogy. Its aim is thus primarily ontology population rather than annotation. PANKOW has
recently been integrated with MAGPIE [31].

OntoSyphon [32] is similar to PANKOW and uses the ontology as the starting point
in order to carry out web mining to populate the ontology with instances. It uses the
ontology structure to determine the relevance of the candidate instances. However, it
does not carry out semantic annotation of documents as such.

The KIM system [33] produces annotations linked both to the ontological class and
to the exact individual in the instance base. For new (previously unknown) entities, new
identifiers are allocated and assigned; then minimal descriptions are added to the seman-
tic repository. KIM has a rule-based, human-engineered IE system based on GATE’s
ANNIE, which uses the ontology structure during pattern matching and instance disam-
biguation. The only shortcoming of this approach is that it requires human intervention
in order to adapt it to new ontologies.

To summarise, all these systems use the ontology as their target output, and the
ontology-based ones also use class and instance information during the IE process. While
KIM and OntoSyphon do make use of the ontology structure, the former is a rule-based,
not a learning approach, whereas the latter does not perform semantic annotation, only
ontology population.

5. Evaluation of Ontology-Based Information Extraction

Traditionally, information extraction is evaluated using Precision, Recall and F-Measure.
However, when dealing with ontologies, such methods are not really sufficient because
they give us a binary decision of correctness, i.e. they classify the result as either right or
wrong. This is fine for traditional IE, because an element identified as a Person is either
correct or incorrect (measured by Precision), and elements which should be identified as
Person are either identified or not (measured by Recall). When making an ontological
classification, however, the distinction is a bit more fuzzy. For example if we misclassify
an instance of a Researcher as a Lecturer, we are clearly less wrong than missing the
identification (and classification) altogether, and we are also somehow less wrong than
if we had misclassified the instance as a Location. Credit should therefore be given for
partial correctness. Traditionally, this is sometimes achieved by allocating a half weight
to something deemed partially correct, but this is still insufficient to give a proper distinc-
tion between degrees of correctness. We therefore adopt an approach based on similarity
between Key (the gold standard) and Response (the output of the system).



5.1. A Distance-based Metric for Evaluation

We developed the Balanced Distance Metric (BDM) [34] in order to address this prob-
lem. This metric has been designed to replace the traditional "exact match or fail" met-
rics with a method which yields a graded correctness score by taking into account the
semantic distance in the ontological hierarchy between the compared nodes (Key and
Response).

The semantic distance is adapted from the semantic weight used in the TRUCKS
system, but takes into account also some normalisation – something which was not con-
sidered in the original TRUCKS weight. In the BDM, each of the paths has been nor-
malised with two additional measurements, of which the first is the average length of
the chains in which key and response concepts occur. The longer a particular ontological
chain is, the more difficult it is to consistently pick out a particular class for annotation
[35]. The second normalization is the introduction of the branching factor (i.e. number
of descendants) of the relevant nodes in the ontology. This is also an indication of the
level of difficulty associated with the selection of a particular ontlogical class relative
to the size of the set of candidates. These normalizations will make the penalty that is
computed in terms of node traversal within our metric relative to the semantic density of
the chains.

Another similar metric which has been proposed for this task is Learning Accuracy
(LA) [36], which was originally developed to measure how well an item had been clas-
sified in an ontology. Learning Accuracy has a major flaw for our purposes, however, in
that it does not take into account the depth of the key concept in the hierarchy, consider-
ing essentially only the height of the MSCA (Most Specific Common Abstraction) and
the distance from the response to the MSCA. This means that however far away the key
is from the MSCA, the metric will give the same outcome. The BDM is more balanced in
this respect, because it takes the relative specificity of the taxonomic positions of the key
and response into account in the score, but it does not distinguish between the specificity
of the key concept on the one hand, and the specificity of the response concept on the
other. For instance, the key can be a specific concept (e.g. ’car’), whereas the response
can be a more general concept (e.g. ’relation’), or vice versa, and the result will be the
same. This is not the case with the Learning Accuracy metric.

The BDM is computed on the basis of the following measurements:

• CP = the shortest length from root to the most specific common parent, i.e. the
most specific ontological node subsuming both Key and Response)

• DPK = shortest length from the most specific common parent to the Key concept
• DPR = shortest length from the most specific common parent to the Response

concept
• n1: average chain length of all ontological chains containing Key and Response.
• n2: average chain length of all ontological chains containing Key.
• n3: average chain length of all ontological chains containing Response.
• BR: the branching factor of each relevant concept, divided by the average branch-

ing factor of all the nodes from the ontology, excluding leaf nodes.

The complete BDM formula is as follows:

B DM =
B R(C P/n1)

B R(C P/n1) + (D P K/n2) + (D P R/n3)
(3)



As with the similarity weight described in Section 2.2, the measure provides a score
somewhere between 0 and 1 for the comparison of key and response concepts with re-
spect to a given ontology. If a concept is missing or spurious, BDM is not calculated
since there is no MSCA. If the key and response concepts are identical, the score is 1
(as with Precision and Recall). Overall, in case of an ontological mismatch, this method
provides an indication of how serious the error is, and weights it accordingly.

The BDM itself is not sufficient to evaluate our populated ontology, because we need
to preserve the useful properties of the standard Precision and Recall scoring metric.
Our APR metric (Augmented Precision and Recall) combines the traditional Precision
and Recall with a cost-based component (namely the BDM). We thus combine the BDM
scores for each instance in the corpus, to produce Augmented Precision, Recall and F-
measure scores for the annotated corpus, calculated as follows:

AP =
B DM

n + Spurious
and AR =

B DM
n + Missing

(4)

while F-measure is calculated from Augmented Precision and Recall as:

F − measure =
AP ∗ AR

0.5 ∗ (AP + AR)
(5)

5.2. Experiments with OBIE evaluation

The BDM metric has been evaluated in various ways in order to compare it with other
metrics for evaluation and to test scalability issues. For the evaluation, a semantically
annotated corpus was created for use as a gold standard. This is known as the OntoNews
corpus [37]. This semantically annotated corpus consists of 292 news articles from three
news agencies (The Guardian, The Independent and The Financial Times), and covers
the period of August to October, 2001. The articles belong to three general topics or
domains of news gathering: International politics, UK politics and Business.

The ontology used in the generation of the ontological annotation process is the
PROTON ontology3, which has been created and used in the scope of the KIM platform4

for semantic annotation, indexing, and retrieval [33]. The ontology consists of around
250 classes and 100 properties (such as partOf, locatedIn, hasMember and so on). PRO-
TON has a number of important properties: it is domain-independent, and therefore suit-
able for the news domain, and it is modular (comprising both a top ontology and a more
specific ontology).

The aim of the experiments carried out on the OntoNews corpus was, on the one
hand, to evaluate a new learning algorithm for OBIE, and, on the other hand, to compare
the different evaluation metrics (LA, flat traditional measure, and the BDM).

The OBIE algorithm learns a Perceptron classifier for each concept in the ontology.
Perceptron [38] is a simple yet effective machine learning algorithm, which forms the
basis of most on-line learning algorithms. Meanwhile, the algorithm tries to keep the dif-
ference between two classifiers proportional to the cost of their corresponding concepts
in the ontology. In other words, the learning algorithm tries to classify an instance as cor-
rectly as it can. If it cannot classify the instance correctly, it then tries to classify it with

3http://proton.semanticweb.org
4http://www.ontotext.com/kim



another concept with the least cost associated with it relative to the correct concept. The
algorithm is based on the Hieron, a large margin algorithm for hierarchical classification
proposed in [39]. See [40] for details about the learning algorithm and experiments.

We experimentally compared the Hieron algorithm with the SVM learning algorithm
(see e.g. [41]) for OBIE. The SVM is a state of the art algorithm for classification. [42]
applied SVM with uneven margins, a variant of SVM, to the traditional information
extraction problem and achieved state of the art results on several benchmarking corpora.
In the application of SVM to OBIE, we learned one SVM classifier for each concept in
the ontology separately and did not take into account the structure of the ontology. In
other words, the SVM-based IE learning algorithm was a flat classification in which the
structure of concepts in the ontology was ignored. In contrast, the Hieron algorithm for
IE is based on hierarchical classification that exploits the structure of concepts.

As the OntoNews corpus consists of three parts (International politics, UK politics
and Business), for each learning algorithm two parts were used as training data and
another part as test data. Note that although the tripartition of the corpus indicates three
distinct and topically homogeneous parts of the corpus, these parts are used as training
and testing data for the comparison of different algorithms, and not their performance.
For this purpose, semantic homogeneity does not play a role.

For each experiment we computed three F1 values to measure the overall perfor-
mance of the learning algorithm. One was the conventional micro-averaged F1 in which
a binary reward was assigned to each prediction of instance — the reward was 1 if the
prediction was correct, and 0 otherwise. We call this flat_F1 since it does not consider the
structure of concepts in the ontology. The other two measures were based on the BDM
and LA values, respectively, which both take into account the structure of the ontology.

flat_F1 BDM_F1 LA_F1

SVM 73.5 74.5 74.5
Hieron 74.7 79.2 80.0

Table 1. Comparison of Hieron and SVM for OBIE

Table 1 presents the experimental results for comparing the two learning algorithms
SVM and Hieron. We used three measures: conventional micro-averaged flat_F1 (%),
and the two ontology-sensitive augmented F1 (%) based respectively on the BDM and
LA, BDM_F1 and LA_F1. In this experiment, the International-Politics part of the On-
toNews corpus was used as the test set, and the other two parts as the training set.

Both the BDM_F1 and LA_F1 are higher than the flat_F1 for the two algorithms,
reflecting the fact that the latter only counts the correct classifications, while the former
two not only count the correct classifications but also the incorrect ones. However, the
difference for Hieron is more significant than that for SVM, demonstrating an impor-
tant difference between the two methods — the SVM based method just tried to learn a
classifier for one concept as well as possible, while the Hieron based method not only
learned a good classifier for each individual concept but also took into account the rela-
tions between the concepts in the ontology during the learning.

In terms of the conventional flat_F1, the Hieron algorithm performed slightly better
than the SVM. However, if the results are measured by using the ontology-sensitive
measure BDM_F1 or LA_F1, we can see that Hieron performed significantly better than



SVM. Clearly, the ontology-sensitive measures such as the BDM_F1 and LA_F1 are
more suitable than the conventional flat_F1 to measure the performance of an ontology-
dependent learning algorithm such as Hieron.

In order to analyse the difference between the three measures, Table 2 presents some
examples of entities predicted incorrectly by the Hieron based learning system, their key
labels, and the similarity between the key label and predicted label measured respectively
by the BDM and the LA. Note that in all cases, the flat measure produces a score of 0,
since it is not an exact match.

No. Entity Predicted label Key label BDM LA

1 Sochi Location City 0.724 1.000
2 Federal Bureau of Investigation Organization GovernmentOrganization 0.959 1.000
3 al-Jazeera Organization TVCompany 0.783 1.000
4 Islamic Jihad Company ReligiousOrganization 0.816 0.556
5 Brazil Object Country 0.587 1.000
6 Senate Company PoliticalEntity 0.826 0.556
7 Kelly Ripa Man Person 0.690 0.667

Table 2. Examples of entities misclassified by the Hieron based system

Figure 4. Subset of the PROTON ontology

All the concepts and their relations involved in Table 2 are illustrated in Figure 4,
which presents a part of the PROTON ontology. This ontology section starts with the root
node Thing, and has 10 levels of concepts with TVCompany as the lowest level concept.
Note that the graph does not show all the child concepts for most of the nodes presented.



The conventional flat measure assigned each case a zero similarity because the ex-
amples were misclassified and the measure does not consider the structure of labels. On
the other hand, both the LA and BDM take into account the structure of labels and mea-
sure the degree of a misclassification based on its position in the ontology. Hence they
assign a non-zero value to a misclassification in most cases. Note that zero would be as-
signed in the case where the MSCA is the root node. In our experiments, all the concepts
used were below the node "Entity" and so we used its immediate upper node "Thing"
as root5. This meant that CP (the depth of the MSCA) was always at least 1, and hence
there is no zero value for BDM or LA in our experiments. This is because we consider
that if an entity’s instance is recognised but with the wrong type, the system should have
a non-zero reward because it at least recognised the instance in the first place. However,
this could be changed according to the user’s preference.

However, BDM and LA adopt different mechanisms in consideration of the ontol-
ogy structure. In particular, the LA assigns the maximal value 1 if the predicted label
is an ancestor concept of the key label, regardless of how far apart the two labels are
within the ontological chain. In contrast, the BDM takes into account the similarity of
two concepts in the ontology and assigns a distance-dependent value. The difference is
demonstrated by the examples in the table. For example, in the Proton ontology, the pre-
dicted label Organization is the parent concept of the key label GovernmentOrganization
in the second example, and in the third example the same predicted label Organization is
4 concepts away from the key label TVCompany. Hence, the BDM value of the second
example is higher than the BDM value of the third example. In the first example, the
predicted label Location is 3 concepts away from the key label City but its BDM value
is lower than the corresponding value in the third example, mainly because the concept
Location occupies a higher position in the Proton ontology than the concept Organiza-
tion. Similarity is thus lower because higher concepts are semantically more general, and
therefore less informative.

Another difference between the BDM and LA is that the BDM considers the con-
cept densities around the key concept and the response concept, but the LA does not. The
difference can be shown by comparing the fourth and the sixth examples. They have the
same predicted label Company, and their key labels ReligiousOrganization and Politi-
calEntity are two sub-concepts of Organization. Therefore, the positions of the predicted
and key labels in the two examples are very similar and hence their LA values are the
same. However, their BDM values are different — the BDM value of the fourth example
is a bit lower than the BDM value of the sixth example. This is because the concept Po-
liticalEntity in the sixth example has two child nodes but the concept ReligiousOrgani-
zation in the fourth example has no child node, resulting in different averaged lengths of
chains coming through the two concepts.

The BDM value in the fifth example is the lowest among the examples, mainly
because the concept Object is in the highest position in the ontology among the examples.
These differences in BDM scores show the effects of the adoption of chain density and
branching factor as penalty weights in the computation of the score. These reflect the
level of difficulty associated with the selection of a particular ontlogical class relative to
the size of the set of candidates.

5"Thing" subsumes both "Entity" and "Property"



5.3. Discussion and Future work

The initial observation from our experiments is that binary decisions are not good enough
for ontology evaluation, when hierarchies are involved. We propose an Augmented Pre-
cision and Recall measure that takes into account the ontological distance of the response
to the position of the key concepts in the hierarchy. For this purpose we have developed
an extended variant of Hahn’s Learning Accuracy measure, called Balanced Distance
Metric, and integrated this with a standard Precision and Recall metric. We have per-
formed evaluations of these three metrics based on a gold standard corpus of news texts
annotated according to the PROTON ontology, and conclude that both the BDM and LA
metrics are more useful when evaluating information extraction based on a hierarchical
rather than a flat structure. Furthermore, the BDM appears to perform better than the LA
in that it reflects a better error analysis in certain situations.

Although the BDM gives an intuitively plausible score for semantic similarity on
many occasions, it can be argued that in some cases it does not correlate well with hu-
man judgement. Examples 4 and 6 in Table 2 show counter-intuitively high similarity
values for combinations of key and wrongly predicted labels, particularly in compari-
son with example 7. Note that as mentioned earlier, they are still better than the LA in
that they distinguish different values for the two examples. From a human perspective,
they also seem more wrong than the erroneous classification in Example 7, and slightly
more wrong than those in examples 1 and 3. This indicates a need for further tuning
the BDM score with additional cost-based metrics, in order to meet human judgement
criteria. In such cases, this could entail the integration of a rule which boosts similarity
scores for concepts within the same ontological chain (in a more subtle way than LA),
and which lowers the score for concept pairs that occur in different chains. Work will
continue on further experiments with the integration of such rules, including assessment
of the correlation between BDM scores and human intuition.

6. Conclusion

In this chapter we have investigated NLP techniques for term extraction and ontology
population, using a combination of rule-based approaches and machine learning. Start-
ing from an existing method we developed for term recognition using contextual infor-
mation to bootstrap learning, we have shown how such techniques can be adapted to
the wider task of information extraction. Term recognition and information extraction,
while quite similar tasks in many ways, are generally performed using very different
techniques. While term recognition generally uses primarily statistical techniques, usu-
ally combined with basic linguistic information in the form of part-of-speech tags, in-
formation extraction is usually performed with either a rule-based approach or machine
learning, or a combination of the two. However, the contextual information used in the
TRUCKS system for term recognition can play an important role in the development of
a rule-based system for ontology-based information extraction, as shown by the devel-
opment of the GATE tools described in this chapter. Furthermore, the similarity metric
used in TRUCKS to determine a semantic weight for terms forms the basis for a new
evaluation metric for information extraction (BDM), which uses similarity between the
key and response instances in an ontology to determine the correctness of the extraction.



Experiments with this metric have shown very promising results and clearly demonstrate
a better evaluation technique than the Precision and Recall metrics used for traditional
(non-ontology-based) information extraction applications.
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Weakly Supervised Approaches for
Ontology Population
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Abstract. We present a weakly supervised approach to automatic ontology pop-
ulation from text and compare it with two other unsupervised approaches. In our
experiments we populate a part of our ontology of Named Entities. We consid-
ered two high level categories - geographical locations and person names and ten
sub-classes for each category. For each sub-class we automatically learn a syntac-
tic model from a list of training examples and a parsed corpus. A novel syntactic
indexing method allowed us to use large quantities of syntactically annotated data.
The syntactic model for each named entity sub-class is a set of weighted syntactic
features, i.e. words which typically co-occur with the members of the class in the
corpus. The method is weakly supervised, since no manually annotated corpus is
used in the learning process. The syntactic models are used to classify the unknown
Named Entities in the test set. The method achieved promising results, i.e. 65%
accuracy, and outperforms significantly the other two approaches.

Keywords. Ontology Population, Syntactic Network, Named Entity Classification,
Ontology, Machine Learning, Semantic Web, Knowledge Acquisition

1. Introduction

Automatic ontology population (OP) from texts has recently emerged as a new field
of application for knowledge acquisition techniques (see, among others, [1]). The final
goal of OP is the construction of an ontological knowledge base - a repository of facts
about real-life objects and concept instances which follows the structure of an ontology.
A rather different task is ontology learning (OL), where new concepts and relations are
supposed to be acquired, with the consequence of changing the definition of the ontology
itself (see, for instance, [2]). For example, via OL a system may automatically acquire
the knowledge that “actor” is a concept and an “is-a” relation holds between it and the
concept “person”; on the other hand, OP may learn automatically that “Robert De Niro”
is an instance of the concept “actor”.

Although there is no commonly accepted definition for the OP task, a useful approx-
imation has been suggested in [3] as ontology Driven Information Extraction, where, in
place of a template to be filled, the goal of the task is the extraction and classification
of instances of concepts and relations defined in an ontology. A good example for an

1Corresponding Author: Hristo Tanev, IPSC - JRC, via Fermi 1, 21020 Ispra (VA), Italy; E-mail:
htanev@gmail.com.



ontology driven information extraction infrastructure is the semantic annotation platform
KIM [4]. Recently, Magnini et.al. [5] presented another more formal definition of the OP
task based on text mentions.

The first aspect of OP, extraction and classification of concept instances, is typically
attacked via Named Entity recognition, term extraction, term clustering (e.g. [6] and [7]),
and term categorization (e.g. [8]). The second aspect - extraction and classification of
relation instances is subject of Relation and Event Extraction ([9], [10], and [11]). In
this paper we address the problem of concept instances classification relevant to the first
aspect of OP.

In this paper OP is defined in the following scenario. Given a set of terms T =
t1, t2, ..., tn, a document collection D, where terms in T are supposed to appear, and
a set of predefined classes C = c1, c2, ..., cm denoting concepts in an ontology, each
term ti has to be assigned to the proper class in C. For the purposes of the experiments
presented in this paper we assume that (i) classes in C are mutually disjoint and (ii) each
term is assigned to just one class.

As we have defined it, OP shows a strong similarity with Named Entity Recogni-
tion and Classification (NERC). However, a major difference is that in NERC each oc-
currence of a recognized term has to be classified separately, while in OP it is the term,
independently of the context in which it appears, that has to be classified.

While Information Extraction, and NERC in particular, have been addressed preva-
lently by means of supervised approaches, ontology population is typically attacked in
an unsupervised way. As many authors have pointed out (e.g. [12]), the main motivation
is the fact that in OP the set of classes is usually larger and more fine grained than in
NERC (where the typical set includes Person, Location, Organization, GPE, and a Mis-
cellanea class for all other kind of entities). In addition, by definition, the set of classes
in C changes as a new ontology is considered, making the creation of annotated data
almost impossible practically.

According with the demand for weakly supervised approaches to OP, we propose
a method, called Class-Example, which learns a classification model from a set of clas-
sified terms, exploiting lexico-syntactic features. Unlike most of the approaches which
consider pair wise similarity between terms ([12], [6]), the Class-Example method con-
siders the similarity between a term ti and a set of training examples which represent a
certain class. This results in a great number of class features and opens the possibility
to exploit more statistical data, such as the frequency of appearance of a class feature in
different training terms.

In order to show the effectiveness of the Class-Example approach, it has been com-
pared against two different approaches: (i) a pattern-based unsupervised approach, in the
style of [13]; (ii) an unsupervised approach described in [12] that considers the name of
the class as a pivot word for acquiring relevant contexts for the class (we refer to this
method as Class-Word). Results of the comparison show that the Class-Example method
outperforms significantly the other two methods, making it appealing even considering
the need of supervision.

Although the Class-Example method we propose is applicable in general, in this
paper we show its usefulness when applied to terms denoting Named Entities. The mo-
tivation behind this choice is the practical value of Named Entity classifications, as for
instance, in Questions Answering and Information Extraction. Moreover, some Named
Entity classes, including names of writers, athletes, and politicians, dynamically change



over the time, which makes it impossible to represent their instances in a static ontologi-
cal knowledge base.

The rest of the paper is structured as follows. Section 2 describes state-of-the-art
methods in ontology population. Section 3 presents the three approaches to the task we
have compared. Section 4 introduces the Syntactic Network, a formalism used for the
representation of syntactic information and exploited in both the Class-Word and the
Class-Example approaches. Section 5 reports on the experimental settings, results ob-
tained, and discusses the three approaches. Section 6 concludes the paper and suggests
directions for future work.

2. Related Work

There are two main paradigms in the term classification approaches relevant to the OP
task. The first one is ontology population using patterns [13], rules, or the term structure
[2]. The second paradigm is represented by the context feature approaches [12].

Pattern based approaches search for phrases which explicitly show that there is an
“is-a” or other relation between two words, e.g. “the ant is an insect” or “ants and other
insects”. However, such phrases do not appear frequently in a text corpus. For this reason,
some approaches use the Web [14]. In [2] the head-matching heuristic is introduced,
according to which, if a term1 is in the head of term2, then there is an “is-a” relation
between them: For example “christmas tree” is a kind of “tree”. A weakly supervised
pattern-based system is described in [15]. This system takes on its input several seed pairs
which represent certain relation and learns generalized linear patterns which express this
relation. In [16] the Espresso system is presented which uses patterns to extract relations
in a weakly supervised manner and next maps them to WordNet. Some approaches like
[4] make use of more complex grammar rules instead of simple patterns to perform
mapping to an existing ontology.

A further step in this direction is implemented in Learning Cyc [17] where semantic
formulae are translated into natural language patterns using Cyc’s Natural Language
Generation machinery. Another semantic-based OP system is Artequakt, described in
[18]. This system uses the knowledge from an ontology to learn new facts and relations.

Context feature approaches use a corpus to extract features from all the contexts in
which the instances of a semantic class are mentioned. Context features may be super-
ficial [19] or syntactic [6], [7]. Comparative evaluation in [12] shows that the syntactic
features lead to better performance. Feature weights are calculated by Machine Learning
algorithms [19] or using statistical measures like Point Wise Mutual Information or the
Jaccard coefficient [6].

A hybrid approach which uses pattern based, term structure, and context feature
methods is presented in [20].

There are two types of OP methods according to the manual intervention they re-
quire: Unsupervised approaches like the one described in [12] or supervised approaches
which in general use manually tagged training corpus, e.g. [19]. Low performance is a
common feature of the state-of-the-art unsupervised OP approaches. On the other hand,
supervised approaches provide higher accuracy, but require the manual construction of
a training set - this significantly limits their scalability and flexibility. The OP systems
which use rules and knowledge bases like [18] may also be assigned to the class of the



supervised methods, since they require manual construction of rules for classification
and reasoning. Such semantic-based approaches suffer even more from scalability and
flexibility problems, since each adaptation to a new domain requires adding new facts to
the knowledge base or writing new rules.

3. Weakly supervised approaches for Ontology Population

In this section we present three ontology population approaches: two of them are virtually
unsupervised - a pattern-based approach described in [13] and a context feature method
reported in [12] to which we will refer as Class-Word; finally, we describe a new weakly
supervised approach for ontology population which accepts as a training data lists of
instances for each class under consideration. This method we call Class-Example

3.1. Pattern-based approach

This approach was described first by M. Hearst in [13]. The main idea is that if a noun
t is an instance or a hyponym of the concept c, then in a text corpus we may expect the
occurrence of phrases like such c as t,.... In our experiments for ontology population we
used the patterns described in the Hearst’s paper plus the pattern t is (a | the) c:

1. t is (a | the) c
2. such c as t
3. such c as (NP,)*, (and | or) t
4. t (,NP)* (and | or) other c
5. c, (especially | including) (NP, )* t

For each instance from the test set t and for each concept c we instantiated the
patterns and searched with them in the corpus. If a pattern which is instantiated with a
concept c and a noun t appears in the corpus, then we assume that t is an instance or
a hyponym of c. For example, if the term to be classified is “Etna” and the concept is
“mountain”, one of the instantiated patterns will be “mountains such as Etna”; if this
pattern is found in the text, then “Etna” is considered to be a “mountain”. If this method
assigns a term to several categories, we choose the one which co-occurs most often with
the term.

3.2. Class-Word approach

Cimiano and Völker describe in [12] an unsupervised approach for ontology population
based on context similarity between each concept c and a term to be classified t. For
example, in order to conclude how much “Etna” is an appropriate instance of the class
“mountain”, this method finds the feature-vector similarity between the contexts of the
word “Etna” and the contexts of the word “mountain”. Each instance from the test set T
is assigned to one of the classes in the set C. Features are collected from Corpus and
the classification algorithm on Figure 1 is applied. In this algorithm the context vectors
vt and vc are feature vectors whose elements represent weighted context features of the
term t (e.g. “Etna”) and the concept word c (e.g. “mountain”).

The problem with this approach is that the context distribution of a name (e.g.
“Etna”) is different than the context distribution of the class word (e.g. “mountain”).



PROCEDURE CLASSIFY(T , C, Corpus)
for all t in T do
vt = getContextV ector(t, Corpus)

end for
for all c in C do
vc = getContextV ector(c, Corpus)

end for
for all t in T do
classes[t] = argmaxc∈Csim(vt, vc)

end for
return classes[]

Figure 1. Unsupervised algorithm for Ontology Population.

For example, the more generic word “mountain” may be used to form a meaningful
phrases like “mountain sports” and “mountain shoes”; on the oher hand, phrases like
“Etna sports” and “Etna shoes” have much lower probability to appear in a text. Another
shortcoming of the Class-Word approach is that a single word provides only a limited
quantity of contextual data.

3.3. Syntactic features

Cimiano and Völker evaluate different context features and prove that syntactic features
work best. Therefore, in our experimental settings we considered only such features ex-
tracted from a corpus parsed with a dependency parser. Unlike the original approach
of Cimiano and Völker, which relies on pseudo-syntactic features, we used features ex-
tracted from dependency parse trees. Moreover, we used virtually all the words connected
syntactically to a term, not only the modifiers.

A syntactic feature is a pair: (word, syntactic relation) (see [6]), for example (“in-
vent”, subject-of). We consider two feature types: First order features, which are directly
connected with the test examples in the dependency parse trees of Corpus; second order
features, which are connected to the training or test instances indirectly by skipping one
word (the verb) in the dependency tree. As an example, let’s consider two sentences:
“Edison invented the phonograph” and “Edison created the phonograph”. If “Edison” is a
name to be classified, then two first order features of this name exist - (“invent”, subject-
of) and (“create”, subject-of). One second order feature can be extracted - (“phonograph”,
object-of+subject); it co-occurs two times with the word “Edison”.

3.4. Weakly Supervised Class-Example Approach

The approach we present here uses the same processing stages as the one presented
in Figure 1 and relies on context features extracted from a corpus. However, the Class-
Example algorithm receives as an additional input parameter the sets of training exam-
ples Train(c) for each class c ∈ C. These training sets are simple lists of instances
(i.e. terms denoting Named Entities) without any context. They can be acquired auto-
matically or semi-automatically from an existing ontology or gazetteer. To facilitate their
acquisition, the Class-Example approach imposes no restrictions on the training exam-
ples - they can be ambiguous and have different frequencies. However, they have to ap-



pear in Corpus (in our experimental settings - at least twice). For example, for the class
“mountain” training examples are: “Everest”, “Mauna Loa”, etc.

The algorithm learns from each training set Train(c) a single feature vector vc. We
used syntactic features in our expreriments, therefore we call vc a syntactic model of the
class. In our algorithm, the statement

vc = getContextV ector(c, Corpus)

on Figure 1 is substituted with

vc = getSyntacticModel(Train(c), Corpus)

.
For each class c, a set of context features F (c) are collected by finding the union

of the features extracted from each occurrence in the corpus of each training instance in
Train(c). Next, the feature vector vc is constructed: If a feature is not present in F (c),
then its corresponding coordinate in vc has value 0; otherwise, it has a value equal to the
feature weight.

The weight of a feature fc ∈ F (c) is calculated in three steps:

1. First, the co-occurrence of fc with the training set is calculated:

weight1(fc) =
∑

t∈Train(c)

α · log( P (fc, t)
P (fc).P (t)

)

where P (fc, t) is the probability that feature fc co-occurs with t, P (fc) and P (t)
are the probabilities that fc and t appear in the corpus, α = 14 for syntactic
features with lexical element noun and α = 1 for all the other syntactic features.
The α parameter reflects the linguistic intuition that nouns are more informative
than verbs and adjectives which in most cases represent generic predicates. The
optimal values of α were automatically learned from the training data.

2. We normalize the feature weights, since we observed that they vary significantly
between different classes:
First, for each class c we find the feature with maximal weight and denote its
weight with Wmax(c),

Wmax(c) = maxfc∈F (c)weight1(fc)

Next, the weight of each feature fc ∈ F (c) is normalized by dividing it with
Wmax(c):

weightN (fc) =
weight1(fc)
Wmax(c)

3. To obtain the final weight of fc, we divideweightN (fc) by the number of classes
in which this feature appears. This is motivated by the intuition that a feature
which appears in the syntactic models of many classes is not a good class predic-
tor.



weight(fc) =
weightN (fc)
|Classes(fc)|

where |Classes(fc)| is the number of classes for which fc is present in the syn-
tactic model.

As shown in Figure 1, the classification uses a similarity function sim(vt, vc) whose
arguments are the feature vector of a term vt and the feature vector vc for a class
c. We defined the similarity function as the dot product of the two feature vectors:
sim(vt, vc) = vc ·vt. To simplify the calculation, the vectors vt are binary (i.e. the feature
value is 1 if the feature is present and, 0-otherwise), while the features in the syntactic
model vectors vc receive weights according to the approach described in this section.

4. Representing Syntactic Information

Due to efficiency issues, state-of-the-art syntactic based approaches for OP use superfi-
cial syntactic features extracted from a relatively small data set ([12]) or the Web ([7]).
However, Almuhareb and Poesio ([7]) say that it would be better to use a full parsing
instead of that, but it is “computationally much more expensive”. We used a full parser
to parse a relatively large off-line news corpus of about half a gigabyte. Our approach ex-
tracts from this corpus the syntactic features for the Class-Word and the Class-Example
methods. Using a large off-line data set mitigates the problem of data sparseness and un-
like the Web-based approaches, it allows for fast feature extraction thus making possible
to perform large-scale learning.

Syntactic Pre-processing. We used MiniPar - a statistically based full dependency
parser [21] to process the corpus. The obtained dependency structures are directed la-
belled graphs whose vertices represent words and the edges between them represent syn-
tactic relations like subject,object, modifier, etc. Examples for two dependency structures
- g1 and g2, are shown in Figure 2: They represent the sentences “John loves Mary” and
“John loves Jane”; labels s and o on their edges stand for subject and object respec-
tively. The syntactic structures generated by MiniPar are dendroid (tree-like), but still cy-
cles appear in some cases. We performed some normalizations on the output of MiniPar;
the most important of them was to put the prepositions on the arcs as labels, instead of
treating them as separate nodes.

Syntactic Network. In order to find information efficiently in a large corpus of millions
of syntactic graphs, we had to index them using an appropriate model. Building a classic
index at word level was not an option, since we had to search for syntactic structures,
not words. On the other hand, indexing syntactic relations (i.e. word pair and the rela-
tion between the words) would be useful, but still does not resolve the problem, since in
many cases we search for more complex structures than a relation between two words:
for example, when we have to find which words are syntactically related to a Named
Entity composed of two words, we have to search for syntactic structures which consists
of three vertices (two for the Named Entity and one for the related word) and two edges
(one connects the two words representing the Named Entity and one connects the en-
tity to the related word). To solve this problem, we present a more elaborated model for
representation of a set of labelled graphs, called Syntactic Network (SyntNet for short).
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Figure 2. Two syntactic graphs and their Syntactic Network.

The model is inspired by a representation schema which we presented earlier in [22],
however SyntNet allows for more efficient processing. The scope of our model is to rep-
resent a set of labelled graphs through one aggregate structure in which the isomorphic
sub-structures overlap. When SyntNet represents a syntactically parsed text corpus, its
vertices are labelled with words from the text while edges represent syntactic relations
from the corpus and are labelled accordingly.

An example is shown on Figure 2, where two syntactic graphs, g1 and g2, are merged
into one aggregate representation SyntNet(g1, g2). Vertices labelled with equal words
in g1 and g2 are merged into one generalizing vertex in SyntNet(g1, g2). For exam-
ple, the vertices with label John in g1 and g2 are merged into one vertex John in
SyntNet(g1, g2).

Edges are merged in a similar way: (loves, John) ∈ g1 and (loves, John) ∈ g2 are
represented through one edge (loves, John) in SyntNet(g1, g2).

Each vertex in g1 and g2 is labelled additionally with a numerical index which is
unique for the graph set. Numbers on vertices in SyntNet(g1, g2) show which ver-
tices from g1 and g2 are merged in the corresponding SyntNet vertices. For example,
vertex loves ∈ SyntNet(g1, g2) has a corresponding index set {1, 4} which means
that vertices 1 and 4 are merged in it. In a similar way the edge (loves, John) ∈
SyntNet(g1, g2) is labelled with two pairs of indices (4, 5) and (1, 2), which shows that
it represents two edges: the edge between vertices 4 and 5 and the edge between 1 and 2.

Two properties of SyntNet are important: First, isomorphic sub-structures from all
the graphs represented via a SyntNet are mapped into one structure. This allows us to
easily find all the occurrences of multiword terms and named entities. Second, using the
numerical indices on vertices and edges, we can efficiently calculate which structures
are connected syntactically to the training and test terms. As an example for structure
tracing, let’s try to calculate in which constructions the word “Mary” appears considering
SyntNet on Figure 2. First, in SyntNet we can directly observe that there is the relation
loves → Mary labelled with the pair 1 → 3 - therefore this relation appears once in
the corpus. Next, tracing the numerical indices on the vertices and edges we can find
a path from “Mary” to “John” through “loves”. The path passes through the following
numerical indices: 3 ← 1 → 2, this means that there is one appearance of the structure
“John loves Mary” in the corpus, spanning through vertices 1, 2, and 3. Such a path
through the numerical indices cannot be found between “Mary” and “Jane” which means
that they do not appear in the same syntactic construction in the corpus.

It can be shown that each syntactic structure can be found in the SyntNet in
O(MaxCO · log2MaxCO+ log2|arcs|) time, where MaxCO is the maximal number



of occurrences of a syntactic pair (syntactic pair is a pair of words connected by a syn-
tactic arc, for example loves o−→Mary) and |arcs| is the number of the arcs in SyntNet,
that is the number of the different syntactic pairs in the corpus. We present more detailed
complexity analysis in the Appendix to this paper.

SyntNet is built incrementally in a straightforward manner: Each new vertex or edge
added to the network is merged with the identical vertex or edge, if such already exists
in SyntNet. Otherwise, a new vertex or edge is added to the network. The time necessary
for building a SyntNet is proportional to the number of the vertices and the edges in the
represented graphs (and does not otherwise depend on their complexity).

We used the properties of SyntNet in order to trace efficiently the occurrences of
Named Entities in the parsed corpus, to calculate their frequencies, to find the syntactic
features which co-occur with these Named Entities, as well as the frequencies of these co-
occurrences. Moreover, the SyntNet model allowed us to extract more complex, second
order syntactic features which are connected indirectly to the terms in the training and
the test set.

5. Experimental settings and results

macro P (%) macro R (%) macro F (%) micro F(%)

patterns 18 6 9 10

Class-Word 32 41 33 42

Class-Example 67 63 62 65

Table 1. Comparison of different approaches.

We have evaluated all the three approaches described in Section 3. The same evalua-
tion settings were used for the three experiments. The source of features was a news cor-
pus of about half a gigabyte. The corpus was parsed with MiniPar and a Syntactic Net-
work representation was built from the dependency parse trees produced by the parser.
Syntactic features were extracted from this SyntNet.

We considered two high-level Named Entity categories: Locations and Persons. For
each of them five fine-grained sub-classes were taken into consideration. For locations:
mountain, lake, river, city, and country; for persons: statesman, writer, athlete, actor,
and inventor.

For each class under consideration we created a test set of Named Entities using
WordNet 2.0 and Internet sites like Wikipedia. For the Class-Example approach we also
provided training data using the same resources. WordNet was the primary data source
for training and test data. The examples from it were extracted automatically. To do this,
for each concept under consideration, we took the instances of this concept by consid-
ering its hyponyms which begin with uppercase letters and which are leaves of the tax-
onomy tree, rooted in this concept. We used the Internet to get additional examples for
some classes.

For example, Wikipedia has articles such as “List of inventors” which enumerate
certain concept instances. Other Web pages also contain similar lists. We created auto-
matic text extraction scripts for these Web sites. We manually processed their output,
when it was necessary.



In total, the test data comprised 280 Named Entities which were not ambiguous and
appeared at least twice in the corpus.

For the Class-Example approach we provided a training set of 1194 names. The only
requirement to the names in the training set was that they appear at least twice in the
parsed corpus. They were allowed to be ambiguous and no manual post-processing or
filtering was carried out on this data.

For both context feature approaches (i.e. Class-Word and Class-Example), we used
the same type of syntactic features and the same classification schema, namely the one
described in Section 3.3. This was done in order to compare better the approaches.

Results from the comparative evaluation are shown in Table 1. For each approach
we measured macro and micro average precision, macro and micro average recall, and
macro and micro average F-measure.

The micro measures consider all the terms across all the classes together: The micro
average precision is calculated by dividing the number of the correctly classified terms
to the number of all the terms which were classified. The micro average recall is the
number of the correctly classified terms divided by the total number of terms. The micro
F is calculated from the micro precision and the micro recall. In the experiments with
Class-Word and Class-Example approaches we assigned a class to each term from the
test set. That is why micro average precision is equal to the micro average recall and both
of them are equal to the micro F - all these three measures refer to the percent of the
instances classified correctly. It was not the case with the pattern-based approach, where
some entities were not classified.

The macro average measures were calculated as average of the corresponding mea-
sures for each class. For example, if we have x instances of the class actor in the test
set, the system recognizes y instances of the class actor and z of them are recognized
correctly, then the precision of populating the actor class is z/y, the recall is z/x, and the
F measure is calculated from the precision and the recall. We calculated precision, recall,
and F measure for each class, then the macro precision was calculated as the average of
the precisions of all the classes, the macro recall was set to the average of the recalls and
macro F was set to the average of the F measures.

The first row of Table 1 shows the results obtained with superficial patterns. The
second row presents the results from the Class-Word approach. The third row shows the
results of our Class-Example method.

The pattern-based approach showed low performance, similar to the random clas-
sification, for which macro and micro F=10%. Patterns succeeded to classify correctly
only instances of the classes “river” and “city”. For the class “city” the patterns reached
precision of 100% and recall 65%; for the class “river” precision was high (i.e. 75%), but
recall was 15%.

The Class-Word approach showed significantly better performance (macro F=33%,
micro F=42%) than the pattern-based approach.

The performance of the Class-Example (62% macro F and 65% micro F) is much
higher than the performance of Class-Word (29% increase in macro F and 23% in micro
F).

A more detailed evaluation of the Class-Example approach is shown in Table 2. Re-
sults vary between different classes: The highest F is measured for the class “country”
- 89% and the lowest is for the class “inventor” - 18%. However, the class “inventor” is
an exception - for all the other classes the F measure is over 50%. Another difference



P (%) R (%) F (%)

mountain 58 78 67

lake 75 50 60

river 69 55 61

city 56 76 65

country 86 93 89

locations macro 69 70 68

statesman 42 72 53

writer 93 55 69

athlete 90 47 62

actor 90 73 80

inventor 12 33 18

persons macro 65 56 57

total macro 67 63 62
total micro 65 65 65

category location 83 91 87
category person 95 89 92

Table 2. Performance of the Class-Example approach

may be observed between the Location and Person classes: Our approach has a better
performance for the locations (68% vs. 57% macro F). Although different classes had
different number of training examples, we observed that the performance for a class does
not depend on the size of its training set. We think, that the variation in performance
between categories is due to the different specificity of their textual contexts. As a con-
sequence, some classes tend to co-occur with more specific syntactic features, while for
other classes this is not true.

Additionally, we measured the performance of our approach considering only the
macro-categories “Location” and “Person”. For this purpose we did not run another ex-
periment, we rather used the results from the fine-grained classification and grouped the
already obtained classes. Results are shown in the last two rows of table 2: It turns out
that the Class-Example method makes very well the difference between “location” and
“person” - 90% of the test instances were classified correctly between these categories.

Syntactic Features. We looked at the syntactic model of every concept produced by the
Class-Example approach and found that in most of the cases our approach weights the
syntactic features in a relevant manner. For example, the top ranked features for the class
“river” are:

• bank of [NAME]
• [NAME] river
• [NAME] region
• [NAME] town
• [NAME] cruise
• canoe down [NAME]
• cross [NAME]
• [NAME] basin
• road along [NAME]



(Here the syntactic features are represented in their linearized text form.) We also reached
the conclusion that some of the undesired features come from ambiguity of the name.
For example, one of the top ranked feature for the class “mountain” was found to be
[NAME] brand; this is because some of the mountain names can be name of brands too.
One way to resolve this problem is to perform text filtering, for example for the class
“mountain” we can use only geographical texts.

We did not show in the presented evaluation table the results obtained with the
second-order syntactic features, since it turned out that it is impossible to learn appro-
priate weights for these features using the training set. However, we experimented with
different weights and measured the performance on the test set. The optimal weight con-
figuration for the test set resulted in a macro F of 62% and micro F of 68%, adding 3%
to the micro F.

6. Conclusions and future work

In this paper we presented a new weakly supervised approach for ontology popula-
tion, called Class-Example, and confronted it with two other methods. Experimental
results show that the Class-Example approach has best performance. In particular, it
reached 65% of accuracy, outperforming in our experimental framework the state-of-the-
art Class-Word method by 42%. The presented weakly supervised Class-Example ap-
proach takes on the input simple lists of training instances which can be automatically
acquired from existing knowledge bases, dictionaries, and gazetteers. This makes our
weakly supervised methodology applicable on larger scale than supervised approaches,
still having significantly better performance than the unsupervised ones. The 42% advan-
tage of the Class-Example versus the Class-Word approaches may be viewed as a clue to
the correctness of our assumption that the context distrubution of the class instances is
different than the context distribution of the word representing the class name.

In our experimental framework we used syntactic features extracted from depen-
dency parse trees generated by a full parser - MiniPar. We put forward Syntactic Net-
work - a novel model for representation of a syntactically parsed corpus. This model al-
lows for performing efficient and comprehensive extraction of syntactic features from a
parsed corpus. Empirical observations not described in this paper lead us to the conclu-
sion that the performance of an ontology population system improves with the increase
of the types of syntactic features under consideration. In this clue, the Syntactic Network
model played an important role in the ontology population process, since it allowed us to
use different types of relations. This model made it feasible to exploit without limitations
the expressive power of the full parser and to use as a corpus large amounts of text.

In our future work we consider applying our ontology population methodology to
more semantic categories and to experiment with other types of syntactic features, as well
as other types of feature-weighting formulae and learning algorithms. A bootstrapping
OP appoach can be developed on the basis of Class-Example method in which the new
classified instances are used as training ones in a consecutive learning iteration.

In the framework of Information Extraction and Question Answering the Class-
Example method can be used to populate domain specific ontologies which back up fine-
grained Named Entity recognition and answer extraction.
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Appendix: Complexity analysis of the structure tracing in the SyntNet model
In our experiments the SyntNet was stored in a database. Let’s estimate the com-

plexity of calculating how many times a structure appears in the corpus, using the
database. As an example we will follow how the occurrences of the constructioin
John

s←− loves o−→Mary are traced in SyntNet on Figure 2.
First, we have to find between which pairs of vertices the arcs John s←− loves

and loves o−→ Mary appear. From SyntNet(g1, g2) on Figure 2 we can see that the
first arc has two index pairs assigned (4, 5) and (1, 2); the second arc has one index
pair (1, 3). In the SyntNet database there is an inverted index which maps each arc to
these index pairs, therefore the time for searching and collecting the occurrences of an
arc a is log2(|arcs|) + CountOccurrences(a), where |arcs| is the number of arcs in
the SyntNet, and CountOccurrences(a) is the number of the occurrences of a in the
corpus. For example, CountOccurrences(John s←− loves) = 2.

Since the index pairs denote arc occurrences, the first index of each pair is an initial
vertex of an arc occurrence. The set of the first indices of the arc’s index pair we call
initial index set. The initial index set of John s←− loves is {4, 1} and the initial index
set of loves o−→ Mary is {1}. For each arc a the cardinality of the initial index set
is at most CountOccurrences(a), therefore the number of operations for extraction
of the initial index set of a and ignoring its duplicates is O(CountOccurrences(a) ·
log2CountOccurrences(a)).

We calculate the intersection of the initial index sets of the two arcs: {1} ∩ {4, 1} =
{1}. We refer to this intersection as intersection index set. The indices in this intersec-
tion refer to these vertices which are initial for the occurrences of both arcs. In this
example, the intersection contains only one vertex with index 1. This means that the
construction John s←− loves

o−→ Mary appears once in the corpus and it is rooted in
vertex number 1. As we stated, the initial index set of each arc a has no more than
CountOccurrences(a) elements. Intersection between two sets each having no more
than n elements requires at most O(n · log2n) operations. If MaxCO is the maximal
value ofCountOccurrences(a) for the arcs from a given SyntNet, then intersection will
require no more than O(MaxCO · log2MaxCO) operations for each pairs of arcs from
SyntNet.

When we obtain the intersection index set, we may go back to the pairs of indices
of the two arcs and consider all index pairs which begin with some of the elements
from the intersection index set. We refer to this last operation as index set propagation.
In this example the index set propagation will return the pairs (1, 2) and (1, 3). In this
example the propagation is necessary to compute the occurrences of the three-vertices
construction as a whole. Propagation requires at most O(MaxCO) operations, since
each arc under consideration has at most MaxCO index pairs.

Taking into account all the estimates, the upper bound of the the number of opera-
tions necessary to calculate the occurrences of a construction of two arcs is

O(MaxCO · log2MaxCO + log2|arcs|)



In a similar manner, using sequences of intersections and propagations we may
trace the occurrence of syntactic constructions of any type. If the size of these syntac-
tic constructions is limited by a constant, it may be shown that the complexity estimate
O(MaxCO · log2MaxCO + log2|arcs|) is valid also in this general case when the
syntactic graphs from the corpus do not contain cycles. When cyclic constructions ap-
pear, it is necessary to add control in order to avoid infinite loops in the intersection and
propagation cycles; this may lead to increased complexity.
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Introduction

The vast amount of information stored in on-line sources is pushing forward the efforts in
researching new techniques to process it effectively. The last decade has witnessed many
successful systems for Information Extraction and Information Retrieval able to cope
with large data repositories, but the extraction of semantic information from web data is
still far from being fully solved. Therefore, we can recently observe increasing interest
in Information Extraction tools able to learn efficiently how to annotate on-demand from
unlabelled data [1,2]. On the other hand, the appearance of new types of web content
such as wikis, web forums and blogs, provides a new source of textual information with
an underlying structure that can be exploited to increase the performance of automatic
annotation systems. Thus, for example, existing wikis may be used as external knowledge
sources for improving the precision of existing systems [3,4] or the wikis themselves
may be extended automatically with semantic information [5]. Web forums can also be
analysed to obtain information on social interaction [6].

The availability of semantic annotations would have applications in many fields.
Two examples are ontology-based information retrieval [7] or semantic work environ-
ments [8]. The explicit annotation with relations (syntactically and semantically moti-
vated) also improves the performance of Question-Answering systems [9,10,11]. Some
authors have proposed that the semantic annotations can be added manually to docu-
ments following the wiki philosophy of collaboration in large communities, combined
with lowering the technical barriers. The annotations may be as simple as tags attached
to hyperlinks [12]. But, even if we take into consideration that many wiki systems have a

1Corresponding Author: E-mail: Maria.Ruiz@uam.es.



very large community of users, the semantic tagging can still be considered a bottleneck:
placing labels in a large amount of existing content, sometimes also rapidly evolving,
can be too costly if it has to be done manually. In February 2007, the Wikipedia already
exceed 200,000 articles in at least 10 languages. If all these entries were to be extended
with semantic annotations manually in a reasonable amount of time, the cost would be
enormous, if not unfeasible. The problem is more acute when annotating personal or
company-owned textual databases, where the number of users and information managers
may be small and the amount of data comparatively very large.

In answer to this need, the use of semi-automatic annotation procedures has been the
object of extensive research. In general, semantic tags provide the same information that
a human reader can elicit (sometimes unconsciously) from an untagged natural-language
text: names of locations, people, organisations and other entities mentioned in the text,
events and relations involving them, spatiotemporal attributes for those events, etc. For
instance, a text may convey that a particular person works for a specific company at
some date. The automation of labelling natural language texts can benefit from partly
structured information that these may have, such as tables, lists, or LaTeX, HTML or
XML tags. Wrappers [13,14] take advantage of this structure in tagging portions of the
documents. However, they are not applicable to any document that does not follow a
fixed structure. In order to be applicable in more general cases, the use of Natural Lan-
guage Processing techniques such as Word-Sense Disambiguation (WSD), Named En-
tity Recognition and Classification (NERC), co-reference resolution, Term Identification
(TI) or relation extraction have proved their usefulness.

This chapter describes a proposed architecture that, focusing on the Wikipedia as
a textual repository, aims at enriching it with semantic information in a fully automatic
way. This approach is based on many of the above-mentioned NLP techniques, and a
special focus is placed on the identification of relations between entities in the texts.
The structure of the chapter is as follows: Section 1 provides a brief overview of related
systems; Section 2 describes the proposed architecture and details internally some of its
components; and, finally, Section 3 concludes the chapter.

1. Related work

Wikipedia, from its very beginning, attracted the attention of the research community
as a resource to study social and collaborative interactions and trust [15,16]. More re-
cently, there is an increasing interest in using the Wikipedia as a linguistic resource, with
applications as varied as Named Entity Recognition [17], Named Entity Disambigua-
tion [3], generation of parallel corpora [18], Question Answering [19], and co-reference
resolution and semantic similarity calculation [20].

Concerning the automatic annotation of the Wikipedia, to our knowledge, there is no
other work reported addressing the task of annotating it automatically with Semantic Web
formalisms to this extent, including the disambiguation and classification of the entries
in an ontology, and the extraction of taxonomic and non-taxonomic relations. However,
there are several works that attempt to partially annotate it with either taxonomic relations
[21], general relations [22] or generic “common-sense” RDF statements [23], amongst
other works.

In the particular case of the automatic identification of relations in unrestricted text,
there is already much work, although not necessary confined to the particular case of the



Wikipedia. Some use machine-readable dictionaries [24,25,26], WordNet glosses [27,28,
29] or just free text, by analysing distributional properties of words [30,31,32,33]. The
use of lexical or lexicosyntactic patterns has been proposed more than a decade ago to
discover ontological and non-taxonomic relations between concepts. Hand-made regular
expressions have been used to extract hyponymy or part-of relations [34,35,36]. Kietz et
al. [37] quantify the error rate of a similar approach for extracting taxonomic relations
at 32%. Other approaches learn patterns that express non-taxonomic relations, such as
company merge relations [38].

Systems that learn these lexical patterns using web corpora have the advantage that
the training corpora can be collected easily and automatically. Several approaches have
been proposed recently [39,40,10,41,42], having various applications in mind: Question-
Answering [10], multi-document Named Entity Coreference [43], and the generation of
biographical information [44]. Some procedures that are specially relevant with respect
to our work are those by Pantel and Pennacchiotti [42,45] and Blohm et al. [46].

Other architectures for automatic semantic annotation of unrestricted text [47] are
TextToOnto [48], OntoLT [49], KIM [50], C-PANKOW [51] and Text2Onto [52].

2. General architecture

The proposed architecture has been designed to be general enough to be applicable to
any kind of texts. However, for the experiments, we have chosen to use the Wikipedia,
because of the following reasons:

• Wikipedia is an encyclopedia, and as such it is organised in entries, each one hav-
ing a more or less fixed structure: each entry contains a title of the term described,
the first paragraph provides a brief definition of that term, and the remaining text
further elaborates it.

• It already contains some annotations explicitly provided by the users, such as a
(rather noisy) hierarchy of categories, or information on polysemous terms with
so-called disambiguation pages, which might be useful for extending the proposed
architecture.

• Wikipedia has already proven useful as a linguistic resource [3].

On the other hand, Wikipedia is a work-in-progress, and as such it contains errors, for
instance duplicated entries, or dangling links, i.e. hyperlinks to Wikipedia entries that
have not been created yet. Throughout this paper we shall make the distinction between
existing Wikipedia pages (those that have been created and contain text) and non-existing
Wikipedia pages (those that are pointed to by at least one hyperlink but still have not
been created).

The general architecture of the proposed approach for the acquisition and annota-
tion of semantics from Wikipedia is depicted in Figure 1. The system proceeds in the
following way:

1. A central Knowledge Base stores the Wikipedia entries and all annotations ob-
tained about them automatically produced by our system. Initially, it contains a
lexical semantic network to which the Wikipedia entries will be associated, in or-
der to have some world knowledge to depart from. The current implementation
uses WordNet [53], although other lexical semantic networks would also be valid.



Figure 1. Architecture of the system for the automatic annotation of the Wikipedia with semantic relations.

2. A static dump of the Wikipedia is processed with NLP tools. All the information
obtained in this step is directly encoded in XML inside the downloaded Wikipedia
entries, so it can be easily accessed by the following modules. Because that is just
syntactic information (and not semantic), it is not placed yet inside the knowledge
base.

3. A set of relevant terms is extracted from the Wikipedia pages, including (a) the
titles of existing pages; (b) the target of hyperlinks to pages that do not exist yet;
and (c) named entities identified by the NLP tools that do not have an associated
page, representing names of people, locations or organisations. These terms are
now contrasted with the lexical semantic network stored in the central repository,
and classified in three types:

• those terms that do not appear in the semantic network, which are labelled as
unknown (for the moment),

• those terms that appear both in the Wikipedia and in the semantic network
with just one meaning. These are assumed to be monosemous, and to have the
same meaning as in the network. For those terms for which there is an entry
in the Wikipedia, the entry is immediately associated to the corresponding
node in the semantic network,

• those terms that appear with several senses in the semantic network or in
Wikipedia, which are labelled as polysemous terms.

4. The terms from step 3 that are polysemous are subject to a disambiguation process
in order to discover which Wikipedia entries correspond to each of the meanings
of those words in WordNet.

5. The terms from step 3 that are labelled as unknown are fed into a classification
module that tries to classify them inside WordNet by learning taxonomic relations



(hyperonymy, is-a relations) between them. Furthermore, a procedure to learn non-
taxonomic relations is also run on all the entries (7).

6. The new is-a relations learnt in step 5 are classified as subclass or instance-of
relations.

The system annotates the Wikipedia entries in the format of the Semantic Wikipedia,
by annotating the Wikipedia hyperlinks with labels.

The following subsections further elaborate some of these steps.

2.1. Linguistic processing

The computational linguistics tools chosen for the experiments is the wraetlic NLP
toolkit [54] that provides information on tokenisation, sentence splitting, morphological
analysis, part-of-speech tagging, Named Entity Recognition and Classification, chunk-
ing and partial parsing. As indicated, the annotations are encoded in XML inside the
Wikipedia entries, which makes it convenient when they are needed for analysis later on.
For illustration, Figure 2 shows the annotations added to a sample sentence after hav-
ing been analysed by the tools. As can be seen, the syntactic analysis performed is only
partial, as prepositional phrase attachment or coordination are not resolved by the parser.

Using the above-mentioned modules, and choosing the Maximum-Entropy Named
Entity Classifier (the fastest one), the toolkit can process a dump of the English Wikipedia
(approx. 1,300,000 articles) in about two weeks on a 800 MHz PC laptop with 1 GB of
RAM memory.

2.2. Terminology extraction

Traditional Term Identification systems [55,56,57] study different properties of domain-
dependent texts in order to identify terms that are relevant for a particular domain. Typ-
ical approaches combine lexicosyntactic patterns and various statistical analysis of term
distributions (whether a term is used uniformly throughout the text or appears in bursts),
relative frequency in domain-specific texts compared to general-purpose corpora, and
word association metrics to identify multiword expressions.

In our particular case, dealing with the Wikipedia, we are interested in annotating
relationships between concepts that are relevant enough to possibly have their own entry
in the encyclopedia. Some of these entries may be general-purpose concepts (e.g. cat
or house), others are domain-specific concepts (e.g. pterodactyl or thiocyanic acid), and
many others are proper names referring to particular instances of those concepts (e.g.
Pterodactyl (film) or William Shakespeare). In order to extract these terms, statistical
techniques based on domain-specific corpus-analysis are not very appropriate because
in the Wikipedia we can find entries from any possible domain of knowledge. If we
compare the relative frequency of these terms with the frequency in a general corpus,
such as the British National Corpus, many of the general-purpose terms defined in the
Wikipedia will not be extracted as terms, and we want to be able to annotate them with
semantic information as well.

Furthermore, word-association metrics like Mutual Information may be helpful to
find multiword concepts and instances, but they are not so useful to find terms that appear
with a low frequency throughout the encyclopedia, such as the names of not well-known
people.



<p id="1">
<s id="2">

<np appositive="yes" id="1822">
<np det="definite" head="yes" id="3" number="singular" person="3">

<w c="w" id="4" pos="DT">The</w>
<w c="w" id="5" pos="JJ">Asian</w>
<w c="w" id="6" pos="NN" stem="giant">giant</w>
<w c="w" head="yes" id="7" pos="NN" stem="hornet">hornet</w>

</np>
<np head="yes" id="1820">

<w c="brackets" id="8" pos="(">(</w>
<np head="yes" id="9">

<w c="w" id="10" pos="NNP" stem="Vespa">Vespa</w>
<w c="w" id="11" pos="NN" stem="mandarinium">mandarinia</w>

</np>
<w c="brackets" id="12" pos=")">)</w>

</np>
</np>
<w c="," id="13" pos=",">,</w>
<np det="definite" id="14" number="singular" person="3">

<np det="none" id="17" number="singular" person="3" case="genitive">
<w c="w" id="15" pos="DT">the</w>
<w c="w" head="yes" id="16" pos="NN" stem="world">world</w>
<w c="ctr" id="19" pos="POS">’s</w>

</np>
<w c="w" id="20" pos="JJS">largest</w>
<w c="w" head="yes" id="21" pos="NN" stem="hornet">hornet</w>

</np>
<w c="," id="22" pos=",">,</w>
<vbar id="23" tense="finite" time="present">

<w c="w" head="yes" id="24" lexhead="yes" pos="VBZ" stem="be">is</w>
</vbar>
<np det="indefinite" id="25" number="singular" person="3">

<w c="w" id="26" pos="DT">a</w>
<w c="w" head="yes" id="27" pos="NN" stem="native">native</w>

</np>
<w c="w" id="28" pos="IN">of</w>
<np det="none" id="29" number="singular" person="3">

<w c="w" id="30" pos="JJ">temperate</w>
<w c="w" id="31" pos="CC">and</w>
<w c="w" head="yes" id="32" pos="JJ">tropical</w>
<np entity="location" id="33">

<w c="w" id="34" pos="NNP" stem="Eastern">Eastern</w>
<w c="w" id="35" pos="NNP" stem="Asium">Asia</w>

</np>
</np>

</s>
</p>

Figure 2. Sample sentence with shallow syntactic information: The Asian giant hornet (Vespa mandarinia),
the world’s largest hornet, is a native of temperate and tropical Eastern Asia.

On the other hand, we can benefit from the structure of the Wikipedia to find easily
most of the terms that are described in the Wikipedia and for which we can extract
relations:

• The titles of the entries, after some cleanup, are good candidates to be relevant
terms.



• All the links to (as yet) non-existing Wikipedia pages, because some user consid-
ered that those terms are relevant enough to have their own entries. Also, it might
be possible to extract relations between the terms defined in the entries containing
those links and the non-existing pages.

• All the Named Entities identified during the linguistic processing step, which are
already classified as people, locations and organisations. We assume that any per-
son, place or organisation is potentially important enough as to have its own entry
in the Wikipedia.

All the terms considered are obtained from either manual annotations or the output of a
Named Entity tagger, which attains an F-score of 96% for people and locations, and 92%
for organisations [54]. Therefore, we can assume that the list of terms is highly precise.
Even though coverage could be somewhat improved with statistical techniques for iden-
tifying domain-dependent terms, the Wikipedia is currently so large that we assume that
this list is broad enough.

Next, all these terms are compared to WordNet, the lexical semantic network with
which the Knowledge Base is initialised, and they are grouped in the three categories
mentioned before:

• Those that appear with only one meaning both in Wikipedia (i.e. there is just one
entry for them) and in WordNet (i.e. there is only one synonym set). For all of
these, we assume that they are monosemous terms and they are used with the same
meaning in both places, so the WordNet synset is associated in the Knowledge
Base to the Wikipedia entry. The motivation for this is to assume that, if only one
sense of the term has been chosen to create a Wikipedia entry and to be included
in WordNet, it is probably the most salient meaning of that term, given that both
Wikipedia and WordNet are general-purpose resources and are, in principle, not
biased towards any particular domain.
Previous experiments [58] considered a sample of 180 terms with one meaning
both in the Simple English Wikipedia and in WordNet, and a manual evaluation
indicated that they really referred to the same concept in 98.33% of the cases. For
instance, an erroneous case is that of Cheddar. In the English Wikipedia there is
just one entry called Cheddar, referring to the village in Sommerset, and in Word-
Net there is one synset, referring to the cheese. In this case it should be possible
to find the error with further processing, because that WordNet synset contains a
synonym, Cheddar cheese, which would be attached to a different Wikipedia entry.

• Those that appear with more than one meaning either in the Wikipedia or in Word-
Net. These are labelled as polysemous, and are later processed by the disambigua-
tion module (Section 2.3).

• Those terms that do not appear in WordNet, which are categorised as unknown:
the procedure to classify them in WordNet is described in Section 2.4.

2.3. Word Sense Disambiguation

If there are several entries in the Wikipedia with the same title, or if several WordNet
synsets contain the name of an entry, it is necessary to disambiguate the meaning of the
title in order to associate the entries and the synsets. Polysemous titles in the Wikipedia
can be discovered because either two titles only differ by a brief explanation between



Table 1. A (non-thorough) listing of different entries in the Wikipedia about persons called John Smith.
John Smith (Ontario MP) John Smith (Ontario MPP) John Smith (UK politician)
John Smith (Welsh politician) John Smith (US politician) John Smith (Conservative politician)
John Smith (actor) John Smith (actor 2) John Smith (BBC)
John Smith (Clockmaker) John Smith (comics) John Smith (filmmaker)
John Smith (guitarist) John Smith (Scientologist) John Smith (mathematician)
John Smith (dentist) John Smith (baseball player) John Smith (footballer)
John Smith (wrestler) John Smith (1832-1911) John Smith (1781-1854)
John Smith (Platonist) John Smith (missionary) John Smith (brewer)
John Smith (Medal of Honor recipient, 1880) John Smith (VC)

parentheses, or because there is a disambiguation page. Table 1 shows an example of the
first case: there are more than twenty entries about a person called John Smith, where
the entry titles can be distinguished by the small explanation between parenthesis. In
this case, there is also a disambiguation page listing all these entries and a few others,
including John Smith of Jamestown, the English soldier and colony leader. In this case,
there is only one synset in WordNet that contains John Smith, so it is necessary to contrast
all the mentioned entries with the definition and semantic relations of WordNet’s John
Smith:

Smith, John Smith – (English explorer who helped found the colony at Jamestown, Virginia;
was said to have been saved by Pocahontas (1580-1631))

The problem of matching Wikipedia entries and WordNet synsets is a particular case
of a classical problem in Natural Language Processing called Word Sense Disambigua-
tion (WSD) [59]. In WSD, similarity metrics between the word to disambiguate and
each candidate sense are usually used for carrying out the task. Different approaches use
co-occurrence information [60], all WordNet relations [61], or just the taxonomic is-a
relation [62], with various success rates. WordNet glosses [63] and Machine Learning
algorithms [64,65,66] are also useful in calculating a semantic similarity.

Our disambiguation task is generally easier than a general WSD in unrestricted text.
Because both Wikipedia entries and WordNet glosses contain term definitions, those that
refer to the same entity will probably highlight the same features. It is much more difficult
to discover whether John Smith, used in the middle of a sentence in general text, refers
to any of the Wikipedia entries, than to match a particular definition of John Smith with
one of the entries’ definitions. That is why the disambiguation accuracy is expected to be
much higher than the accuracy typically obtained by general-purpose WSD systems.

In our case, we want to find a similarity metric between encyclopedia entries and
WordNet synsets. If they refer to the same concept, we can expect that there will be
much in common between the two definitions. This is the reason why the approach fol-
lowed is mainly a comparison between the two glosses, inspired in [67]. It consists of
the following steps:

1. Represent the Wikipedia entry as a vector e using the Vector Space Model, where
each dimension corresponds to a word, and the coordinate for that dimension is
the frequency of the word in the entry.

2. Let S = {s1, s2, ..., sn} be the set of WordNet synsets containing the term defined
in the Wikipedia entry.

3. Represent each synset si as the set of words in its gloss: Gi = {t1, t2, ..., tki },
including their frequencies.



4. Let N = 1
5. Extend the sets Gi with the synonym words in each synset si and its hyperonyms

to a depth of N levels.
6. Weight each term t in every set Gi by comparing the frequency of t in Gi with

its frequency in the glosses for the other senses. In this way, a numerical vector
vi , containing the term weights, is calculated for each Gi . In the experiments, two
weight functions have been tried: tf·idf and χ2.

7. Represent each Wikipedia entry as the set E of words in its first paragraph (which
is usually a short definition of the term being defined). If the length of the first
paragraph is below a threshold θ , continue adding paragraphs until it exceeds it.
Next, weight the terms in E using a weight function to obtain a numerical vector
w j .

8. Apply a greedy algorithm to disambiguate the Wikipedia entries and the WordNet
senses: while there are entries that are not disambiguated, choose the pair (w j , vi )
such that the similarity between w j and vi is the largest. Two similarity metrics
between the two vectors have been tested: the dot product and the cosine, to check
whether the normalisation performed by the cosine could affect the results.
If there is a tie between two or more senses, N is incremented and the procedure
goes back to step 5.

Other weight functions (e.g. the t-score) and similarity functions (e.g. the Jacquard
coefficient and the Dice coefficient) are planned to be tested as future work.

In the final settings, this disambiguation was also extended with a simple procedure
to identify the genus word in the definitions, both in WordNet and in the Wikipedia entry
[26], using simple patterns. So, for example, if the Wikipedia entry for John Smith of
Jamestown would have started with the sentence

John Smith was an English explorer.

then explorer would have been identified as the genus word in the entry. Because the
WordNet synset containing John Smith has as a hyperonym explorer, that would have
been further positive evidence to associate the entry to the synset. We currently double
the similarity score between an encyclopedia entry and a WordNet synset if they have
the same genus word or the entry’s genus word is a hyperonym of the synset.

In an experiment with 180 polysemous Wikipedia entries from the Simple English
Wikipedia, the best accuracy obtained was 84% without the genus word heuristic [58],
and 87% when it was included, using the dot product as similarity metric.

2.4. Classification of unknown words and Relation Extraction

The modules for classifying unknown words and for extracting relations share a com-
mon technique for learning lexicosyntactic patterns, so they are explained together in
this section. Actually, classifying a word inside a taxonomy can be studied as learning
taxonomic is-a relations between that word and the concepts in the taxonomy, so in that
sense it would be a special kind of relation extraction.

The idea for classifying a new term X in an ontology is to learn patterns such as “An
X is a Y” or “X, a kind of Y,” and try to disambiguate Y as some of the concepts in the
ontology. If Y has a hyperlink to another entry, then it has been already disambiguated in
the previous step.



Similarly, for non-taxonomic relations, if we want to learn the birth-date relation,
possible patterns are “X was born in Y at location” or “X (location, Y)”.

Once these patterns have been learnt, they can be applied to the entries categorised
as unknown to try to find their hyperonyms. Non-taxonomic relations between the terms
can also be obtained with these patterns. The learning process is divided in three steps:
pattern extraction, pattern generalisation and pattern scoring, described below.

2.4.1. Pattern extraction

The aim of this step is the extraction of patterns relating two concepts. The process is
slightly different for hyperonymy and for non-taxonomic relations. In the case of hyper-
onymy relations, the strategy is to find pairs of concepts (t, f ) that co-occur in the same
sentence, that have already been disambiguated and that have a hyperonymy relation in
WordNet. The process is the following:

1. For each term t in the Wikipedia, with an entry definition d, we select every term
f such that

• t and f co-occur in the same sentence.
• In d there is a hyperlink pointing to the definition of f .
• f is a hyperonym of t in WordNet.

2. Extract a context from the sentence, around f and t , including at most five words
at their left-hand side, all the words in between them, and at most five words at
their right. The context never jumps over sentence boundaries, which are marked
with the symbols BOS (Beginning of sentence) and EOS (End of sentence).

3. The two related terms are marked as <hook> and <target>.

The condition about the hyperlink guarantees that f has already been disambiguated
with respect to WordNet with a high precision.

In the case of non-taxonomic relations, the procedure is more similar to other web-
based rote extractors [44,10]: for each relation, the user provides the system with a seed
list of related pairs. For instance, for the relation birth year, one such pair might be
(Darwin, 1812). For each of these pairs, the system:

1. Submits a query to a search engine containing both elements, e.g. Dickens AND
1812, and downloads a number of documents to build the training corpus.

2. For any sentence in that corpus containing both elements, the system extracts a
context around them in the same way as it was done for the hyperonymy relation:
at most five words at each side, not crossing sentence boundaries.

The output of this step is, for each relation, a list of free-text patterns that are ex-
pected to represent it. For illustration, in the case of hyperonymy, if the entry for Dalma-
tian contains the sentence A Dalmatian is a dog that has a white coat with black spots,
the pattern produced would be the following: A/DT <hook> is/VBZ a/DT <target>

that/IN has/VBZ a/DT white/JJ coat/NN. Note that the words are annotated
with part-of-speech tags, using the labels defined for the Penn Treebank [68], and infor-
mation of Named Entity types is also encoded in the pattern. Figure 3 shows some of the
patterns found for some relations.



Birth year:
BOS/BOS <hook> (/( <target> -/- number/entity )/) EOS/EOS
BOS/BOS <hook> (/( <target> -/- number/entity )/) British/JJ writer/NN
BOS/BOS <hook> was/VBD born/VBN on/IN the/DT first/JJ of/IN time_expr/entity ,/, <target> ,/, at/IN location/entity ,/, of/IN
BOS/BOS <hook> (/( <target> -/- )/) a/DT web/NN guide/NN

Birth place:
BOS/BOS <hook> was/VBD born/VBN in/IN <target> ,/, in/IN central/JJ location/entity ,/,
BOS/BOS <hook> was/VBD born/VBN in/IN <target> date/entity and/CC moved/VBD to/TO location/entity
BOS/BOS Artist/NN :/, <hook> -/- <target> ,/, location/entity (/( number/entity -/-
BOS/BOS <hook> ,/, born/VBN in/IN <target> on/IN date/entity ,/, worked/VBN as/IN

Author-book:
BOS/BOS <hook> author/NN of/IN <target> EOS/EOS
BOS/BOS Odysseus/NNP :/, Based/VBN on/IN <target> ,/, <hook> ’s/POS epic/NN from/IN Greek/JJ mythology/NN
BOS/BOS Background/NN on/IN <target> by/IN <hook> EOS/EOS
did/VBD the/DT circumstances/NNS in/IN which/WDT <hook> wrote/VBD "/” <target> "/” in/IN number/entity ,/, and/CC

Capital-country:
BOS/BOS <hook> is/VBZ the/DT capital/NN of/IN <target> location/entity ,/, location/entity correct/JJ time/NN
BOS/BOS The/DT harbor/NN in/IN <hook> ,/, the/DT capital/NN of/IN <target> ,/, is/VBZ number/entity of/IN location/entity
BOS/BOS <hook> ,/, <target> EOS/EOS
BOS/BOS <hook> ,/, <target> -/- organization/entity EOS/EOS

Figure 3. Example patterns extracted from the training corpus for each several kinds of relations.

2.4.2. Pattern generalisation

In order to identify the portions in common between the patterns, and to generalise them,
the following pseudo-code is applied:

1. Store all the patterns in a set P .
2. Initialise a setR as an empty set.
3. While P is not empty,

(a) For each possible pair of patterns, calculate the edit distance between them
(allowing for three edit operations: insertion, deletion or replacement).

(b) Take the two patterns with the smallest distance, pi and p j .
(c) Remove them from P , and add them toR.
(d) Obtain the generalisation of both, pg , as described hereafter.
(e) If pg does not have a wildcard adjacent to the hook or the target, add it to P .

4. ReturnR
At the end, R contains all the initial patterns and those obtained while generalising

the previous ones. The motivation for step (e) is that, if a pattern contains a wildcard
adjacent to either the hook or the target, it will be impossible to know where the hook
or the target starts or ends. For instance, when applying the pattern <hook> is a *
<target> to a text, the wildcard prevents the system from guessing where the hyper-
onym starts. This procedure is similar to the one described by Pantel et al. [69].

So as to calculate the similarity between two patterns, a slightly modified version
of the dynamic programming algorithm for edit-distance calculation [70] is used. The
distance between two patterns A and B is defined as the minimum number of changes
that have to be done to the first one in order to obtain the second one. The calculation is
carried on by filling a matrix M, as shown in Figure 4 (left). At the same time that we
calculate the edit distance matrix, it is possible to fill in another matrix D, in which we
record which of the choices was selected at each step: insertion, deletion, replacement
or no edition. This will be used later to obtain the generalised pattern. We have used the
following four characters:

• I means an insertion in the first pattern produces the second one.
• R means that it is necessary to remove a token.
• E means that the corresponding tokens are equal, so no edition is required.
• U means that the corresponding tokens are unequal, so a replacement is needed.



A: is the well known location
B: is the classic location

M 0 1 2 3 4 D 0 1 2 3 4
0 0 1 2 3 4 0 I I I I
1 1 0 1 2 3 1 R E I I I
2 2 1 0 1 2 2 R R E I I
3 3 2 1 1 2 3 R R R U I
4 4 3 2 2 2 4 R R R R U
5 5 4 3 3 2 5 R R R R E

Figure 4. Example of the edit distance algorithm. A and B are two word patterns;M is the matrix
in which the edit distance is calculated, andD is the matrix indicating the choice that produced the
minimal distance for each cell inM.

Figure 4 shows an example for two patterns, A and B, containing respectively 5
and 4 tokens.M(5, 4) has the value 2, indicating the distance between the two complete
patterns. The two editions may be: replacing known by classic, and removing well.

After calculating the edit distance between two patterns A and B, we can use matrix
D to obtain a generalised pattern, which should maintain the common tokens shared by
them. The procedure used is the following:

• Every time there is an insertion or a deletion, the generalised pattern will contain
a wildcard, indicating that there may be anything in between.

• Every time there is replacement, the generalised pattern will contain a disjunction
of both tokens. Replacement is only allowed if the two tokens involved share the
same coarse-grain part-of-speech (e.g. both are nouns, both are adjectives, etc.)

• Finally, in the positions where there is no edit operation, the token that is shared
between the two patterns is left unchanged.

The patterns in the example will produce the generalised pattern

is/VBD the/DT well/RB known/JJ location/entity
is/VBD the/DT classic/JJ location/entity

———————————————————————————————————-
is/VBD the/DT * known|classic/JJ location/entity

The generalisation of these two patterns produces one that can match a wider vari-
ety of sentences, so we should always take care in order not to over-generalise. A few
examples of generalisations of hyperonymy patterns are the following:

<hook> is/VBZ a/DT <target>

<hook> is/VBZ a/DT type/NN of/IN <target>

<hook> is/VBZ a|the/DT <target> for|in|of|that/IN

A|An|The/DT <hook>/NNP is/VBZ a|the/DT <target> that/WDT

disjunction-of-verbs/VBZ

<hook> is/VBZ the/DT disjunction-of-superlative-adjectives/JJS <target>

on/IN Earth|earth/NNP



2.4.3. Pattern scoring: background

As can be seen in the previous examples, the patterns obtained in the previous step cover
all the space between very specific and constrained patterns and very general patterns.
Very general patterns may extract many results with a low precision, while very restricted
patterns may have a high precision but a small recall. In this step, an estimate of the
precision of each pattern is calculated. The starting point is related work [44,10] in which
patterns obtained in this way are scored using the following procedure: for each pair
(hook,target) in the seed list:

1. Download a separate corpus from the web, called hook corpus, using a query that
contains just the hook of the relation.

2. Apply the previous patterns to the hook corpus, calculate the precision of each
pattern as the number of times it identifies a target related to the hook divided by
the total number of times the pattern appears.

To illustrate this process, let us suppose that we want to learn patterns to identify birth
years. We may provide the system the seed pair (Dickens, 1812). From the corpus down-
loaded for training, the system extracts sentences such as

Dickens was born in 1812
Dickens (1812 - 1870) was an English writer

Dickens (1812 - 1870) wrote Oliver Twist
The system then generates the patterns and identifies that the contexts of the last two

sentences are very similar, so it also produces a generalisation of those and appends it to
the list: <hook> was born in <target>

<hook> ( <target> - 1870 ) was an English writer

<hook> ( <target> - 1870 ) wrote Oliver Twist

<hook> ( <target> - 1870 )

The system needs to estimate automatically the precision of the extracted patterns,
in order to keep the best ones. So as to measure these precision values, a hook corpus
would be downloaded using the hook Dickens as the only query word, and the system
would look for appearances of the patterns in this corpus. For every occurrence in which
the hook of the relation is Dickens, if the target is 1812 it will be deemed correct, and
otherwise it will be deemed incorrect (e.g. in Dickens was born in Portsmouth).

In our initial experiments we observed initially that this procedure for calculating
the precision of the patterns is unreliable in some cases. For example, the following pat-
terns are reported by Ravichandran and Hovy [10] for identifying the relations Inventor,
Discoverer and Location:

Relation Prec. Pattern
Inventor 1.0 <target> ’s <hook> and
Inventor 1.0 that <target> ’s <hook>
Discoverer 0.91 of <target> ’s <hook>
Location 1.0 <target> ’s <hook>

In the particular application in which they are used (relation extraction for Question
Answering), they are useful because there is initially a question to be answered that
indicates whether we are looking for an invention, a discovery or a location. However, if
we want to apply them to unrestricted relation extraction, we have the problem that the
same pattern, the genitive construction, represents all these relations, apart from the most
common use indicating possession.



Relation name Seed-list Cardinality Hook-type Target-type Web queries
birth year birth-date.txt n:1 entity entity $1 was born in $2
death year death-date.txt n:1 entity entity $1 died in $2
birth place birth-place.txt n:1 entity entity $1 was born in $2
country-capital country-capital.txt 1:1 entity entity $2 is the capital of $1
author-book author-book.txt n:n entity unrestricted $1 is the author of $2
director-film director-film.txt 1:n entity unrestricted $1 directed $2, $2 directed by $1

Table 2. Example rows in the input table for the system.

If patterns like these are so ambiguous, then why do they receive so high a preci-
sion estimate? One reason is that the patterns are only evaluated for the same hook for
which they were extracted. To illustrate this with an example, let us suppose that we ob-
tain a pattern for the relation located-at using the pairs (New York, Chrysler Building).
The genitive construction can be extracted from the context New York’s Chrysler Build-
ing. Afterwards, when estimating the precision of this pattern, only sentences containing
<target>’s Chrysler Building are taken into account. Because of this, most of the pairs
extracted by this pattern may extract the target New York, apart from a few that extract
the name of the architect that built it, van Allen. Thus we can expect that the genitive
pattern will receive a high precision estimate as a located-at pattern.

For our purposes, however, we want to collect patterns for several relations such as
writer-book, painter-picture, director-film, actor-film, and we want to make sure that the
obtained patterns are only applicable to the desired relation. Patterns like <target> ’s
<hook> are very likely to be applicable to all of these relations at the same time, so we
would like to be able to discard them automatically by assigning them a low precision.

Therefore, we propose the following three improvements to this procedure:
1. Collecting not only a hook corpus but also a target corpus should help in calcu-

lating the precision. In the example of the Chrysler building, we have seen that in
most cases that we look for the pattern ‘s Chrysler building the previous words
are New York, and so the pattern is considered accurate. However, if we look for
the pattern New York’s, we shall surely find it followed by many different terms
representing different relations, and the precision estimate will decrease.

2. Testing the patterns obtained for one relation using the hook and target corpora
collected for other relations. For instance, if the genitive construction has been
extracted as a possible pattern for the writer-book relation, and we apply it to a
corpus about painters, the rote extractor can detect that it also extracts pairs with
painters and paintings, so that particular pattern will not be very precise for that
relation.

3. Many of the pairs extracted by the patterns in the hook corpora were not evaluated
at all when the hook in the extracted pair was not present in the seed lists. To
overcome this, we propose to use the web to check whether the extracted pair
might be correct, as shown below.

2.4.4. Pattern scoring: implementation

In our implementation, the rote extractor starts with a table containing some information
about the relations for which we want to learn patterns. This procedure needs a little more
information than just the seed list, which is provided as a table in the format displayed
in Table 2. The data provided for each relation is the following: (a) The name of the
relation, used for naming the output files containing the patterns; (b) the name of the



file containing the seed list; (c) the cardinality of the relation. For instance, given that
many people can be born on the same year, but for every person there is just one birth
year, the cardinality of the relation birth year is n:1; (d) the restrictions on the hook and
the target. These can be of the following three categories: unrestricted, if the pattern can
extract any sequence of words as hook or target of the relation, Entity, if the pattern can
extract as hook or target only things of the same entity type as the words in the seed list
(as annotated by the NERC module), or PoS, if the pattern can extract as hook or target
any sequence of words whose sequence of part-of-speech labels was seen in the training
corpus; and (e) a sequence of queries that could be used to check, using the web, whether
an extracted pair is correct or not.

We assume that the system has used the seed list to extract and generalise a set
of patterns for each of the relations using training corpora [10,71]. Our procedure for
calculating the patterns’ precision is as follows:

1. For every relation,
(a) For every hook, collect a hook corpus from the web.
(b) For every target, collect a target corpus from the web.

2. For every relation r ,
(a) For every pattern P , collected during training, apply it to every hook and

target corpora to extract a set of pairs.
For every pair p = (ph, pt ),

• If it appears in the seed list of r , consider it correct.
• If it appears in the seed list of other relations, consider it incorrect.
• If the hook ph appears in the seed list of r with a different target, and

the cardinality is 1:1 or n:1, consider it incorrect.
• If the target pt appears in r ’s seed list with a different hook, and the

cardinality is 1:1 or 1:n, consider it incorrect.
• Otherwise, the seed list does not provide enough information to evaluate

p, so we perform a test on the web. For every query provided for r ,
the system replaces $1 with ph and $2 with pt , and sends the query to
Google. The pair is deemed correct if and only if there is at least one
answer.

The precision of P is estimated as the number of extracted pairs that are
supposedly correct divided by the total number of pairs extracted.

In this step, every pattern that did not apply at least twice in the hook and target
corpora is also discarded.

Example After collecting and generalising patterns for the relation director-film, we
apply each pattern to the hook and target corpora collected for every relation. Let us
suppose that we want to estimate the precision of the pattern

<target> ’s <hook>
and we apply it to the hook and the target corpora for this relation and for author-book.
Possible pairs extracted are (Woody Allen, Bananas), (Woody Allen, Without Fears),
(Charles Dickens, A Christmas Carol). Only the first one is correct. The rote extractor
proceeds as follows:

• The first pair appears in the seed list, so it is considered correct.
• Although Woody Allen appears as hook in the seed list and Without Fears does

not appear as target, the second pair is still not considered incorrect because the
directed-by relation has n:n cardinality.



• The third pair appears in the seed list for writer-book, so it is directly marked as
incorrect.

• Finally, because the system has not yet made a decision about the second pair, it
queries Google with the sequences

Woody Allen directed Without Fears
Without Fears directed by Woody Allen

Because neither of those queries provide any answer, it is considered incorrect.
In this way, it can be expected that the patterns that are equally applicable to several

relations, such as writer-book, director-film or painter-picture will attain a low precision
because they will extract many incorrect relations from the corpora corresponding to the
other relations.

Finally, in the particular case of hyperonymy, patterns are scored using a similar
algorithm, but considering as gold standard not an initial list of seed pairs but the relations
existing in WordNet:

1. Two corpora are collected automatically from the Internet, one containing t (the
hook corpus) and another one containing f (the target corpus).

2. The patterns are tested on all the hook and target corpora, and all relations involv-
ing each hook and each target are extracted.

3. To estimate the precision of each pattern, for each pair (A, B) extracted by the
pattern,

(a) If B is a hyperonym of A in WordNet, it is considered correct.
(b) If B and A both appear in WordNet, but B is not a hyperonym of A, it is

considered incorrect.
(c) If either B or A do not appear in WordNet, a query is sent to the Google

search engine for “A is a B”, “A is the B” or “A is B”. Hopefully, given
the vastness of the web, if A is a hyponym of B there will be some web page
containing any of those simple patterns and there will be some results. There-
fore, the extracted pair is judged correct if and only if there is at least one
result for any of those three queries. Previous work shows that this procedure
provides a good estimate of the real accuracy of the patterns in many cases
[72], and it only requires us to assume that, for every relationship, the user
knows beforehand just one or two simple lexical patterns that express it.

The patterns with estimated precision levels below a user-defined threshold are dis-
carded.

2.4.5. Evaluation of the procedure to automatically score patterns

The disambiguation of Wikipedia entries and relation extraction is still an ongoing work
and has not finished yet at the time of writing this chapter. Therefore, the results provided
here refer to the evaluation of non-taxonomic patterns obtained from the web using the
rote extractor approach, and taxonomic patterns obtained from a subset of the Wikipedia.

Table 3 shows the number of patterns obtained for each relation. Note that the gen-
eralisation procedure applied produces new (generalised) patterns that are added to the
set of original patterns, but no pattern is removed, so they all are evaluated. This is why
the set of patterns increases after the generalisation. The filtering criterion was to keep
the patterns that applied at least twice on the test corpus.



Relation Seeds Extr. Gener. Filt.
Birth year 244 2374 4748 30
Death year 216 2178 4356 14
Birth place 169 764 1528 28
Death place 76 295 590 6
Author-book 198 8297 16594 283
Actor-film 49 739 1478 3
Director-film 85 6933 13866 200
Painter-painting 92 597 1194 15
Employee-organisation 62 1667 3334 6
Chief of state 55 1989 3978 8
Soccer player-team 194 4259 8518 39
Soccer team-city 185 180 360 0
Soccer team-manager 43 994 1988 9
Country/region-capital city 222 4533 9066 107
Country/region-area 226 762 1524 2
Country/region-population 288 318 636 3
Country-bordering country 157 6828 13656 240
Country-inhabitant 228 2711 5422 17
Country-continent 197 1606 3212 21
Hyperonymy 0 270 1131 22

Table 3. Number of seed pairs for each relation, and number of unique patterns in each step.

Concerning the computational complexity, for each pair (hook, target) we need a
corpus for each hook and a corpus for each target. In the case of birth year, that means 488
corpora in total. In our experiments we have downloaded a maximum of 500 documents
per corpus, so the total number of documents is less or equal than 244,000, on which
the 4,748 patterns obtained after the generalisation step are evaluated. This procedure
required less than two days for each relationship on a Pentium IV laptop computer (1
GHz, 2 GB RAM).

It is interesting to see that for most relations the reduction of the pruning is very
drastic. This is because of two reasons. Firstly, most patterns are far too specific, as
they include up to 5 words at each side of the hook and the target, and all the words in
between. Only those patterns that have generalised very much, substituting large portions
with wildcards or disjunctions are likely to apply to the sentences in the hook and target
corpora. Secondly, the samples of the hook and target corpora used are too small for
some of the relations to apply, so few patterns apply more than twice.

Concerning the precision estimates, a full evaluation is provided for the birth-year
relation. Table 4 shows in detail the thirty patterns obtained. It can also be seen that
some of the patterns with good precision contain the wildcard *. For instance, the first
pattern indicates that the presence of any of the words biography, poetry, etc. anywhere
in a sentence before a person name and a date or number between parenthesis is a strong
indication that the target is a birth year.

The last columns in the table indicate the number of times that each rule applied in
the hook and target corpora, and the precision of the rule in each of the following cases:

• As estimated by the modified precision calculation, complete with target and hook
corpora, cardinality and web queries (Prec1).

• As estimated by the traditional hook corpus approach (Prec2). Here, cardinality is
not taken into account, patterns are evaluated only on the hook corpora from the
same relation, and those pairs whose hook is not in the seed list are ignored.

• The real precision of the rule (real). In order to obtain this metric, two differ-
ent annotators evaluated the pairs applied independently, and the precision was



No. Pattern Applied Prec1 Prec2 Real

1

Biography|Hymns|Infography|Life|Love|POETRY|Poetry|
Quotations|Search|Sketch|Woolf|charts|genius|kindness|
poets/NN */* OF|Of|about|by|for|from|like|of/IN
<hook> (/( <target> -/-

6 1.00 1.00 1.00

2 "/” <hook> (/( <target> -/- 4 1.00 1.00 1.00

3
[BOS]/[BOS] <hook> was/VBD born/VBN
about|around|in/IN <target> B.C.|B.C.E|BC/NNP
at|in/IN

3 1.00 1.00 1.00

4
[BOS]/[BOS] <hook> was/VBD born/VBN
about|around|in/IN <target> B.C.|B.C.E|BC/NNP
at|in/IN location/entity

3 1.00 1.00 1.00

5
[BOS]/[BOS] <hook> was/VBD born/VBN around/IN
<target> B.C.E/NNP at/IN location/entity ,/,
a/DT

3 1.00 1.00 1.00

6
[BOS]/[BOS] <hook> was/VBD born/VBN
around|in/IN <target> B.C.|B.C.E/NNP at|in/IN
location/entity ,/,

3 1.00 1.00 1.00

7

[BOS]/[BOS] */* ATTRIBUTION|Artist|Author|Authors|
Composer|Details|Email|Extractions|Myth|PAL|Person|
Quotes|Title|Topic/NNP :/, <hook> (/( <target>
-/-

3 1.00 1.00 1.00

8

classical/JJ playwrights/NNS of/IN
organisation/entity ,/, <hook> was/VBD
born/VBN near/IN location/entity in/IN
<target> BCE/NNP ,/, in/IN the/DT village/NN

3 1.00 1.00 1.00

9 [BOS]/[BOS] <hook> (/( <target> -/- )/) 2 1.00 1.00 1.00
10 [BOS]/[BOS] <hook> (/( <target> -|-/- )/) 2 1.00 1.00 1.00

11 [BOS]/[BOS] <hook> (/( <target> person/entity
BC/NNP ;/, Greek/NNP :/,

2 1.00 1.00 1.00

12
ACCESS|AND|Alice|Author|Authors|BY|Biography|CARL|
Dame|Don|ELIZABETH|(...)|web|writer|writerMuriel|
years/NNP <hook> (/( <target> -|- -/-

8 0.75 1.00

13 -/- <hook> (/( <target> -/- 3 0.67 1.00 0.67
14 -|-/- <hook> (/( <target> -/- 3 0.67 1.00 0.67
15 [BOS]/[BOS] <hook> (/( <target> -/- 60 0.62 1.00 0.81
16 [BOS]/[BOS] <hook> (/( <target> -/- */* )/) 60 0.62 1.00 0.81
17 [BOS]/[BOS] <hook> (/( <target> -|-/- 60 0.62 1.00 0.81
18 ,|:/, <hook> (/( <target> -/- 32 0.41 0.67 0.28
19 [BOS]/[BOS] <hook> ,/, */* (/( <target> -|-/- 15 0.40 1.00 0.67
20 ,|:|;/, <hook> (/( <target> -|-/- 34 0.38 0.67 0.29

21

AND|Alice|Authors|Biography|Dame|Don|ELIZABETH|Email|
Fiction|Frances|GEORGE|Home|I.|Introduction|Jean|L|Neben|
PAL|PAULA|Percy|Playwrights|Poets|Sir|Stanisaw|Stanislaw|
W.|WILLIAM|feedback|history|writer/NNP <hook>
(/( <target> -/-

3 0.33 n/a 0.67

22 AND|Frances|Percy|Sir/NNP <hook> (/( <target> -/- 3 0.33 n/a 0.67

23

Alice|Authors|Biography|Dame|Don|ELIZABETH|Email|
Fiction|Frances|GEORGE|Home|I.|Introduction|Jean|
L|Neben|PAL|PAULA|Percy|Playwrights|Poets|Sir|Stanisaw|
Stanislaw|W.|WILLIAM|feedback|history|writer/NN
<hook> (/( <target> -/-

3 0.33 n/a 0.67

24 [BOS]/[BOS] <hook> ,|:/, */* ,|:/, <target> -/- 7 0.28 0.67 0.43
25 [BOS]/[BOS] <hook> ,|:/, <target> -/- 36 0.19 1.00 0.11
26 [BOS]/[BOS] <hook> ,/, */* (/( <target> )/) 20 0.15 0.33 0.10
27 [BOS]/[BOS] <target> <hook> ,/, 18 0.00 n/a 0.00
28 In|On|on/IN <target> ,/, <hook> grew|was/VBD 17 0.00 0.00 0.00
29 In|On|on/IN <target> ,/, <hook> grew|was|went/VBD 17 0.00 0.00 0.00

30
[BOS]/[BOS] <hook> ,/, */*
DE|SARAH|VON|dramatist|novelist|
playwright|poet/NNP (/( <target> -/-

3 0.00 n/a 1.0

TOTAL 436 0.46 0.84 0.54

Table 4. Patterns for the relation birth year, results extracted by each, precision estimated with this procedure
and with the traditional hook corpus approach, and precision evaluated by hand.

estimated from the pairs in which they agreed (there was a 96.29% agreement,
Kappa=0.926).

As can be seen, in most of the cases our procedure produces lower precision esti-
mates. If we calculate the total precision of all the rules altogether, shown in the last row
of the table, we can see that, with the hook corpus approach, the whole set of rules would
be considered to have a total precision of 0.84, while that estimate decreases sharply



Relation Prec1 Prec2 Real
Birth year 0.46 [0.41,0.51] 0.84 [0.81,0.87] 0.54 [0.49,0.59]
Death year 0.29 [0.24,0.34] 0.55 [0.41,0.69] 0.38 [0.31,0.44]
Birth place 0.65 [0.62,0.69] 0.36 [0.29,0.43] 0.84 [0.79,0.89]
Death place 0.82 [0.73,0.91] 1.00 [1.00,1.00] 0.96 [0.93,0.99]
Author-book 0.07 [0.07,0.07] 0.26 [0.19,0.33] 0.03 [0.00,0.05]
Actor-film 0.07 [0.01,0.13] 1.00 [1.00,1.00] 0.02 [0.00,0.03]
Director-film 0.03 [0.03,0.03] 0.26 [0.18,0.34] 0.01 [0.00,0.01]
Painter-painting 0.10 [0.07,0.12] 0.35 [0.23,0.47] 0.17 [0.12,0.22]
Employee-organisation 0.31 [0.22,0.40] 1.00 [1.00,1.00] 0.33 [0.26,0.40]
Chief of state 0.00 [0.00,0.00] - 0.00 [0.00,0.00]
Soccer player-team 0.07 [0.06,0.08] 1.00 [1.00,1.00] 0.08 [0.04,0.12]
Soccer team-city - - -
Soccer team-manager 0.61 [0.53,0.69] 1.00 [1.00,1.00] 0.83 [0.77,0.88]
Country/region-capital city 0.12 [0.11,0.13] 0.23 [0.22,0.24] 0.12 [0.07,0.16]
Country/region-area 0.09 [0.00,0.19] 1.00 [1.00,1.00] 0.06 [0.02,0.09]
Country/region-population 1.00 [1.00,1.00] 1.00 [1.00,1.00] 1.00 [1.00,1.00]
Country-bordering country 0.17 [0.17,0.17] 1.00 [1.00,1.00] 0.15 [0.10,0.20]
Country-inhabitant 0.01 [0.00,0.01] 0.80 [0.67,0.93] 0.01 [0.00,0.01]
Country-continent 0.16 [0.14,0.18] 0.07 [0.04,0.10] 0.00 [0.00,0.01]

Table 5. Precision estimates for the whole set of extracted pairs by all rules and all relations.

to 0.46 with our modified precision estimate. This value is nearer the precision of 0.54
evaluated by hand. Note that the precision estimated by the new procedure is even lower
than the real precision of the patterns, as measured by hand, due to the fact that the web
queries consider unknown pairs as incorrect unless they appear in the web exactly in
the format of the query in the input table. Specially for not very well-known people, we
cannot expect that all of them will appear in the web following the pattern “X was born
in date”, so the web estimates tend to be over-conservative.

Table 5 shows the precision estimates for every pair extracted with all the rules using
both procedures, with 0.95 confidence intervals, for the non-taxonomic relations. The
real precision has been estimated by sampling randomly 200 pairs and evaluating them
by hand, as explained above for the birth year relation. As can be observed, the precision
estimate of the whole set of rules for each relation is not statistically dissimilar to the real
precision in many more cases than using the hook corpus approach. Please note as well
that the precisions indicated in the table refer to all the pairs extracted by all the rules,
some of which are very precise, but some of which are very imprecise. If the rules are to
be applied in an annotation system, only those with a high precision estimate would be
used, and expectedly much better overall results would be obtained.

It is important to mention that the patterns with low precision estimates are discarded
in the current system, even though they also extract many correct relations. We leave for
future work the application of those patterns, maybe with a post-processing step in which
all the extracted instances are evaluated and ranked.

2.4.6. Evaluation of all the patterns on the Wikipedia

As indicated above, the experiments on the whole English Wikipedia are still work in
progress, but this section aims at providing some preliminary results on a subset of the
same that includes 20,075 entries [5]. Table 6 shows the number of results (pairs of re-
lated terms) that the whole set of the pattern sets has extracted, and the precision at-
tained. This precision has been estimated by correcting manually at least 50 results from
each relationship. Note that, in this preliminary experiment, we have included all the pat-



Relation No. of results Precision
Birth-year 15746 74.14%
Death-year 5660 90.20%
Birth-place 154 27.27%
Actor-film 4 50.00%
Country-Chief of state 272 50.00%
Writer-book 179 37.29%
Country-capital 825 11.45%
Player-team 315 7.75%

Table 6. Number of patterns obtained for each relationship, number of results extracted by each pattern set,
and precision.

terns, regardless of the precision estimated for them, so very general patterns such as the
genitive construction are included.

As can be seen, the precision for birth year and death year is very good, because
they are usually expressed with very fixed patterns, and years and dates are entities that
are very easily recognised. The few errors are mainly due to the following two cases:

• Named Entity tagging mistakes, e.g. a TV series mistagged as a person, where the
years in which it has been shown are taken as birth and death date.

• Names of persons that held a title (e.g. king or president) during a period of time,
that is mistakenly considered their life span.

On the other hand, as expected, the other examples have proven more difficult to
identify. We have observed the problem, mentioned in the previous sections, that some
patterns are applicable for many kinds of relationships at the same time. This phe-
nomenon is specially relevant in the case of the player-team relation. The precision of
the patterns is 92% when they are applied only to the entries about soccer players, but
the figure falls down to 7.75% when applied to the whole Wikipedia corpus collected.
This means that they are patterns that, in the domain of soccer, usually indicate the rela-
tionship between the player and its club, but in other contexts they may be conveying a
different meaning. One of these patterns is the already mentioned genitive construction.
In sports articles, when this construction is found between an organisation and a per-
son is usually expressing the player-team relation, as in Liverpool’s Fowler. But it also
extracted many wrong pairs from documents belonging to different topics.

The same also applies to the case of countries and capitals. During training, from
phrases such as Spain’s Madrid, the system extracted the genitive construction as indi-
cating a relationship of capitality, but it is a source of errors because it can also express a
part-of relationship between a country and any of its cities.

In the case of actor-film, we have observed that in the actors’ entries in the
Wikipedia, there is usually a section containing all the filmography, expressed as an
HTML bullet list. In this way, because the information is already semi-structured, the
textual patterns cannot apply. It should be easier to extract that data using other simpler
procedures that take benefit of the structure of the entry.



2.5. Classification of subconcepts and instances

Following [73], the terms identified in the Wikipedia and classified inside WordNet are
classified as either instances or subclasses of each of their hyperonyms. In order to do
that, we apply a Maximum Entropy model using features such as the Named Entity type
of the term, whether it is used or not with determiners or whether it can be seen in plural
or in singular number throughout the Wikipedia. Because the current version of WordNet
already contains this information for the existing synsets, this step is aimed at completing
the information of the newly learnt concepts according to the structure of the lexical
semantic network. This work is still ongoing.

3. Discussion and conclusions

We have described here a new procedure for the automatic semantic annotation of the
Wikipedia, which is underpinned by previous works concerning: (a) the automatic asso-
ciation of Wikipedia entries with nodes in a lexical semantic network such as WordNet
[58], (b) the automatic generation of patterns for extracting taxonomic [74] and non-
taxonomic relations [71], and (c) the classification of instances and concepts based on
surface linguistic clues [73]. The architecture described here shows a concrete applica-
tion of all the previous techniques in order to attain a common goal: the semantic anno-
tation of a large textual corpus such as the Wikipedia.

Concerning the automatic disambiguation of the Wikipedia entries, we are currently
disambiguating the whole of the English Wikipedia (as of June 2006) with respect to
WordNet. We believe that the output of this process may have many applications apart
from a direct semantic annotation of the Wikipedia, so when it is finished, we intend to
make public the results to the research community.

Concerning the pattern learning procedures for relation extractions, we show that
(a) the procedure described is able to generate generalised patterns containing wildcards;
(b) it makes use of PoS and Named Entity tags during the generalisation process; and (c)
several relations are learnt and evaluated at the same time, in order to test each one on
the test corpora built for the others. The precision estimates of the generated patterns are
not statistically significantly dissimilar to the real precision of the patterns, which allows
us to tune the accuracy of the system according to the user preferences.

Concerning future work, we intend to finish the full processing of the Wikipedia,
and, in particular, the application of the patterns for the relationships that have not been
evaluated yet on it, including the patterns for hyponymy. We are also trying to improve
the estimation of the patterns accuracy for the pruning step. We plan explore ways in
which to use the pairs extracted by low precision patterns (which are not used in the
current implementation), as some of the results that this kind of rules extracts are also
useful [41,42].
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Abstract. With the advent of the Web and the explosion of available textual data,
it is key for modern natural language processing systems to access, represent and
reason over large amounts of knowledge in semantic repositories. Separately, the
knowledge representation and natural language processing communities have been
developing representations/engines for reasoning over knowledge and algorithms
for automatically harvesting knowledge from textual data, respectively. There is a
pressing need for collaboration between the two communities to provide large-scale
robust reasoning capabilities for knowledge rich applications like question answer-
ing. In this chapter, we propose one small step by presenting algorithms for har-
vesting semantic relations from text and then automatically linking the knowledge
into existing semantic repositories. Experimental results show better than state of
the art performance on both relation harvesting and ontologizing tasks.

Keywords. knowledge acquisition, relation extraction, ontology learning

1. Introduction

With the advent of the Web and the explosion of available textual data, it is key for
modern Natural Language Processing (NLP) systems to access, represent and reason
over large amounts of knowledge contained in semantic repositories.

Separately, the knowledge representation (KR) community has developed many for-
mal ontologies for use in various reasoning tasks such as planning and theorem proving,
and the natural language processing (NLP) community has developed several algorithms
for automatically harvesting knowledge from textual resources. Most mined resources
from NLP consist of very large but noisy and unstructured knowledge, making their use
in KR reasoning engines futile. Knowledge rich applications such as question answering
and information extraction would benefit greatly from the reasoning power of the KR
community and the breadth of knowledge extracted from the NLP community. There is
therefore a pressing need for the NLP community to not only harvest knowledge from
text, but also to link this knowledge into semantic repositories over which KR reasoning
engines can execute.

In this chapter, we present algorithms for both extracting semantic relations from
textual resources and for linking, or ontologizing, them into a semantic repository.



1.1. Exploiting Knowledge Resources

Recent attention to knowledge-rich problems such as question answering [1] and textual
entailment [2] has encouraged natural language processing researchers to develop algo-
rithms for automatically harvesting semantic resources. With seemingly endless amounts
of textual data at our disposal, we have a tremendous opportunity to automatically grow
semantic term banks and ontological resources.

Knowledge resources can be mainly divided in two types: textual resources and
structured resources. Textual resources include linguistic text collections, ranging from
large generic repositories such as the Web to specific domain texts such as collections of
texts or books on specific subjects. These repositories contain a large and ever growing
amount of information expressed implicitly in natural language texts. These resources
greatly vary in size, from the terabytes of data on the Web to the kilobytes of textual mate-
rial in electronic books. Structured resources consist of repositories in which knowledge
is explicit and organized in lists or graphs of entities. In contrast with textual resources,
structured resources are used to explicitly represent domain and generic knowledge, mak-
ing their inherent knowledge directly usable in applications. Structured resources vary
largely on their degree of internal structuring, and can be accordingly divided in two dif-
ferent classes: semantic repositories and lexical resources. The first class is formed by
highly structured resources that usually organize knowledge at a conceptual level (e.g.,
concepts, relations among concepts, situation types) or at a sense level (word senses and
relations among senses). Ontologies such as Mikrokosmos [3,4], DOLCE [5] and SUMO
[6], and situation repositories such as FrameNet [7] are good examples of the former,
while WordNet [8] is an example of the latter. Lexical resources are less structured re-
sources such as thesauri, lists of facts, lexical relation instances, lists of paraphrases,
and other flat lists of lexical objects. These resources usually organize knowledge at a
pure lexical level, and are in most cases built by using automatic or semi-automatic tech-
niques.

Two main issues must be addressed in order to use knowledge resources in appli-
cations: extract the implicit knowledge in textual resources (knowledge harvesting), and
make the knowledge of both textual and structured resource usable (knowledge exploita-
tion).

Regarding knowledge harvesting, harvesting algorithms are used to analyze textual
repositories and extract knowledge in the form of lexical resources. NLP researchers have
developed many algorithms for mining knowledge from text and the Web, including facts
[9], semantic lexicons [10], concept lists [11], and word similarity lists [12]. Many recent
efforts have also focused on extracting binary semantic relations between entities, such
as entailments [13], is-a [14], part-of [15], and other relations. Relational knowledge is
in fact crucial in many applications. Unfortunately, most relation extraction algorithms
suffer from many limitations. First, they require a high degree of supervision. Secondly,
they are usually limited in breadth (they cannot be easily applied to different corpus sizes
and domains) and generality (they can harvest only specific types of relations).

So far, little attention has been spent on the issue of knowledge exploitation. As
Bos [16] outlined, whilst lexical resources are potentially useful, their successful use in
applications has been very limited due to a variety of problems. For example, question
answering (QA) systems based on logical proving could in theory improve their perfor-
mance by simply exploring knowledge in lexical resources which have been acquired in-



dipendently and semantic repositories. For instance, suppose a QA system must answer
the following question:

“When did James Dean die?”

Suppose the system could rely on a lexical resource formed by a list of entailment rules.
The lexical resource could contain the entailment kill(X, Y ) → die(Y ). The system
could then answer “1955”, by examining the Web and finding the snippet “In 1955,
actor James Dean was killed in a two-car collision near Cholame, Calif”.

Consider the following question:

“Who was Horus’ father?”

A system could answer “Osiris” from the snippet “It also hosted statues of Amon’s wife,
Mut, the goddess Isis, her husband, Osiris, and their son Horus”, by using a generic
world knowledge ontology containing the fact:

∀x(husband(x) → male(x))
∀x∀y(son(x) ∧ of(x, y) ∧male(y) → father(y) ∧ of(y, x))

The main reasons that limit the exploitation of existing resources stem from the nature
of semantic repositories and lexical resources. Although rich in structure and precision,
semantic repositories are difficult to use since they are built by hand and are therefore
limited in size and scope. In contrast, lexical resources represent a very large amount of
knowledge, but they suffer from low precision and structure.

1.2. Harvesting and Ontologizing Knowledge Desiderata

In order to leverage knowledge resources in NLP applications, it is necessary to improve
knowledge harvesting algorithms and to integrate the different types of resources in a
coherent framework (e.g., a semantic repository such as an ontology or term bank). An
ideal framework for knowledge harvesting and exploitation should then guarantee the
following desired properties:

• Generality. Knowledge harvesting should be able to extract as many relation types
as possible.

• Minimal supervision. Knowledge harvesting should be carried out using little or
no human intervention.

• Breadth. Harvesting algorithms should be adaptable to different corpus sizes, in
order to successfully extract knowledge from both large textual resources such as
the Web and small ones.

• Precision. Harvested knowledge must be precise. As lexical resources are usually
very noisy, they can be made more precise by both improving the harvesting al-
gorithms and by filtering erroneous information during the linking process to a
semantic repository.

• Domain knowledge coverage. Harvested knowledge must cover all the domain
knowledge.

• Closeness to language. As applications work on linguistic expressions, it is cru-
cial to map conceptual/sense knowledge to language. This can be achieved by
linking concepts/senses and relations in a semantic repository to terms and term
relations in a lexical resource.



• Structure. The structure of a semantic repository is a key aspect to expand the lex-
ical knowledge embedded in lexical resources and make them usable in applica-
tions. For example a simple list of part-of relation instances can be expanded by
using generalizations or synonymy information enclosed in a semantic repository
such a WordNet.

1.3. Harvesting and Ontologizing Knowledge in Practice

In this chapter, we present a pipeline of two systems which form a complete and co-
herent framework for knowledge harvesting and exploitation, by addressing the above
mentioned desired properties. In particular, our systems aim at addressing the issue of
extracting and ontologizing relational knowledge, which is an important component of
many NLP applications, as outlined in Section 1.1. The first of these two systems is
called Espresso and is described in Section 3. Espresso is a general-purpose, broad, and
accurate corpus harvesting algorithm requiring minimal supervision. The main algorith-
mic contribution is a novel method for exploiting generic patterns, which are broad cov-
erage noisy extraction patterns - i.e., patterns with high recall and low precision. Insofar,
difficulties in using these patterns have been a major impediment for minimally super-
vised algorithms resulting in either very low precision or very low recall. We propose
a method to automatically detect generic patterns and to separate their correct and in-
correct instances. The key intuition behind the algorithm is that given a set of reliable
(high precision) patterns on a corpus, correct instances of a generic pattern will fire more
with reliable patterns on a very large corpus, like the Web, than incorrect ones. Previous
work like Girju et Al. [15] that has made use of generic patterns through filtering has
shown both high precision and high recall, at the expensive cost of much manual seman-
tic annotation. Minimally supervised algorithms, like [17,18], typically ignore generic
patterns since system precision dramatically decreases from the introduced noise and
bootstrapping quickly spins out of control.

Secondly, is Section 4, we propose a system which adopts two alternative algorithms
for ontologizing binary semantic relations into WordNet. Formally, given an instance
(x, r, y) of a binary relation r between terms x and y, the ontologizing task is to identify
the WordNet senses of x and y where r holds. For example, the instance (proton, PART-
OF, element) ontologizes into WordNet as (proton#1, PART-OF, element#2). The first al-
gorithm that we explore, called the anchoring approach, was suggested as a promising
avenue of future work by Pantel [19]. This bottom up algorithm is based on the intuition
that x can be disambiguated by retrieving the set of terms that occur in the same relation
r with y and then finding the senses of x that are most similar to this set. The assumption
is that terms occurring in the same relation will tend to have similar meaning. We here
propose a measure of similarity to capture this intuition. In contrast to anchoring, our
second algorithm, called the clustering approach, takes a top-down view. Given a rela-
tion r, suppose that we are given every conceptual instance of r, i.e., instances of r in
the upper ontology like (particles#1, PART-OF, substances#1). An instance (x, r, y) can
then be ontologized easily by finding the senses of x and y that are subsumed by ances-
tors linked by a conceptual instance of r. For example, the instance (proton, PART-OF,
element) ontologizes to (proton#1, PART-OF, element#2) since proton#1 is subsumed
by particles and element#2 is subsumed by substances. The problem then is to automat-
ically infer the set of conceptual instances. For this purpose, we develop a clustering al-



gorithm for generalizing a set of relation instances to conceptual instances by looking up
the WordNet hypernymy hierarchy for common ancestors, as specific as possible, that
subsume as many instances as possible. An instance is then attached to those senses that
are subsumed by the highest scoring conceptual instances.

In Section 5 we report a complete experimental analysis of both systems. Exper-
imental evidence demonstrates that our two systems are successful in harvesting and
ontologizing relational knowledge by outperforming similar state of the art approaches.

2. Relevant Work

In this section, we review previous work in both relational knowledge harvesting and
ontologizing.

2.1. Relational Knowledge Harvesting

To date, most research on relation harvesting has focused on is-a and part-of. Approaches
fall into two categories: pattern- and clustering-based.

Most common are pattern-based approaches. Hearst [17] pioneered using patterns
to extract hyponym (is-a) relations. Manually building three lexico-syntactic patterns,
Hearst sketched a bootstrapping algorithm to learn more patterns from instances, which
has served as the model for most subsequent pattern-based algorithms.

Berland and Charniank [20] proposed a system for part-of relation extraction, based
on the Hearst [17] approach. Seed instances are used to infer linguistic patterns that
are used to extract new instances. While this study introduces statistical measures to
evaluate instance quality, it remains vulnerable to data sparseness and has the limitation
of considering only one-word terms.

Improving upon Berland and Charniank [20], Girju et Al. [15] employ machine
learning algorithms and WordNet [8] to disambiguate part-of generic patterns like “X’s
Y” and “X of Y”. This study is the first extensive attempt to make use of generic pat-
terns. In order to discard incorrect instances, they learn WordNet-based selectional re-
strictions, like “X(scene#4)’s Y(movie#1)”. While making huge grounds on improving
precision/recall, heavy supervision is required through manual semantic annotations.

Ravichandran and Hovy [14] focus on scaling relation extraction to the Web. A sim-
ple and effective algorithm is proposed to infer surface patterns from a small set of in-
stance seeds by extracting substrings relating seeds in corpus sentences. The approach
gives good results on specific relations such as birthdates, however it has low precision
on generic ones like is-a and part-of. Pantel and et Al. [21] proposed a similar, highly
scalable approach, based on an edit-distance technique, to learn lexico-syntactic patterns,
showing both good performance and computational efficiency. Espresso uses a similar
approach to infer patterns, but we make use of generic patterns and apply refining tech-
niques to deal with a wide variety of relations.

Other pattern-based algorithms have been proposed by Riloff and Shepherd [10],
who used a semi-automatic method for discovering similar words using a few seed ex-
amples, in KnowItAll [9] that performs large-scale extraction of facts from the Web, by
Mann [22] who used part of speech patterns to extract a subset of is-a relations involv-
ing proper nouns, by Downey et Al. [23] who formalized the problem of relation extrac-



tion in a coherent and effective combinatorial model that is shown to outperform pre-
vious probabilistic frameworks, by Snow et Al. [24], and in co-occurrence approaches
such as in Roark and Charniak [25]. Ciaramita et al.’s chapter in this book presents a
very nice approach to learning structured arbitrary binary semantic relations which is
fully unsupervised, domain independent and quite efficient since it ultimately relies on
named-entity tagging and dependency parsing which can be both solved in linear time.

Clustering approaches have so far been applied only to is-a extraction. These meth-
ods use clustering algorithms to group words according to their meanings in text, label
the clusters using its members’ lexical or syntactic dependencies, and then extract an
is-a relation between each cluster member and the cluster label. Caraballo [26] proposed
the first attempt which used conjunction and apposition features to build noun clusters.
Recently, Pantel and Ravichandran [18] extended this approach by making use of all
syntactic dependency features for each noun. The advantage of clustering approaches is
that they permit algorithms to identify is-a relations that do not explicitly appear in text,
however they generally fail to produce coherent clusters from fewer than 100 million
words; hence they are unreliable for small corpora.

2.2. Ontologizing Knowledge

Several researchers have worked on ontologizing semantic resources. Most recently, Pan-
tel [19] defined the task of ontologizing a lexical semantic resource as linking its terms
to the concepts in a WordNet-like hierarchy. He developed a method to propagate lexical
co-occurrence vectors to WordNet synsets, forming ontological co-occurrence vectors.
Adopting an extension of the distributional hypothesis [27], the co-occurrence vectors are
used to compute the similarity between synset/synset and between lexical term/synset.
An unknown term is then attached to the WordNet synset whose co-occurrence vector
is most similar to the term’s co-occurrence vector. Though the author suggests a method
for attaching more complex lexical structures like binary semantic relations, he focuses
only on attaching terms.

Basili et Al. [28] proposed an unsupervised method to infer semantic classes (Word-
Net synsets) for terms in domain-specific verb relations. These relations, such as (x, EX-
PAND, y) are first automatically learnt from a corpus. The semantic classes of x and y
are then inferred using conceptual density [29], a WordNet-based measure applied to all
instantiations of x and y in the corpus. Semantic classes represent possible common gen-
eralizations of the verb arguments. At the end of the process, a set of syntactic-semantic
patterns are available for each verb, such as:

(social_group#1, expand, act#2)
(instrumentality#2, expand, act#2)

The method is successful on specific relations with few instances (such as domain verb
relations) while its value on generic and frequent relations, such as part-of, was untested.

Girju et Al. [15] presented a highly supervised machine learning algorithm to infer
semantic constraints on part-of relations, such as (object#1, PART-OF, social_event#1).
These constraints are then used as selectional restrictions in harvesting part-of instances
from ambiguous lexical patterns, like “X of Y”. The approach shows high performance
in terms of precision and recall, but, as the authors acknowledge, it requires large human
effort during the training phase.



Others have also made significant additions to WordNet. For example, in eXtended
WordNet [30], the glosses in WordNet are enriched by disambiguating the nouns, verbs,
adverbs, and adjectives with synsets. Another work has enriched WordNet synsets with
topically related words extracted from the Web [31]. Finally, the general task of word
sense disambiguation [32] is relevant since there the task is to ontologize each term in a
passage into a WordNet-like sense inventory. If we had a large collection of sense-tagged
text, then our mining algorithms could directly discover WordNet attachment points at
harvest time. However, since there is little high precision sense-tagged corpora, methods
are required to ontologize semantic resources without fully disambiguating text.

3. Knowledge Harvesting: The Espresso Algorithm

Espresso is based on the framework adopted by Hearst [17]. It is a minimally supervised
bootstrapping algorithm that takes as input a few seed instances of a particular relation
and iteratively learns surface patterns to extract more instances. The key to Espresso
lies in its use of generic patterns, i.e., those broad coverage noisy patterns that extract
both many correct and incorrect relation instances. For example, for part-of relations,
the pattern “X of Y” extracts many correct relation instances like “wheel of the car” but
also many incorrect ones like “house of representatives”.

The key assumption behind Espresso is that in very large corpora, like the Web,
correct instances generated by a generic pattern will be instantiated by some reliable
patterns, where reliable patterns are patterns that have high precision but often very low
recall (e.g., “X consists of Y” for part-of relations). In this section, we describe the
overall architecture of Espresso, propose a principled measure of reliability, and give an
algorithm for exploiting generic patterns.

3.1. System Architecture

Espresso iterates between the following three phases: pattern induction, pattern rank-
ing/selection, and instance extraction. The algorithm begins with seed instances of a par-
ticular binary relation (e.g., is-a) and then iterates through the phases until it extracts
τ1 patterns or the average pattern score decreases by more than τ2 from the previous
iteration. In our experiments, we set τ1 = 5 and τ2 = 50%.

For our tokenization, in order to harvest multi-word terms as relation instances, we
adopt a slightly modified version of the term definition given by Justeson and Katz [33],
as it is one of the most commonly used in the NLP literature:

((Adj|Noun)+|((Adj|Noun)*(NounPrep)?)(Adj|Noun)*)Noun

This term defintion allows to capture both simple expressions like underground
economy, and more complex ones like Iraqi National Joint Action Committee for Re-
forms.

3.1.1. Pattern Induction

In the pattern induction phase, Espresso infers a set of surface patterns P that connects
as many of the seed instances as possible in a given corpus. Any pattern learning algo-
rithm would do. We chose the state of the art algorithm described by Ravichandran and



Hovy [14] with the following slight modification. For each input instance {x, y}, we first
retrieve all sentences containing the two terms x and y. The sentences are then gener-
alized into a set of new sentences Sx,y by replacing all terminological expressions by a
terminological label, TR. For example:

“Because/IN HF/NNP is/VBZ a/DT weak/JJ acid/NN and/CC x is/VBZ a/DT y”

is generalized as:

“Because/IN TR is/VBZ a/DT TR and/CC x is/VBZ a/DT y”

Term generalization is useful for small corpora to reduce data sparseness. Generalized
patterns are naturally less precise, but this is ameliorated by our filtering step described
in Section 3.2.

As in the original algorithm, all substrings linking terms x and y are then extracted
from Sx,y , and overall frequencies are computed to form P .

3.1.2. Pattern Ranking/Selection

In Ravichandran and Hovy [14], a frequency threshold on the patterns in P is set to
select the final patterns. However, low frequency patterns may in fact be very good. In
this work, instead of frequency, we propose a novel measure of pattern reliability, rπ ,
which is described in detail in Section 3.1.4. Espresso ranks all patterns in P according to
reliability rπ and discards all but the top-k, where k is set to the number of patterns from
the previous iteration plus one. In general, we expect that the set of patterns is formed by
those of the previous iteration plus a new one. Yet, new statistical evidence can lead the
algorithm to discard a pattern that was previously discovered.

3.1.3. Instance Extraction

In this phase, Espresso retrieves from the corpus the set of instances I that match any of
the patterns in P . In Section 3.1.4, we propose a principled measure of instance reliability
rι for ranking instances. Next, Espresso filters incorrect instances using the algorithm
proposed in Section 3.2 and then selects the highest scoring m instances according to rι

as input for the subsequent iteration. We experimentally set m = 200.
In small corpora, the number of extracted instances can be too low to guarantee

sufficient statistical evidence for the pattern discovery phase of the next iteration. In such
cases, the system enters an expansion phase, where instances are expanded as follows.

Web expansion: New instances of the patterns in P are retrieved from the Web, using
the Google search engine. Specifically, for each instance {x, y} ∈ I , the system creates
a set of queries, using each pattern in P instantiated with y. For example, given the
instance “Italy, country” and the pattern “Y such as X”, the resulting Google query will
be “country such as *”. New instances are then created from the retrieved Web results
(e.g. “Canada, country”) and added to I . The noise generated from this expansion is
attenuated by the filtering algorithm described in Section 3.2.

Syntactic expansion: New instances are created from each instance {x, y} ∈ I by
extracting sub-terminological expressions from x corresponding to the syntactic head of
terms. For example, the relation “new record of a criminal conviction part-of FBI report”
expands to: “new record part-of FBI report”, and “record part-of FBI report”.



3.1.4. Pattern and Instance Reliability

Intuitively, a reliable pattern is one that is both highly precise and one that extracts many
instances. The recall of a pattern p can be approximated by the fraction of input instances
that are extracted by p. Since it is non-trivial to estimate automatically the precision of a
pattern, we are wary of keeping patterns that generate many instances (i.e., patterns that
generate high recall but potentially disastrous precision). Hence, we desire patterns that
are highly associated with the input instances. Pointwise mutual information [34] is a
commonly used metric for measuring this strength of association between two events x
and y:

pmi(x, y) = log
P (x, y)

P (x)P (y)

We define the reliability rπ(p) of a pattern p, as its average strength of association across
each input instance i ∈ I , weighted by the reliability of each instance i:

rπ(p) =

∑

i∈I

pmi(i, p)
maxpmi

∗ rι(i)

|I|

where rι(i) is the reliability of instance i (defined below) and maxpmi is the maximum
pointwise mutual information between all patterns and all instances. rπ(p) ranges from
[0, 1]. The reliability of the manually supplied seed instances is rι(i) = 1. The pointwise
mutual information between instance i = {x, y} and pattern p is estimated using the
following formula:

pmi(i, p) = log
|x, p, y|

|x, ∗, y||∗, p ∗ |

where |x, p, y| is the frequency of pattern p instantiated with terms x and y and where
the asterisk (*) represents a wildcard. A well-known problem is that pointwise mutual
information is biased towards infrequent events. We thus multiply pmi(i, p) with the
discounting factor suggested by Pantel and Ravichandran [18].

Estimating the reliability of an instance is similar to estimating the reliability of
a pattern. Intuitively, a reliable instance is one that is highly associated with as many
reliable patterns as possible (i.e., we have more confidence in an instance when multiple
reliable patterns instantiate it). Hence, analogous to our pattern reliability measure, we
define the reliability rι(i) of an instance i as:

rι(i) =

∑

p∈P ′

pmi(i, p)
maxpmi

∗ rπ(p)

|P ′|

where rπ(p) is the reliability of pattern p (defined earlier) and maxpmi is as before. Note
that rι(i) and rπ(p) are recursively defined, where rι(i) = 1 for the manually supplied
seed instances.



3.2. Exploiting Generic Patterns

Generic patterns are high recall / low precision patterns (e.g, the pattern “X of Y” can
ambiguously refer to a part-of, is-a and possession relations). Using them blindly in-
creases system recall while dramatically reducing precision. Minimally supervised algo-
rithms have typically ignored them for this reason. Only heavily supervised approaches,
like Girju et Al. [15] have successfully exploited them.

Espresso’s recall can be significantly increased by automatically separating correct
instances extracted by generic patterns from incorrect ones. The challenge is to harness
the expressive power of the generic patterns while remaining minimally supervised.

The intuition behind our method is that in a very large corpus, like the Web, correct
instances of a generic pattern will be instantiated by many of Espresso’s reliable patterns
accepted in P . Recall that, by definition, Espresso’s reliable patterns extract instances
with high precision (yet often low recall). In a very large corpus, like the Web, we assume
that a correct instance will occur in at least one of Espresso’s reliable pattern even though
the patterns’ recall is low. Intuitively, our confidence in a correct instance increases when,
i) the instance is associated with many reliable patterns; and ii) its association with the
reliable patterns is high. At a given Espresso iteration, where PR represents the set of
previously selected reliable patterns, this intuition is captured by the following measure
of confidence in an instance i = {x, y}:

S(i) =
∑

p∈PR

Sp(i)× rπ(p)
T

where T is the sum of the reliability scores rπ(p) for each pattern p ∈ PR, and

Sp(i) = pmi(i, p) = log
|x, p, y|

|x, ∗, y| × |∗, p ∗ |
where pointwise mutual information between instance i and pattern p is estimated with
Google as follows:

Sp(i) ≈ |x, p, y|
|x| × |y| × |p|

An instance i is rejected if S(i) is smaller than some threshold τ . Although this filter-
ing may also be applied to reliable patterns, we found this to be detrimental in our ex-
periments since most instances generated by reliable patterns are correct. In Espresso,
we classify a pattern as generic when it generates more than 10 times the instances of
previously accepted reliable patterns.

4. Ontologizing Semantic Relations

The output of most relation harvesting algorithms, such as Espresso described in Sec-
tion 3, consists of flat lists of lexical semantic knowledge such as “Italy is-a country”
and “orange similar-to blue”. However, using this knowledge beyond simple keyword
matching, for example in inferences, requires it to be linked, or ontologized, into seman-
tic repositories such as ontologies or term banks like WordNet.



Given an instance (x, r, y) of a binary relation r between terms x and y, the ontolo-
gizing task is to identify the senses of x and y where r holds. In this work, we focus on
WordNet 2.0 senses, though any similar term bank would apply.

Let Sx and Sy be the sets of all WordNet senses of x and y. A sense pair, sxy , is
defined as any pair of senses of x and y: sxy = {sx, sy} where sx ∈ Sx and sy ∈ Sy .
The set of all sense pairs Sxy consists of all pairings between senses in Sx and Sy .

In order to attach a relation instance (x, r, y) into WordNet, one must:

• Disambiguate x and y, that is, find the subsets S′x ⊆ Sx and S′y ⊆ Sy for which
the relation r holds; and

• Instantiate the relation in WordNet, using the synsets corresponding to all correct
pairings between the senses in S′x and S′y. We denote this set of attachment points
as S′xy.

If Sx or Sy is empty, no attachments are produced.
For example, the instance (study, PART-OF, report) is ontologized into WordNet

through the senses S′x = {survey#1, study#2} and S′y = {report#1}. The final
attachment points S′xy are:

(survey#1, PART-OF, report#1)
(study#2, PART-OF, report#1)

Unlike common algorithms for word sense disambiguation, here it is important to take
into consideration the semantic dependency between the two terms x and y. For example,
an entity that is part-of a study has to be some kind of information. This knowledge about
mutual selectional preference (the preferred semantic class that fills a certain relation
role, as x or y) can be exploited to ontologize the instance.

In the following sections, we propose two algorithms for ontologizing binary se-
mantic relations.

4.1. Method 1: Anchor Approach

Given an instance (x, r, y), this approach fixes the term y, called the anchor, and then
disambiguates x by looking at all other terms that occur in the relation r with y. Based
on the principle of distributional similarity [27], the algorithm assumes that the words
that occur in the same relation r with y will be more similar to the correct sense(s) of
x than the incorrect ones. After disambiguating x, the process is then inverted with x as
the anchor to disambiguate y.

In the first step, y is fixed and the algorithm retrieves the set of all other terms X ′

that occur in an instance (x′, r, y), x′ ∈ X ′1. For example, given the instance (reflections,
PART-OF, book), and a resource containing the following relations:

(false allegations, PART-OF, book)
(stories, PART-OF, book)

(expert analysis, PART-OF, book)
(conclusions, PART-OF, book)

1For semantic relations between complex terms, like (expert analysis, PART-OF, book), only the head noun
of terms are recorded, like “analysis”. As a future work, we plan to use the whole term if it is present in
WordNet.



the resulting set X ′ would be: {allegations, stories, analysis, conclusions}. All possible
pairings, Sxx′ , between the senses of x and the senses of each term in X ′, called Sx′ , are
computed. For each sense pair {sx, sx′} in Sxx′ , a similarity score r(sx, sx′) is calculated
using WordNet:

r(sx, sx′) =
1

d(sx, sx′) + 1
× f(sx′)

where the distance d(sx, sx′) is the length of the shortest path connecting the two synsets
in the hypernymy hierarchy of WordNet, and f(sx′) is the number of times sense sx′

occurs in any of the instances of X ′. Note that if no connection between two synsets
exists, then r(sx, sx′) = 0. The overall sense score for each sense sx of x is calculated
as:

r(sx) =
∑

sx′∈Sx′

r(sx, sx′)

Finally, the algorithm inverts the process by setting x as the anchor and computes r(sy)
for each sense of y. All possible pairings of senses are computed and scored by aver-
aging r(sx) and r(sy). Pairings scoring higher than a threshold τ1 are selected as the
attachment points in WordNet. We experimentally set τ1 = 0.02.

4.2. Method 2: Clustering Approach

The main idea of the clustering approach is to leverage the lexical behaviors of the two
terms in an instance as a whole. The assumption is that the general meaning of the rela-
tion is derived from the combination of the two terms.

The algorithm is divided in two main phases. In the first phase, semantic clusters
are built using the WordNet senses of all instances. A semantic cluster is defined by the
set of instances that have a common semantic generalization. We denote the concep-
tual instance of the semantic cluster as the pair of WordNet synsets that represents this
generalization. For example the following two part-of instances:

(second section, PART-OF, Los Angeles-area news)
(Sandag study, PART-OF, report)

are in a common cluster represented by the following conceptual instance:

[writing#2, PART-OF, message#2]

since writing#2 is a hypernym of both section and study, and message#2 is a hypernym
of news and report2.

In the second phase, the algorithm attaches an instance into WordNet by using Word-
Net distance metrics and frequency scores to select the best cluster for each instance. A
good cluster is one that:

• achieves a good trade-off between generality and specificity; and

2Again, here, we use the syntactic head of each term for generalization since we assume that it drives the
meaning of the term itself.



• disambiguates among the senses of x and y using the other instances’ senses as
support.

For example, given the instance (second section, PART-OF, Los Angeles-area news) and
the following conceptual instances:

[writing#2, PART-OF, message#2]
[object#1, PART-OF, message#2]

[writing#2, PART-OF, communication#2]
[social_group#1, PART-OF, broadcast#2]

[organization#, PART-OF, message#2]

the first conceptual instance should be scored highest since it is both not too generic
nor too specific and is supported by the instance (Sandag study, PART-OF, report), i.e.,
the conceptual instance subsumes both instances. The second and the third conceptual
instances should be scored lower since they are too generic, while the last two should be
scored lower since the sense for section and news are not supported by other instances.
The system then outputs, for each instance, the set of sense pairs that are subsumed by
the highest scoring conceptual instance. In the previous example:

(section#1, PART-OF, news#1)
(section#1, PART-OF, news#2)
(section#1, PART-OF, news#3)

are selected, as they are subsumed by [writing#2, PART-OF, message#2]. These sense
pairs are then retained as attachment points into WordNet.

Below, we describe each phase in more detail.

4.2.1. Phase 1: Cluster Building

Given an instance (x, r, y), all sense pair pairings sxy = {sx, sy} are retrieved from
WordNet. A set of candidate conceptual instances, Cxy , is formed for each instance from
the pairing of each WordNet ancestor of sx and sy , following the hypernymy link, up to
degree τ2.

Each candidate conceptual instance, c = {cx, cy}, is scored by its degree of gener-
alization as follows:

r(c) =
1

(nx + 1)× (ny + 1)

where ni is the number of hypernymy links needed to go from si to ci, for i ∈ {x, y}.
r(c) ranges from [0, 1] and is highest when little generalization is needed.

For example, the instance (Sandag study, PART-OF, report) produces 70 sense pairs
since study has 10 senses and report has 7 senses. Assuming τ2 = 1, the instance sense
(survey#1, PART-OF, report#1) has the set of candidate conceptual instances reported in
Table 1.

Finally, each candidate conceptual instance c forms a cluster of all instances (x, r, y)
that have some sense pair sx and sy as hyponyms of c. Note also that candidate concep-
tual instances may be subsumed by other candidate conceptual instances. Let Gc refer to
the set of all candidate conceptual instances subsumed by candidate conceptual instance
c.



Cxy nx ny r(c)

(survey#1, PART-OF,report#1) 0 0 1

(survey#1, PART-OF,document#1) 0 1 0.5

(examination#1, PART-OF,report#1) 1 0 0.5

(examination#1, PART-OF,document#1) 1 1 0.25
Table 1. Example of conceptual instances for the instance sense (survey#1, PART-OF, report#1).

Intuitively, better candidate conceptual instances are those that subsume both many
instances and other candidate conceptual instances, but at the same time that have the
least distance from subsumed instances. We capture this intuition with the following
score of c:

score(c) =

∑

g∈Gc

r(g)

|Gc| × log|IC | × log|GC |

where Ic is the set of instances subsumed by c. We experimented with different variations
of this score and found that it is important to put more weight on the distance between
subsumed conceptual instances than the actual number of subsumed instances. Without
the log terms, the highest scoring conceptual instances are too generic (i.e., they are too
high up in the ontology).

4.2.2. Phase 2: Attachment Points Selection

In this phase, we utilize the conceptual instances of the previous phase to attach each
instance (x, r, y) into WordNet.

At the end of Phase 1, an instance can be clustered in different conceptual instances.
In order to select an attachment, the algorithm selects the sense pair of x and y that is sub-
sumed by the highest scoring candidate conceptual instance. It and all other sense pairs
that are subsumed by this conceptual instance are then retained as the final attachment
points.

As a side effect, a final set of conceptual instances is obtained by deleting from each
candidate those instances that are subsumed by a higher scoring conceptual instance. Re-
maining conceptual instances are then rescored using score(c). The final set of concep-
tual instances thus contains unambiguous sense pairs.

5. Experimental Results

In this section, we evaluate both the harvesting algorithm Espresso and our two algo-
rithms for ontologizing semantic relations.

5.1. Espresso Evaluation

Here, we present an empirical comparison of Espresso with three state of the art systems
on the task of extracting various semantic relations.



5.1.1. Experimental Setup

We perform our experiments using the following two datasets:

• TREC: This dataset consists of a sample of articles from the Aquaint (TREC-
9) newswire text collection. The sample consists of 5,951,432 words extracted
from the following data files: AP890101 - AP890131, AP890201 - AP890228,
and AP890310 - AP890319.

• CHEM: This small dataset of 313,590 words consists of a college level textbook
of introductory chemistry [35].

Each corpus is pre-processed using the Alembic Workbench POS-tagger [36].
Below we describe the systems used in our empirical evaluation of Espresso.

• RH02: The algorithm by Ravichandran and Hovy [14] described in Section 2.
• GI06: The algorithm by Girju et Al. [15] described in Section 2.
• PR04: The algorithm by Pantel [18] described in Section 2.
• ESP-: The Espresso algorithm using the pattern and instance reliability measures,

but without using generic patterns.
• ESP+: The full Espresso algorithm described in this work exploiting generic pat-

terns.

For ESP+, we experimentally set τ from Section 3.2 to τ = 0.4 for TREC, and τ = 0.3
for CHEM by manually inspecting a small set of instances.

Espresso is designed to extract various semantic relations exemplified by a given
small set of seed instances. We consider the standard is-a and part-of relations as well
as the following more specific relations:

• succession. This relation indicates that a person succeeds another in a position or
title. For example, George Bush succeeded Bill Clinton and Pope Benedict XVI
succeeded Pope John Paul II. We evaluate this relation on the TREC-9 corpus.

• reaction. This relation occurs between chemical elements/molecules that can be
combined in a chemical reaction. For example, hydrogen gas reacts with oxy-
gen gas and zinc reacts-with hydrochloric acid. We evaluate this relation on the
CHEM corpus.

• production. This relation occurs when a process or element/object produces a
result3. For example, ammonia produces nitric oxide. We evaluate this relation on
the CHEM corpus.

For each semantic relation, we manually extracted a small set of seed examples. The
seeds were used for both Espresso as well as RH02. Table 2 lists a sample of the seeds
as well as sample outputs from Espresso.

5.1.2. Precision and Recall

We implemented the systems outlined in Section 5.1.1, except for GI06, and applied
them to the TREC and CHEM datasets. For each output set, per relation, we evaluate the
precision of the system by extracting a random sample of instances (50 for the TREC
corpus and 20 for the CHEM corpus) and evaluating their quality manually using two

3Production is an ambiguous relation; it is intended to be a causation relation in the context of chemical
reactions.



Is-a (12) Part-Of (12) Succession (12) Reaction (13) Production (14)
Seeds wheat :: crop leader :: panel Khrushchev :: Stalin magnesium :: oxygen bright flame :: flares

George Wendt :: star city :: region Carla Hills :: Yeutter hydrazine :: water hydrogen :: metal hydrides
nitrogen :: element ion :: matter Bush :: Reagan aluminum metal :: oxygen ammonia :: nitric oxide
diborane :: substance oxygen :: water Julio Barbosa :: Mendes lithium metal :: fluorine gas copper :: brown gas

Espresso Picasso :: artist trees :: land Ford :: Nixon hydrogen :: oxygen electron :: ions
tax :: charge material :: FBI report Setrakian :: John Griesemer Ni :: HCl glycerin :: nitroglycerin
protein :: biopolymer oxygen :: air Camero Cardiel :: Camacho carbon dioxide :: methane kidneys :: kidney stones
HCl :: strong acid atom :: molecule Susan Weiss :: editor boron :: fluorine ions :: charge

Table 2. Sample seeds used for each semantic relation and sample outputs from Espresso. The number in the
parentheses for each relation denotes the total number of seeds used as input for the system.

human judges (a total of 680 instances were annotated per judge). For each instance,
judges may assign a score of 1 for correct, 0 for incorrect, and 1/2 for partially correct.
Example instances that were judged partially correct include “analyst is-a manager” and
“pilot is-a teacher”. The kappa statistic [37] on this task was K = 0.694. The precision
for a given set of instances is the sum of the judges’ scores divided by the total instances.

Although knowing the total number of correct instances of a particular relation in
any non-trivial corpus is impossible, it is possible to compute the recall of a system
relative to another system’s recall. Following Pantel et Al. [21], we define the relative
recall of system A given system B, RA|B , as:

RA|B =
RA

RB
=

CA

C
CB

C

=
CA

CB
=

PA × |A|
PB × |B|

where RA is the recall of A, CA is the number of correct instances extracted by A, C is
the (unknown) total number of correct instances in the corpus, PA is A’s precision in our
experiments, and |A| is the total number of instances discovered by A.

Tables 3-9 report the total number of instances, precision5, and relative recall6 of
each system on the TREC-9 and CHEM corpora. The relative recall is always given in
relation to the ESP- system. For example, in Table 3, RH02 has a relative recall of 5.31
with ESP-, which means that the RH02 system outputs 5.31 times more correct relations
than ESP- (at a cost of much lower precision). Similarly, PR04 has a relative recall of 0.23
with ESP-, which means that PR04 outputs 4.35 fewer correct relations than ESP- (also
with a smaller precision). We did not include the results from GI06 in the tables since
the system is only applicable to part-of relations and we did not reproduce it. However,
the authors evaluated their system on a sample of the TREC-9 dataset and reported 83%
precision and 72% recall (this algorithm is heavily supervised.)

In all tables, RH02 extracts many more relations than ESP-, but with a much lower
precision, because it uses generic patterns without filtering. The high precision of ESP-
is due to the effective reliability measures presented in Section 3.1.4.

5.1.3. Effect of Generic Patterns

Experimental results, for all relations and the two different corpus sizes, show that ESP-
greatly outperforms the other methods on precision. However, without the use of generic
patterns, the ESP- system shows lower recall in all but the production relation.

4The kappa statistic jumps to K = 0.79 if we treat partially correct classifications as correct.
5Because of the small evaluation sets, we estimate the 95% confidence intervals using bootstrap resampling

to be in the order of ± 10-15% (absolute numbers).
6Relative recall is given in relation to ESP-.



SYSTEM INSTANCES PRECISION REL RECALL

RH02 57,525 28.0% 5.31
PR04 1,504 47.0% 0.23
ESP- 4,154 73% 1.00
ESP+ 69,156 36.2% 8.26

Table 3. System performance: TREC/is-a.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 2556 25.0% 3.76
PR04 108 40.0% 0.25
ESP- 200 85.0% 1.00
ESP+ 1490 76.0% 6.66
Table 4. System performance: CHEM/is-a.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 12,828 35.0% 42.52
ESP- 132 80.0% 1.00
ESP+ 87,203 69.9% 577.22
Table 5. System performance: TREC/part-of.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 11,582 33.8% 58.78
ESP- 111 60.0% 1.00
ESP+ 5973 50.7% 45.47
Table 6. System performance: CHEM/part-of.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 49,798 2.0% 36.96
ESP- 55 49.0% 1.00
ESP+ 55 49.0% 1.00

Table 7. System performance: TREC/succession.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 6,083 30% 53.67
ESP- 40 85% 1.00
ESP+ 3102 91.4% 89.39

Table 8. System performance: CHEM/reaction.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 197 57.5% 0.80
ESP- 196 72.5% 1.00
ESP+ 1676 55.8% 6.58

Table 9. System performance: CHEM/production.

As hypothesized, exploiting generic patterns using the algorithm from Section 3.2
substantially improves recall without much deterioration in precision. ESP+ shows one
to two orders of magnitude improvement on recall while losing on average below 10%
precision. The succession relation in Table 7 was the only relation where Espresso found
no generic pattern. For other relations, Espresso found from one to five generic patterns.
Table 5 shows the power of generic patterns where system recall increases by 577 times
with only a 10% drop in precision. In Table 8, we see a case where the combination of
filtering with a large increase in retrieved instances resulted in both higher precision and
recall.

In order to better analyze our use of generic patterns, we performed the following
experiment. For each relation, we randomly sampled 100 instances for each generic pat-
tern and built a gold standard for them (by manually tagging each instance as correct or
incorrect). We then sorted the 100 instances according to the scoring formula S(i) de-
rived in Section 3.2 and computed the average precision, recall, and F-score of each top-
K ranked instances for each pattern7. Due to lack of space, we only present the graphs
for four of the 22 generic patterns: “X is a Y” for the is-a relation of Table 3, “X in the
Y” for the part-of relation of Table 5, “X in Y” for the part-of relation of Table 6, and
“X and Y” for the reaction relation of Table 8. Figure 1 illustrates the results.

In each figure, notice that recall climbs at a much faster rate than precision decreases.
This indicates that the scoring function of Section 3.2 effectively separates correct and

7We can directly compute recall here since we built a gold standard for each set of 100 samples.



Figure 1. Precision, recall and F-score curves of the Top-K% ranking instances of patterns “X is a Y”
(TREC/is-a), “X in Y” (TREC/part-of ), “X in the Y” (CHEM/part-of ), and “X and Y” (CHEM/reaction).

incorrect instances. In Figure 1.a), there is a big initial drop in precision that accounts for
the poor precision reported in Table 3.

Recall that the cutoff points on S(i) were set to τ = 0.4 for TREC and τ = 0.3 for
CHEM. The figures show that this cutoff is far from the maximum F-score. An interest-
ing avenue of future work would be to automatically determine the proper threshold for
each individual generic pattern instead of setting a uniform threshold.

5.2. Ontologizing Evaluation

Here, we present an empirical evaluation of our two methods for ontologizing binary
semantic relations, presented in Section 4.

5.2.1. Experimental Setup

Researchers have developed many algorithms for harvesting semantic relations from cor-
pora and the Web. For the purposes of this work, we may choose any one of them and
manually validate its mined relations. We choose Espresso, the harvesting algorithm de-
scribed in Section 3.

Test Sets
We experiment with two relations: part-of and causation. The causation relation occurs
when an entity produces an effect or is responsible for events or results, for example
(virus, CAUSE, influenza) and (burning fuel, CAUSE, pollution). We manually built five
seed relation instances for both relations and apply Espresso to a dataset consisting of
a sample of articles from the Aquaint (TREC-9) newswire text collection. The sample
consists of 55.7 million words extracted from the Los Angeles Times data files. Espresso



extracted 1,468 part-of instances and 1,129 causation instances. We manually validated
the output and randomly selected 200 correct relation instances of each relation for on-
tologizing into WordNet 2.0.

Gold Standard
We manually built a gold standard of all correct attachments of the test sets in Word-
Net. For each relation instance (x, r, y), two human annotators selected from all sense
pairings of x and y the correct attachment points in WordNet. For example, for (syn-
thetic material, PART-OF, filter), the judges selected the following attachment points:
(synthetic material#1, PART-OF, filter#1) and (synthetic material#1, PART-OF, filter#2).
The kappa statistic [37] on the two relations together was K = 0.73.

Systems
The following three systems are evaluated:

• BL: the baseline system that attaches each relation instance to the first (most
common) Word-Net sense of both terms;

• AN: the anchor approach described in Section 4.1.
• CL: the clustering approach described in Section 4.2.

5.2.2. Precision, Recall and F-score

For both the part-of and causation relations, we apply the three systems described above
and compare their attachment performance using precision, recall, and F-score. Using
the manually built gold standard, the precision of a system on a given relation instance is
measured as the percentage of correct attachments and recall is measured as the percent-
age of correct attachments retrieved by the system. Overall system precision and recall
are then computed by averaging the precision and recall of each relation instance.

Table 10 and Table 11 report the results on the part-of and causation relations. We
experimentally set the CL generalization parameter τ2 to 5 and the τ1 parameter for AN
to 0.02.

SYSTEM PRECISION RECALL F-SCORE

BL 54.0% 31.3% 39.6%
AN 40.7% 47.3% 43.8%
CL 57.4% 49.6% 53.2%

Table 10. System performance on the part-of relation.

SYSTEM PRECISION RECALL F-SCORE

BL 45.0% 25.0% 32.1%
AN 41.7% 32.4% 36.5%
CL 40.0% 32.6% 35.9%

Table 11. System performance on the causation re-
lation.

5.2.3. Discussion

For both relations, CL and AN outperform the baseline in overall F-score. For part-of,
Table 10 shows that CL outperforms BL by 13.6% in F-score and AN by 9.4%. For
causation, Table 11 shows that AN outperforms BL by 4.4% on F-score and CL by 0.6%.

The good results of the CL method on the part-of relation suggest that instances
of this relation are particularly amenable to be clustered. The generality of the part-of
relation in fact allows the creation of fairly natural clusters, corresponding to different
sub-types of part-of, as those proposed by Winston et Al. [38]. The causation relation,



however, being more difficult to define at a semantic level [39], is less easy to cluster and
thus to disambiguate.

Both CL and AN have better recall than BL, but precision results vary with CL
beating BL only on the part-of relation. Overall, the system performances suggest that
ontologizing semantic relations into WordNet is in general not easy.

The better results of CL and AN with respect to BL suggest that the use of com-
parative semantic analysis among corpus instances is a good way to carry out disam-
biguation. Yet, the BL method shows surprisingly good results. This indicates that also
a simple method based on word sense usage in language can be valuable. An interesting
avenue of future work is to better combine these two different views in a single system.

The low recall results for CL are mostly attributed to the fact that in Phase 2 only
the best scoring cluster is retained for each instance. This means that instances with
multiple senses that do not have a common generalization are not captured. For example
the part-of instance (wings, PART-OF, chicken) should cluster both in [body_part#1,
PART-OF, animal#1] and [body_part#1, PART-OF, food#2], but only the best scoring
one is retained.

5.2.4. Conceptual Instances: Other Uses

Our clustering approach from section 4.2 is enabled by learning conceptual instances -
relations between mid-level ontological concepts. Beyond the ontologizing task, concep-
tual instances may be useful for several other tasks. In this Section, we discuss some of
these opportunities and present small qualitative evaluations.

Conceptual instances represent common semantic generalizations of a particular re-
lation. For example, below are two possible conceptual instances for the part-of relation:

[person#1, PART-OF, organization#1]
[act#1, PART-OF, plan#1]

The first conceptual instance in the example subsumes all the part-of instances in which
one or more persons are part of an organization, such as:

(president Brown, PART-OF, executive council)
(representatives, PART-OF, organization)

(students, PART-OF, orchestra)
(players, PART-OF, Metro League)

Below, we present three possible ways of exploiting these conceptual instances.

Support to Relation Extraction Tools
Conceptual instances may be used to support relation extraction algorithms such as
Espresso.

Most minimally supervised harvesting algorithm do not exploit generic patterns,
i.e. those patterns with high recall but low precision, since they cannot separate correct
and incorrect relation instances. For example, the pattern “X of Y” extracts many correct
relation instances like “wheel of the car” but also many incorrect ones like “house of
representatives”.

Girju et Al. [15] described a highly supervised algorithm for learning semantic con-
straints on generic patterns, leading to a very significant increase in system recall with-



CONCEPTUAL INSTANCES SCORE # INSTANCES INSTANCES

[multitude#3, PART-OF, group#1] 2.04 10 (ordinary people, PART-OF, Democratic Revolutionary Party)
(unlicensed people, PART-OF, underground economy)
(young people, PART-OF, commission)
(air mass, PART-OF, cold front)

[person#1, PART-OF, organization#1] 1.71 43 (foreign ministers, PART-OF, council)
(students, PART-OF, orchestra)
(socialists, PART-OF, Iraqi National Joint Action Committee)
(players, PART-OF, Metro League)

[act#2, PART-OF, plan#1] 1.60 16 (major concessions, PART-OF, new plan)
(attacks, PART-OF, coordinated terrorist plan)
(visit, PART-OF, exchange program)
(survey, PART-OF, project)

[communication#2, PART-OF, book#1] 1.14 10 (hints, PART-OF, booklet)
(soup recipes, PART-OF, book)
(information, PART-OF, instruction manual)
(extensive expert analysis, PART-OF, book)

[compound#2, PART-OF, waste#1] 0.57 3 (salts, PART-OF, powdery white waste)
(lime, PART-OF, powdery white waste)
(resin, PART-OF, waste)

Table 12. Sample of the highest scoring conceptual
instances learned for the part-of relation. For each
conceptual instance, we report score(c) , the number
of instances, and some example instances.

CONCEPTUAL INSTANCES SCORE # INSTANCES INSTANCES

[change#3, CAUSE, state#4] 1.49 17 (separation, CAUSE, anxiety)
(demotion, CAUSE, roster vacancy)
(budget cuts, CAUSE, enrollment declines)
(reduced flow, CAUSE, vacuum)

[act#2, CAUSE, state#3] 0.81 20 (oil drilling, CAUSE, air pollution)
(workplace exposure, CAUSE, genetic injury)
(industrial emissions, CAUSE, air pollution)
(long recovery, CAUSE, great stress)

[person#1, CAUSE, act#2] 0.64 12 (homeowners, CAUSE, water waste)
(needlelike puncture, CAUSE, physician)
(group member, CAUSE, controversy)
(children, CAUSE, property damage)

[organism#1, CAUSE, disease#1] 0.03 4 (parasites, CAUSE, pneumonia)
(virus, CAUSE, influenza)
(chemical agents, CAUSE, pneumonia)
(genetic mutation, CAUSE, Dwarfism)

Table 13. Sample of the highest scoring conceptual instances learned for the causation relation. For each
conceptual instance, we report score(c) , the number of instances, and some example instances.

out deteriorating precision. Conceptual instances can be used to automatically learn such
semantic constraints by acting as a filter for generic patterns, retaining only those in-
stances that are subsumed by high scoring conceptual instances. Effectively, conceptual
instances are used as selectional restrictions for the relation. For example, our system
discards the following incorrect instances:

(week, CAUSE, coalition)
(demeanor, CAUSE, vacuum)

as they are both part of the very low scoring conceptual instance [abstraction#6, CAUSE,
state#1].

Ontology Learning from Text
Each conceptual instance can be viewed as a formal specification of the relation at hand.



For example, Winston et Al. [38] manually identified six sub-types of the part-of rela-
tion: member-collection, component-integral object, portion-mass, stuff-object, feature-
activity and place-area. Such classifications are useful in applications and tasks where
a semantically rich organization of knowledge is required. Conceptual instances can be
viewed as an automatic derivation of such a classification based on corpus usage. More-
over, conceptual instances can be used to improve the ontology learning process itself.
For example, our clustering approach can be seen as an inductive step producing concep-
tual instances that are then used in a deductive step to learn new instances. An algorithm
could iterate between the induction/deduction cycle until no new relation instances and
conceptual instances can be inferred.

Word Sense Disambiguation
Word Sense Disambiguation (WSD) systems can exploit the selectional restrictions iden-
tified by conceptual instances to disambiguate ambiguous terms occurring in particular
contexts. For example, given the sentence:

“the board is composed by members of different countries”

and a harvesting algorithm that extracts the part-of relation (members, PART-OF, board),
the system could infer the correct senses for board and members by looking at their
closest conceptual instance. In our system, we would infer the attachment (member#1,
PART-OF, board#1) since it is part of the highest scoring conceptual instance [person#1,
PART-OF, organization#1].

Qualitative Evaluation
Table 12 and Table 13 list samples of the highest ranking conceptual instances obtained
by our system for the part-of and causation relations. Below we provide a small evalua-
tion to verify:

• the correctness of the conceptual instances. Incorrect conceptual instances such
as [attribute#2, CAUSE, state#4], discovered by our system, can impede WSD
and extraction tools where precise selectional restrictions are needed; and

• the accuracy of the conceptual instances. Sometimes, an instance is incorrectly
attached to a correct conceptual instance. For example, the instance (air mass,
PART-OF, cold front) is incorrectly clustered in [group#1, PART-OF, multitude#3]
since mass and front both have a sense that is descendant of group#1 and multi-
tude#3. However, these are not the correct senses of mass and front for which the
part-of relation holds.

For evaluating correctness, we manually verify how many correct conceptual instances
are produced by Phase 2 of the clustering approach described in Section 4.2. The claim is
that a correct conceptual instance is one for which the relation holds for all possible sub-
sumed senses. For example, the conceptual instance [group#1, PART-OF, multitude#3]
is correct, as the relation holds for every semantic subsumption of the two senses. An
example of an incorrect conceptual instance is [state#4, CAUSE, abstraction#6] since it
subsumes the incorrect instance (audience, CAUSE, new context). A manual evaluation
of the highest scoring 200 conceptual instances, generated on our test sets described in
Section 5.2.1, showed 82% correctness for the part-of relation and 86% for causation.



For estimating the overall clustering accuracy, we evaluated the number of correctly
clustered instances in each conceptual instance. For example, the instance (business peo-
ple, PART-OF, committee) is correctly clustered in [multitude#3, PART-OF, group#1] and
the instance (law, PART-OF, constitutional pitfalls) is incorrectly clustered in [group#1,
PART-OF, artifact#1]. We estimated the overall accuracy by manually judging the in-
stances attached to 10 randomly sampled conceptual instances. The accuracy for part-of
is 84% and for causation it is 76.6%.

6. Conclusions

In this chapter, we presented algorithms for both extracting semantic relations from tex-
tual resources and for linking, or ontologizing, them into a semantic repository. We pro-
posed a weakly-supervised, general-purpose, and accurate algorithm, called Espresso,
for harvesting binary semantic relations from raw text. The main contributions are: i)
a method for exploiting generic patterns by filtering incorrect instances using the Web;
and ii) a principled measure of pattern and instance reliability enabling the filtering algo-
rithm. We have empirically compared Espresso’s precision and recall with other systems
on both a small domain-specific textbook and on a larger corpus of general news, and
have extracted several standard and specific semantic relations: is-a, part-of, succession,
reaction, and production. Espresso achieves higher and more balanced performance than
other state of the art systems. By exploiting generic patterns, system recall substantially
increases with little effect on precision.

We then proposed two algorithms for automatically ontologizing binary semantic
relations into WordNet: an anchoring approach and a clustering approach. Experiments
on the part-of and causation relations showed promising results. Both algorithms out-
performed the baseline on F-score. Our best results were on the part-of relation where
the clustering approach achieved 13.6% higher F-score than the baseline. The induction
of conceptual instances has opened the way for many avenues of future work. We intend
to pursue the ideas presented in Section 5.2.4 for using conceptual instances to: i) support
knowledge acquisition tools by learning semantic constraints on extracting patterns; ii)
support ontology learning from text; and iii) improve word sense disambiguation through
selectional restrictions. Also, we will try different similarity score functions for both the
clustering and the anchoring approaches, as those surveyed in Corley and Mihalcea [40].

The algorithms described in this chapter may be applied to ontologize many lexical
resources of semantic relations, no matter the harvesting algorithm used to mine them. In
doing so, we have the potential to quickly enrich our ontologies, like WordNet, thus re-
ducing the knowledge acquisition bottleneck. It is our hope that we will be able to lever-
age these enriched resources, albeit with some noisy additions, to improve performance
on knowledge rich problems such as question answering and information extraction.
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Abstract. Designed about ten years ago, the TERMINAE method and workbench
for ontology engineering from texts have been going on evolving since then. Our
investigations integrate the experience gained through its use in industrial and aca-
demic projects, the progress of natural language processing as well as the evolu-
tion of the ontology engineering. Several new methodological guidelines, such as
the reuse of core ontologies, have been added to the method and implemented in
the workbench. It has also been modified in order to be compliant to some recent
standards such as the OWL knowledge representation.

The paper recalls the terminology engineering principles underlying TERMINAE

and comments its originality. Then it presents the kind of conceptual model that
is built with this method, and its knowledge representation. The method and the
support provided by the workbench are detailed and illustrated with a case-study in
law. With regard to the state of the art, TERMINAE is one of the most supervised
methods in the trend of ontology learning. This option raises epistemological issues
about how language and knowledge can be articulated and the distance that separate
formal ontologies from learned conceptual models.

Keywords. Ontology engineering, natural language processing, knowledge acquisi-
tion from text, conceptual modeling method, modeling software, terminology.

1. Introduction

In knowledge engineering, early motivations for the definition of ontologies mainly were
the reuse of domain knowledge models and interoperability across knowledge-based sys-
tems. This goal dates back to the mid-80’s. Then, very few applications using ontologies
were related to texts. Among these few cases was the Menelas project, where an ontology
is used as a semantic resource for multi-lingual natural language processing [1]. In the
90’s, the increasing success of ontologies justified the definition of methodological pro-
cesses for building them, like the MethOntology approach [2]. Still, existing ontologies
and human expertise were the main knowledge sources, and texts were scarcely men-
tionned. These methods insisted rather on engineering guidelines inspired from software
engineering, but did not pay much attention on the difficulty to identify, structure and
then validate the knowledge represented in the ontology. Neither did they worry about

1Corresponding Author: Nathalie Aussenac-Gilles, IC3 team, IRIT, UPS, 118, route de Narbonne, 31062
Toulouse Cedex 4, France; E-mail: aussenac@irit.fr



the problem of listing concept instances in order to form a knowledge base described
according to the ontology.

The gap between texts and knowledge models has been bridged after the conver-
gence of research in knowledge representation and semantic networks for natural lan-
guage processing (i.e. Skuce [3] or Sowa [4]) and a critic of Wuster’s constructivism by
terminologists [5]. This cross-disciplinary work benefited from recent progress in natural
language processing (NLP) and information extraction. These systems could reduce the
time spent on knowledge acquisition with domain experts thanks to the mining of texts
as knowledge sources. This evolution prepared the ground for ontology and terminology
engineering from texts.

The TERMINAE method for ontology engineering from texts refers to this trend
which has been promoted in France by the French TIA2 special interest group. Like for
Simperl et al., the main motivation for formalizing a method was to give precise hints
to knowledge engineers [6]. The main options of ontology engineering from texts were
stated right from the start: the importance of text selection, the gain brought by NLP
for text analysis, the necessary human post-processing to check ontological criteria, the
change of scope required for an effective formalization. At first, the method insisted on
term extraction and concept identification, providing little hints about relations and ax-
ioms [7]. It has been refined over the years after several experimental evaluations.

Since its definition, the TERMINAE method is supported by a specific tool, the TER-
MINAE platform3, which provides guidance to conceptualization activities. This tool inte-
grates functions for linguistic analyzes and conceptual modeling, it imports results from
term and relation extractors, and makes it possible to reuse existing ontologies. One of
its key features is to trace knowledge items from their linguistic form in texts to their
modeling in an ontology, and back. The intended users are knowledge engineers and
terminologists.

Designed about ten years ago, the TERMINAE method and plaform have been go-
ing on evolving since then [7]. This paper reports on recent advances related to both the
method and the software. Our methodological investigation takes its roots in the expe-
rience gained through its use in industrial and academic projects or case studies, in the
advances of NLP technologies as well as in the evolution of ontology engineering. It has
led to several new methodological guidelines, such as the reuse of core ontologies. The
platform has also been modified in order to be compliant to some recent standards such
as the OWL [8] representation language.

The paper first develops most of the statements that originated the TERMINAE
method (section 2). In particular, we underline the necessity of an epistemological dis-
cussion about how language and knowledge can be linked when building knowledge
models from text. Then we list and comment some of the method principles, which refer
to terminology and semantic analysis (section 3). Section 4 is dedicated to a presentation
of TERMINAE’s knowledge representation at various levels. Then we detail the method
and the use of the platform in section 5, focusing on the conceptualization stage. We
stress recent advances and compare TERMINAE with other methods and tools from the
state of the art in section 6. In the conclusion, we sum up TERMINAE’s strengths and
limitations, and draw some perspectives for a better guidance to get knowledge models
that actually are ontologies.

2http://tia.loria.fr/ , April 2007
3The TERMINAE software is written in Java. It is developed at LIPN by S. Szulman



2. Knowledge Modeling from Texts

2.1. Early Knowledge Acquisition from Texts

Knowledge modeling from texts emerged as a promising way to save time and to improve
the quality of domain models in the early 80’s. In France, early works were the KOD
method and the K-station workbench [9], where texts in French could be browsed to
identify knowledge fragments. They were the first attempts to consider texts as major
knowledge repositories, and approaches in linguistics and terminology as the proper way
to explore them before knowledge modeling. Knowledge acquisition from texts used
to include two major trends [10]: natural language processing tools for the automatic
"translation" of texts into knowledge bases; hypertext editors that guided text browsing
and fragmentation into meaningful sequences (like those available for CommonKADS).

Even more than these practical reasons, new statements about the grounding of
knowledge in language motivated a new direction for investigations in the early 90’s [3].
In France, researchers from the fields of terminology, natural language processing (NLP),
corpus linguistics, knowledge engineering and philosophy collaborated in the TIA group
to share both theoretical issues and experiments in building thesaurus, terminologies and
ontologies. This convergence was made possible thanks to the maturity of shallow and
robust NLP together with the availability of large amounts of digital documents. More-
over, the evolution of terminology and corpus linguistics brought a new insight on the
possible connection between concepts and their linguistic realization [5].

2.2. Anchoring Models in Language

A part of terminology as a discipline has progressively abandoned the normative view of
the Vienna Circle as stated by Wüster in his General Theory of Terminology in the 30’s.
According to this paradigm, terms are monosemic within specialized domains and cor-
respond to the linguistic form of pre-existing and stable concepts. The on-going dynam-
ics of knowledge and language, the linguistic cross fertilization of specialized domains
and the increasing number of available terminologies with diverging conceptualizations
in each specific domain break down most of the hypotheses of this theory [11]. Various
conceptual models may be defined in one domain according to their purpose use, and
they may evolve over time.

Although the traditional view still remains active, an alternative position emerged
that promotes a reverse process where linguistic expressions are the root from which sets
of concepts can be identified and defined [12]. This view of terminology stresses that do-
main knowledge lies in the sum of all the discourses produced by the domain members,
whether written texts, handbooks, technical notes, terminologies . . . or oral expert defi-
nitions. The semantics of terms is then considered both as textual (the meaning of terms
results from combining the interpretations of all its certified uses in texts) and differential
(terms are defined in contrast with the meaning of other terms) [13]. These semantics
meet the analyzes and theories conveyed by corpus linguistics [14]. If terms are defined
from the interpretation of the sentences where they occur, concepts then are normalized
meanings. Their definition results from a restriction process: among all possible inter-
pretations, some are selected according to a specific purpose and domain. This definition
is neither definitive nor rigid: it could evolve over time since domain knowledge, termi-



nologies and even domain frontiers may be modified. Because the nature of the termi-
nological networks obtained from this terminology engineering process are very close
to ontologies, this trend has soon be considered as a possible contribution to ontology
engineering [15].

2.3. A New Paradigm for Text Analysis

Within this new perspective, many approaches suggested to carry out a shallow text pars-
ing, such as lexical, syntactic or semantic analyzes of a selected corpus of texts, to build
up semantic resources likes terminologies [16]. The NLP tools used in this context are
much less ambitious than those required for text understanding. They provide the knowl-
edge engineer with means to identify terms, to compare the contexts in which they are
used and to define concepts, or even to set relationships between them. These tools are
all the more efficient as they can be adapted to each application. For instance, Harris sug-
gests that terms that appear in similar syntactical contexts may share similar meanings.
It relies on several statistical measures, the so-called distributional analysis, to compare
contexts and propose term clusters that lead to define concepts [17].

3. TERMINAE: Principles

The TERMINAE method has been defined within the TIA group and belongs to this re-
search stream. We report here some of the grounding principles that influenced it. These
options formed an innovative paradigm for ontology engineering at the time when the
method was proposed, around 1999.

3.1. Characteristics of the Models Built with TERMINAE

Models based on the language in use One major claim of TERMINAE is that language as it
is used in texts can provide relevant information on domain concepts. The practical
incidence of this choice is a tight connection between the models under construc-
tion and linguistic data and even texts. The first connection is established through
the lexicon. Term extraction software tools produce candidate terms, that addi-
tional information (statistic criteria like frequency, productivity, or linguistic cri-
teria like contexts of use, . . . ) helps to select as labeling concepts. Not all nouns
are concept labels. Additional information is required to state that a noun phrase
or a verb phrase can form a term. The second means used to anchor the concep-
tual model in language relies on predicates (mainly verbs). They connect or define
concepts, or they are part of patterns that reveal lexical relations.

Domain and task specific models The models built with TERMINAE should integrate, in
their lexicon, the diversity of the domain terminology identified in texts and, as
conceptual models, they should take into account the application that will use
them. As a consequence, these models are domain- and task-specific: concept def-
initions result from the selection of a single interpretation context that reflects the
application requirements; they are intended to reflect one of the ways knowledge
can be perceived through the use of language in documents. These models will not
contain universal and unique definitions of concepts in reference to some semantic
primitives unless these concepts are reused from a generic formal ontology [18].



Models that reflect a compromise among knowledge sources Depending on the user com-
munity, concept definitions can be the result of negotiations among domain experts
or a compromise between various text sources. Thus the ontology is supposed to
be the most consensual knowledge among the user community, and, at the same
time, the most relevant one for the application. It is useful to extend the ontological
commitment as long as this does not conflict with the perspective needed for the
application and the user community.

Conceptual models ranging from terminologies to ontologies Terminology engineering may
produce terminologies, kernels of light-weigh ontologies, taxonomies or concep-
tual networks. If no human expertise or general knowledge is added, bottom-up
text analysis leads to a draft semantic network or a taxonomy of concepts related
to terms. TERMINAE proposes a supervised validation of this draft and syntactical
checking in order to get a relevant terminology or semantic network. If the ap-
plication requires a precise and formal model, the model can be refined to get an
ontology. TERMINAE suggests to apply ontological criteria for concept definition
borrowed from other methods, such as Archonte differentiation criterion [19] or
OntoClean formal properties [18].

Models with a terminological component The conceptual models built with TERMINAE

comprise a rich terminological component which is closely connected to the do-
main concepts on the one hand, to the texts from the corpus on the other hand. A
rich terminology (called lexicon in [20]) associated to an ontology is an advantage
for the interaction with users, for document management, meta-data extraction or
document annotation.

Weakly-formal models With TERMINAE, the most precise form that a model can take is
a weakly-formal ontology that can be represented in a language like OWL. By
weakly-formal ontology we mean a light-weigh ontology (without any rule or ax-
iom) where most of the relations have no other formal semantics than the type of
their range and domain. The output model may be represented with a more or less
formal and expressive language. Nevertheless, concepts are rather less specified
compared with those defined by formal ontology.

3.2. Characteristics of the approach

Given these features of the model that can be built with TERMINAE, here are some of the
main options of the method.

TERMINAE uses texts as knowledge sources The way terms are used reveals a lot of infor-
mation about their actual meaning and related knowledge, which is complemen-
tary and sometimes orthogonal with the standard definitions given in dictionaries
or terminologies. Keeping connections from the model to the source texts improves
its documentation and makes it easier to maintain.

It reuses additional resources to overcome text limitations We have experimented the limi-
tations of text-based ontology engineering. Texts may be of very different nature,
content and genre [14], and their processing may lead to non-homogeneous knowl-
edge. Most of the ontological knowledge is often missing. For instance, only ped-
agogical handbooks or documents that popularize technical information contain a
lot of explicit definitions [21] [22]. On the contrary, texts present counterexam-



ples that may not be relevant. TERMINAE suggests to refer to a domain expert for
validation and as a source of knowledge when it is missing in texts. Additional
resources may also be used such as existing thesaurus or terminologies, and avail-
able ontologies. The gain brought by core-ontologies is significant for structuring
concepts.

It makes use of various NLP tools Learning relevant knowledge from texts requires appli-
cation of NLP tools: what can be identified are terms, indications about their use
(frequency, distributions, collocations, dependencies, . . . ), lexical or semantic re-
lations between noun or verb phrases, semantically rich contexts, lexical or syn-
tactic regularity, term variations, definitions, etc. NLP provide better results if they
run on tokenized or tagged texts. So most of the tools suggested by TERMINAE use
texts tagged with TreeTagger4. Up to now, experiments have been carried out using
specific tools (two term extractors, a concordancer, a pattern matching system and
a synonymy relation extractor). The TERMINAE platform proposes specific import
facilities and interfaces for browsing their results.

It promotes a supervised process TERMINAE insists on the need for human intervention
to supervise the process of building a semantic resource. Considering the defini-
tion of ontology and the obvious limitations of texts as knowledge sources, in-
volving a knowledge engineer is the only way to take into account the application
needs and other knowledge selection criteria. Supervision takes place all along the
modeling process, when selecting or preprocessing the results of NLP tools, when
defining and formalizing concepts, when judging their relevance with respect to
the application needs. These evaluations have an important impact on the validity
and quality of the ontology. They lead to a more consensual representation.

Concepts result from a normalization process Concepts are the result of a normalization
process: only some features of domain objects or ideas are represented in concepts.
These features depend on a particular insight on the domain that the knowledge
engineer should have in mind. The selected features are those necessary (and may
be sufficient) to define the concept in a way that is relevant for the application. Nor-
malization results in setting each concept in the subsumption hierarchy, in defin-
ing its relations with other concepts or its properties. Normalization is one of the
conditions to reach a motivated concept description that reflects a consensual view
and anticipates further uses of this ontology in close contexts.

It supports the early stages of ontology engineering TERMINAE provides guidelines for
the early stages of ontology engineering from texts: resource gathering, linguistic
analysis and conceptual modeling. The focus is conceptual modeling and normal-
ization. This stage is carried out following a cyclic process where alternatively
linguistic data are mined and the conceptual model is enriched. Although formali-
sation can be done with OWL language as an export of TERMINAE models, only a
part of the OWL primitives can be used. So formalisation should be better carried
out in another platform like Protégé-OWL and following a method like OntoClean
[18] or Völker’s method presented in this book [23].

4http://www.ims.unistuttgart.de/projekte/corplex/TreeTagger/



4. TERMINAE: Knowledge Representation

Two main requirements influenced the choice of knowledge representation in TERMI-
NAE. Firstly, knowledge should be represented in a way that makes it easier to go from
linguistic data to the conceptual model and back. Secondly, this representation must be
compliant with the formalization in description logics, which was supported by TERMI-
NAE right from its early version. So some specific structures have been defined at three
different layers: terminological, conceptual and formal layers.

4.1. Terminological Representation

Figure 1. Terminological form of “bruit (noise)”

Terminological forms are specific data structures defined to store all the available
information related to terms and extracted using NLP techniques. Inspired from those
used by terminographers, they present grammatical information and documentary meta-
data (date of creation, author). For each meaning of the term, the form can be filled with
a definition in natural language that makes this meaning explicit (in general, in keeping
with the way the term is used in the corpus), a concept, all the term occurrences where
it has this meaning and its synonyms, as shown in Figure 1. Terminological forms can
be reused for new applications. They can be imported and lead to the definition of the
concepts corresponding to the terms in the forms. Several concepts may appear in the
terminological form of a polysemic term, but a concept generally appears only in one
terminological form that gathers all its synonym terms.



4.2. Conceptual Representation

The semantics of concepts proceeds first of all from their label but also from their sit-
uation in the model and in partiular their relations to other concepts: their situation in
the hierarchy of classes and sub-classes, inherited relations and specific relations to this
concept. Relations are represented as roles. Their meaning results of the human interpre-
tation of their label and the formal verification of the concepts that can be their domain
and range. Some roles may be defined as restrictions of inherited roles.

To help the understanding and maintenance of the model, concepts have specific
features to express why they have been introduced in this model. Concepts may be de-
fined because related terms have been found in texts : this feature is stored in the lin-
guistic dimension attribute of a concept (which may have as value terminological or not-
terminological). Concepts may also have been defined while expanding the model by
abstracting (bottom-up value) or refining already defined concepts (top-down value); this
information is stored in a feature called structuring dimension.

These two features take independent values. They qualify the concept before its
formalization. So they affect neither the classification nor any other inferential process.
These features are used as hints by the knowledge engineer when building or maintaining
the model, and they reflect his/her own experience in knowledge engineering. They em-
phasize a modeling point of view on the concept, following two methodological dimen-
sions: the usual structuring dimension, and the linguistic one that we have introduced.

4.3. Formal Representation

Knowledge representation formalisms, like conceptual graphs or description logics, de-
scribe knowledge at an epistemological level, in the sense of [24]. They provide logi-
cal primitives, the meaning of which is domain-independent, and syntactic rules to build
language formulae. They also provide rules for semantic composition, which allows the
sense of a formula to be computed from the sense of the primitives which compose it.
But the definition of the non-logical primitives of the domain, the interpretation of which
is given by the domain, is left to the knowledge engineer. Hence the task of building a
formal ontology of a domain comes down to defining the non-logical primitives of the
representation [25].

The representation language used in TERMINAE belongs to the family of descrip-
tion logics. The description logics describe concepts by their necessary and sufficient
conditions in order to organize them into a taxonomy of subsumption along which the
properties are inherited, and to classify new concepts in this hierarchy according to their
properties. Formal representation makes it possible to check some validation criteria for
the concepts and relations.

4.4. OWL export of the model

Current knowledge representations used for ontology engineering are somehow too weak
to account for the complexity of term-concept relationships [26]. For instance, in OWL
[8], concepts are represented by classes that may have several label properties. Each
label is a term that may be used to refer to this concept. These terms cannot be described
by independent classes. Terms are accessed through concepts and no information can be



added to them. On the other hand, the data model defined for terminological knowledge
bases proposes that terms are specific classes with properties like use indication, possible
variations or grammatical information. These structures are related to concepts, which
makes it a powerful way to represent term variations, synonymy, and homonymy [5],
[27]. New standards able to represent both conceptual and terminological information
are currently being defined for semantic web applications, like Skos 5.

TERMINAE exports a conceptual model built with the tool in the OWL representa-
tion language. In order to keep the benefits of a rich terminological component, the ter-
minological files are taken into account. To overcome the limitations of OWL labels, the
terms and the sentences containing their occurrences are stored as concept annotations
(in the OWL meaning) [26].

5. TERMINAE: Method and Tool

5.1. Overview of the Method

Most of the ontology engineering methods distinguish at least the following phases: fea-
sibility study, requirement analysis, conceptualization and finally deployment [2]. De-
ployment typically consists in a loop of application, evaluation and maintenance of the
ontology [28]. The TERMINAE method covers only the conceptualization phase and sug-
gests to split it up into four steps: domain resource (including a corpus) gathering, lin-
guistic analysis, conceptual modeling and formalization. The last three steps are per-
formed as many times as required during a cyclic process. They include various tasks as
shown on figure 2 and that we will detail in the next sections. A tight loop includes (1)
the exploration or mining of the results of some NLP tools on the corpus and (2) manual
modeling with the definition and structuring of concepts and relations.

TERMINAE has been applied successfully in many projects connected with different
application purposes such as the detection of inconsistencies in telecommunication ser-
vices [29] or the elaboration of conceptual models used for document classification or
annotation in various domains:

• glass-fiber making [30]
• break-down diagnosis of car electronic components [31]
• road safety from accident reports [32]
• the “worker” concept through European directives [33]
• legislation related to hygiene, security and environment (HSE) [34]
• archaeology of techniques [35]

Therefore, the design of TERMINAE integrated the feed-back brought by all these
practitioners for whom it tends to become more and more useful. The models built with
TERMINAE up to now have ranged from 200 to 1000 concepts and consisted of about 50
non-taxonomic relations.

The TERMINAE tool is modular and consists of specific components that perform
the tasks suggested by the method and lead to a draft ontology in a formal language. A
more precise and powerful formalization would require to export this draft ontology in

5http://www.w3.org/2004/02/skos/



Figure 2. Overview TERMINAE main tasks

an editor like Protégé OWL. A global data structure, mainly a set of XML files, is used
to facilitate the exchange of data and results between the components. Although these
components are integrated into the platform and they the may be used separately.

In this section, we detail how to carry out the three first steps of the method and how
the TERMINAE platform can be used all along them. The method is exemplified through
a use case from the legal domain. The goal was to build an ontology of the HSE domain
from French regulations.

5.2. Gathering Domain Resources

The first step of TERMINAE aims at gathering most of the knowledge sources that will
be used to build a model. In [7], the method used to insist only on texts and this first step
resulted in collecting texts to form a corpus. To improve the quality of the resulting mod-
els and save time in identifying or defining concepts, the current method also promotes
the reuse of existing resources. We provide guidelines for these two tasks.

5.2.1. Collecting a Corpus

A corpus gathers texts carefully selected among the available domain documentation
according to various criteria and guidelines. Compilation of a suitable corpus is in itself
labor-intensive.



Soergel suggests that text selection could be automated or at least computer-assisted
by testing the meta-data in the documents or by classifying them on the basis of their
content [36]. In the case of ontology or terminology engineering, TERMINAE proposes
the following criteria:

• texts should cover the domain specified in the application requirements that ex-
plain the objectives underlying the model development;

• they should share common properties: similar content, same or complementary
production periods, authors belonging to the same group, similar or complemen-
tary content to cover a given domain, digital format . . . ;

• they can be trusted and reflect a valid opinion in the domain;
• their content will provide results after being processed by NLP tools;
• they are rich in ontological information to extract.

Text selection may be easier with the help of a domain expert or a librarian. As
specialists of the documentation that they use, produce or organize for their activity, they
know which documents could be selected. They also can give precise information about
them, such as size, authors, date, genre, type and content. In the early stages of linguistic
analysis, the corpus may be considered as not relevant and modified.

In our case-study, the corpus consists of five textual documents selected by the ex-
perts among 500 available HSE regulation texts. Their sizes comprise of between 2 and
150 pages. They contain terms about HSE trades, environmental conservation and social
welfare. These five documents are the following ones :

• a decree related to classified installations for the environment protection : Décret
no 77- 1133 du 21 septembre 1977 pris pour l’application de la loi no 76-
663 du 19 juillet 1976 relative aux Installations Classées pour la Protection de
l’Environnement;

• a decree related to the introduction of new batteries on the market and to their
disposal: Décret no 99-374 du 12 mai 1999 relatif à la mise sur le marché des
piles et accumulateurs et à leur élimination;

• a decree related to the functioning outcome provided by another decree: Arrêté
du 29 juin 2004 relatif au bilan de fonctionnement prévu par le décret no 77-1133
du 21 septembre 1977 modifié;

• a decree related to combustion: Arrêté type - Rubrique no 2910 : Combustion;
• a decree related to the control of disposal recycling circuits: Décret no 2005-635

du 30 mai 2005 relatif au contrôle des circuits de traitement des déchets.

Each text is characterized by a heading defining the type of text (law, application de-
cree, European directive, . . . ), a title and a list of references to other texts. It is structured
in articles describing the application domain of the text with definitions, the applicability
conditions of the articles, the application date and the person in charge of its application.

5.2.2. Reusing Existing Ontologies and Terminologies

Existing terminologies, thesaurus or ontologies are valuable resources to guide concept
structuring, to improve reusability or to add new domain terms. TERMINAE makes it
possible to import various kinds of resources:



• ontologies represented with OWL or RDFs may form the kernel of the domain
model of a new project; they can be added to a model under construction;

• thesauri can be imported either as linear lists of terms or as hierarchies to be
integrated in the current model;

• conceptual models built with the TERMONTO user interface of the SYNTEX term
extractor can also form the root for an ontology [30].

Adding an existing ontology assumes that its concepts and roles have a precise and
formal meaning. It may require to align the reused ontology with the existing model in
order to recognize similar concepts, to avoid duplication, to connect both representations
and to correctly share roles. In the case of reusing a high-level or core ontology, it is
important to identify in the reused ontology which concepts will play the role of anchor
concept as proposed in [37]. Such concepts have direct children concepts in the domain
conceptual model.

bruitM/noiseM bruitJ/noiseJ

bruitM-Résiduel/
residual-noiseM

bruitM-Ambiant/
surrounding-noiseM

bruitE/noiseE

pollutionE pollutionJ

liability

process

property property

pivot
terms

concepts

pollution

bruit/noise

LKIF-core/
process.owl

LKIF-core/
norm.owl

anchor concepts

Figure 3. From terms to concepts

In our case-study, we used the LKIF-core6 ontology as a bootstrap. It provided high
level concepts to which we anchored more specific domain concepts. The definition of
LKIF-core concepts helps to refine and formalize the definition of domain concepts.
PROCESS and LIABILITY were identified as anchor concepts as shown on Figure 3.

6http://www.estrellaproject.org/lkif-core/doc/index.html , April 2007



5.3. Linguistic Analysis

This step consists in (1) running several NLP tools on the corpus, (2) collecting results
of corpus processing like terms and lexical relations and (3) if required, cleaning these
results. They will be further refined and used to enrich the model. The input of this stage
are digitalized corpus documents in the format required by the NLP tools. The output are
linguistic data identified in texts as relevant because they potentially refer to some piece
of domain knowledge.

Linguistic analysis is carried out several times. At the beginning of the modeling
process, it provides a bootstrap of linguistic data that will be explored according to some
criteria in order to get domain knowledge. Later on, once a draft of the model has been
built, it helps searching for some specific information in the corpus. We will call this
process focused text mining in the following. We will give guidelines for this model-
driven process at the conceptual modeling step.

5.3.1. Bootstrap Linguistic Analysis

The purpose of bootstrap linguistic analysis is to gather all potential terms (the so-called
term candidates [30]), syntactic and semantic relations, statistics about terms, occur-
rences or term clusters that could be relevant for knowledge modeling. Another purpose
may be to reduce the noise in the results by getting rid of errors or marginal results. But
this validation is quite time consuming. It may be avoided if the list of lexical entries is
not to be kept as a result in itself. It is easier to choose relevant term candidates than to
eliminate useless or wrong ones.

5.3.2. How the Platform Supports Linguistic Analysis

Recommended NLP tools

Several NLP tools with different goals may be used to get this input data. For instance,
generic tool suites like GATE [38] or dedicated algorithms for relation extraction like
Espresso and Macchiato [39] can be useful. But systems defined for the extraction of
relations between instances, generally for the purpose of semantic annotation (like Rote
Extractors [40]), are not appropriate at that time. We mention here bellow the software
tools for which the TERMINAE platform provides interfaces to import, browse and filter
their results through the "linguistic study" menu of the platform main frame. Most of
them may be used on French or English corpora:

• term extractors that also provide statistics and syntactic relations about terms:
LEXTER, SYNTEX [41] or YATEA [42];

• synonym extractor: SYNOTERM [43] detects synonymy relations between the ex-
tracted terms from a corpus, or between extracted terms and terms for a thesaurus;

• concordancers: TERMINAE has its own integrated concordancer, LINGUAE;
• lexical-relation extractor: it will be possible soon to import results from

CAMÉLÉON [44] and MFD [45].

Gathering terms

The TERMINAE platform provides facilities to browse the results of term extractors and
clean them from noise by removing or gathering term candidates. Term candidates that



are erroneous or not suitable for the application can be selected by hand and deleted from
the lists. Term variants can be selected and clustered as one unique term candidate that
refer to the union of their occurrences. Synonymy should not lead to term gathering, but
to an explicit synonymy relation between terms in the terminological forms.

We illustrate the support brought by TERMINAE with the visualization of results
obtained from YATEA. For each term candidate (“bruit (noise)” on the left part of Figure
4), the graphical user interface shows its occurrences (right part of Figure 4). Some rules
also are available for massive deletion of terms on syntactical bases, like one letter terms,
numbers or so, that can be fired on demand.

Figure 4. TERMINAE user interface for the evaluation of YATEA results

Collecting relations

Paradigmatic lexical relations between terms are one of the means to decide which terms
could be relevant to define domain concepts, to get useful information for defining con-
cepts and semantic relations.

Detailed reviews of existing techniques and tools for relation extraction can be found
[47] or in the introduction paper of [16]. Endogeneous approaches try to learn relations
only from linguistic regularity inside the corpus, without any additional resource. Even
relation patterns can be learned from tagged corpora. They may rely on statistical mea-
sures, the measure of co-occurring terms or distributional analysis [41]. Exogeneous sys-
tems use linguistic resources, like lexical data bases or generic relation patterns. Pattern-
based approaches require human interpretation of their results. Because it is complex
and time consuming, some systems use lexical resources or statistics to select the best
results, identify the possible relation meaning and related concepts. They automatically
learn semantic relations between concepts which later require human validation.



So far, CAMÉLÉON [44], LINGUAE and MFD [45] have been used with TERMINAE

for this task. MFD relies on association rules to find lexical relations. CAMÉLÉON im-
plements pattern matching and proposes a collection of validated patterns for French.
They can be adapted to any new corpus. LINGUAE can be used to encode and match
domain-specific patterns, which can be capitalized for each project. Nevertheless, no de-
fault generic-pattern list is given in LINGUAE. The matched sentences on a given corpus
can be stored and browsed later on.

The knowledge engineer can use either TERMINAE interface for LINGUAE results,
or CAMÉLÉON or MFD own interfaces. From reading the linguistic data, he defines con-
cepts and relations in the conceptual model. For each sentence matched with a pattern,
he must decide the precise relation meaning and which are the related concepts.

Looking for specific linguistic data or phenomenon

Concordancers (like LINGUAE or KESKYA [44]) and information extraction platforms
like GATE [38] may prove very conveniant for focused text mining. When looking for
some knowledge related to one or several concepts, the knowledge engineer is generally
able to characterize the linguistic form of this knowledge. This characterization defines
a search pattern in a concordancer. Patterns can be based on lexical entries, semantic
classes, syntactical categories or even punctuation, document structure . . . , depending on
the tags available in the documents that have been processed with NLP tools.

The LINGUAE concordancer included in TERMINAE allows pattern definition and
recognition. In the HSE corpus the “bruit (noise)” term is very often associated with
“vibration (vibration) ”. By looking at their linguistic contexts obtained with LINGUAE,
we have had confirmation that these two terms were used identically in the environmental
and legal documents.

5.4. Conceptual Modeling and Normalization

During this stage, a conceptual model documented with a terminological component
is built up from the interpretation of the lexical data found by NLP tools (particularly
terms), and from reused resources. As shown in Figure 5, the terminological forms play
here a major role: not only they constitute the terminological component associated to
the conceptual model, but also do they bridge the gap between the linguistic data and the
conceptual model.

5.4.1. The Process of Conceptual Modeling and Normalization

Tasks

Conceptual modeling and normalization refer to different criteria to guide the definition
of new concepts:

• During conceptual modeling, concepts are defined and organized according to
how knowledge is expressed through language in the text corpus and in the appli-
cation needs.

• During normalization, concept definition is guided by ontological guidelines;
such guidelines may be the concepts reused from a core-ontology or they may



Figure 5. Overview of the TERMINAE modeling stage

be ontological principles like those proposed in OntoClean [18] or Archonte’s
differentiation criteria [19].

Normalization generally starts with criticizing the results of language-driven con-
ceptual modeling. Subsets of the corpus are analyzed so that the model be progressively
enriched. Linguistic criteria and ontological criteria are alternatively applied. We will
detail these two tasks in the following.

In the legal case study, concept definitions were both drawn from the corpus and spe-
cific to the application. Their properties (expressed with roles) were classified in two cat-
egories: structural properties (definitional roles inherited from core-ontology concepts)
and functional properties (domain specific roles added to define more precisely proper-
ties required for our specific application).

Conceptual modeling

Conceptual modeling starts with a bootstrap stage where pieces of conceptual model
are built up, and goes on with the model consolidation phase, where these pieces are
connected, reorganized and enriched.

The bootstrap stage goes from texts to a first partial model. It consists in identify-
ing central domain terms, in defining relevant concepts and organizing them into local
hierarchies. Additional linguistic indices are searched to define relations involving each
of these concepts. We propose a list of guidelines for focusing on relevant terms, for
defining related concepts and setting them in the hierarchy of concepts.

Model consolidation aims at connecting these local hierarchies and at enriching the
model. This stage is model-driven: according to the model current content, the knowl-
edge engineer tries to better define, detail or organize concepts and roles. So he looks



for some particular knowledge in all the available linguistic data. From existing con-
cepts, expanding the model may consist in one of the following three processes that all
contribute to improve concept definitions:

• generalization: new ancestor concepts of existing ones are searched; they define
more abstract concepts or refer to high-level categories;

• specialization: for each existing concept, the goal is to make sure that its more
specific concepts have been defined (all those required for the application);

• clustering consists in creating new concepts that share some properties; this may
lead to the definition of non-terminological concepts.

Possible methods

In addition to the modeling criteria, another dimension influences the modeling process.
We distinguish two opposite ways to carry out the conceptual modeling and normaliza-
tion tasks:

• from the model back to the texts: the knowledge engineer may (a) browse the
conceptual model and feel the need to add some knowledge ; for this purpose, he
will (b) mine the linguistic data, (c) define or edit a terminological form and then
(d) modify the model ;

• from the texts towards the model: the knowledge engineer may (a) browse some
linguistic data, feel the need to take it into account in the model, (b) check the
model to decide of the data relevance, (c) define or edit a terminological form and
(d) modify the model.

The originality of TERMINAE is to promote this traceability in the method, to keep track
of it in the model and to support it in the platform. In the conceptual model, traceability
is achieved through the links that connect the corpus, the various terminological forms
and the ontology terminological concepts. Each terminological concept is linked to its
terminological form in which terms and their occurrences are saved. This facility should
simplify the use and maintenance of an ontology.

How the platform supports conceptualization

At each step, similar tasks are carried out repeatedly but with a different perspective.
These basic tasks are supported by corresponding functions on the platform :

• browsing linguistic data and selected terms to define terminological forms is pos-
sible from the linguistic analysis evaluation interface;

• browsing the conceptual model is possible through the conceptual model man-
agement frame shown in Figure 6;

• adding, modifying, deleting items in the model requires either the use of this same
interface or the definition of new concepts from the terminological form editor;

5.4.2. Guidelines for Conceptual Modeling

Conceptual modeling requires to identify and structure at the terminological and con-
ceptual levels some information selected among the results of NLP tools. TERMINAE
provides some



Figure 6. Defining the BRUITJ Concept through the Conceptual Model Management Frame

guidelines to select the most relevant linguistic data, to define concepts and to orga-
nize them in a model.

Guidelines for selecting linguistic data

In a model-driven process, the selected terms are those required to feed the model with
concepts. These guidelines explain how to identify terms in a bottom-up process. The
knowledge engineer should start with the candidate terms that are more likely to be se-
lected to define terminological forms. TERMINAE suggests to study (a) the most frequent
and productive noun phrases (phrase that are used in many more complex terms); (b)
terms consisting of only one word and sharing numerous syntactic contexts with other
terms; (c) noun phrases made of very frequent single terms; (d) terms that appear in titles
or headlines; (e) terms suggested by a domain expert or by other semantic resources.

Later on, term selection can be guided by relation extraction: given a term and a
relation pattern, by reading all the pattern occurrences, the knowledge engineer may
identify new terms and lexical relations.

Selecting a term leads to the definition of a terminological form. The lexical and syn-
tactic part of the terminological form are automatically filled in with the term label and
its occurrences (obtained with YATEA or SYNTEX term extractors) and with synonyms
found by SYNOTERM if any. Synonyms can also be added by hand. Then the knowledge
engineer has to study the term occurrences to find its meaning or its different meanings
if several are available. Each concept defined from a term is a terminological concept.

In the example, the “bruit (noise)” term is polysemic. It is used in many codes in
French Law, with a different meaning in each of them. We are interested in the follow-
ing three codes: CENVIRO (Environment code), CURBANI (Town-planning code) and
CTRAVAI (work code). So we distinguish three meanings for this term. We call this kind
of polysemic term a pivot term because it is common to several sub-domains or points
of views on a domain. Pivot terms facilitate understanding across sub-domains, but they



have a slightly different meaning in each of them, which may lead to some misunder-
standings. The knowledge engineer binds a distinct concept to each meaning with the
corresponding set of occurrences. In the example on Figure 3 , the “bruit (noise)” term
gives birth to three concepts : the BRUITJ concept which represents noise in the law sub-
domain, the BRUITE concept which represents noise as the environmental sub-domain,
the BRUITMET concept which represents noise in a technical sub-domain.

Guidelines for concept definition

Figure 7. BRUITJ terminological concept definition

Defining a concept opens up a concept definition form like the one shown in Figure
7 where the legal concept BRUITJ is described. If several terms correspond to a termi-
nological concept, one preferred term (the "vedette") is chosen as the concept label. The
next choice is to determine the father of this concept in the hierarchy of concepts. It can
be selected in the list of available concepts, or, if the desired concept has not been defined
yet, TOP can be selected until this new concept is created. Then some of the concept
features (its structural and linguistic dimensions) should be given a value.

For instance, the BRUITJ terminological concept defined on Figure 7 is a sub-class
of CENVIRO, its father-concept which is subsumed by the CODE concept. it means that
BRUITJ refers to all the codes that contain regulations about the environmental issues



related to noise. CODE is an anchor concept: it belongs to the LKIF-core ontology.

Top-down structuring type concepts are defined when refining high-level or abstract
concepts into more precise sub-concepts. High-level concepts are good indices to parti-
tion off the domain into large sub-domains which are easier to manage. This decompo-
sition allows the knowledge engineer to organize the conceptualization process.

In the legal case study, such top-down structuring concepts are PHYSICAL OBJECT

or MENTAL OBJECT. They have been introduced in order to start a top-down organization
of the domain concepts according to some fundamental classes. Many such concepts are
added when reusing a core-ontology, some of them playing the role of anchor concepts.

Bottom-up structuring concepts are those abstracted from low level concepts or
rather from terminological concepts that need to be better located in the hierarchy.
Bottom-up concepts may be classes added for the purpose of a relevant structuring, for
the gathering or the differentiation of some concepts with relations. These concepts may
not correspond to natural domain classes or terms. They often are not terminological.
Their definition requires a deeper study of the specialized domain.

Guidelines to incrementally feed the conceptual model

After the bootstrap stage, conceptual modeling is rather model driven. Defining concepts
from terms leads to "local" hierarchies of concepts with natural language definitions
and related terms, but concepts have no formal meaning. A deeper linguistic analysis is
required to connect concepts with relations and to clean the hierarchy. The next steps
suggested by the method are rather classical:

• identifying additional hierarchical relations and, with them, new concepts, to
structure "local hierarchies";

• identify hierarchical relations that connect these hierarchies;
• identify other types of relations that contribute to both define concepts and check

the hierarchy validity.

Hierarchical relations may be identified from the structure of noun phrases, or with spe-
cific patterns that identify definitions or hypernymy relations. Other types of relations
may be identified with domain specific patterns, by exploring co-occurrent terms or by
exploring terms that share similar syntactical contexts according to distributional analy-
sis. Details on relations extraction can be found in [15], [16], [44].

Normalization

The goal of normalization is to make explicit the meaning of each concept and role,
to check that concepts are unique, that definitions are precise enough and that concept
decomposition in sub-classes is homogeneous. Modeling options should be explicit too.

If the objective is to build an ontology with TERMINAE, several means can be used
to turn a conceptual model into a valid ontology: reusing core-ontologies and defining
domain concepts with respect to those of the core ontology; applying some ontological
principles. TERMINAE suggests to follow the differentiation principles proposed by B.
Bachimont in Archonte and derived from early work on Ontology [19]. According to



these principles, a concept should differ from its father concept and siblings according
to some criteria, eventually represented with roles. A concept should also share common
properties with its father concept and siblings, also possibly leading to defining roles.

Used as a way to validate the conceptual model, these criteria suggest to check, for
each concept, if it is worth being defined, if it is really different from its father concept
and siblings, if these differences have been made explicit with roles, how it will be in-
terpreted. Differentiation also assumes a shared point of view or some common features
for each list of sibling concepts. These common features may be explicit or not, and may
correspond to inherited roles or similar values of a common role. Applying such crite-
ria leads to more valid and readable ontologies that can be better used, maintained and
reused.

In TERMINAE, concepts are neither defined as sets of formal axioms nor as a formal
conjunction of necessary and sufficient conditions including their roles, like in DOLCE
[18]. In the ONTOSPEC method by G. Kassel, terms and concepts are validated accord-
ing to OntoClean principles, and ONTOSPEC suggests to reuse DOLCE. An attempt has
been made to integrate TERMINAE and ONTOSPEC: ONTOSPEC provided support to
formalize TERMINAE conceptual models and to build formal ontologies.

Syntactic and semantic model checking

Two kinds of validation are possible on the models built with TERMINAE. On the flow
semantic checking is performed every time a concept or a role is introduced in the ontol-
ogy. The tool verifies the compatibility of ranges between concept roles when they are
related in the same hierarchy. Moreover, an overall verification is proposed. Concepts
and roles are translated into their normal form. After comparing normal forms, some
suggestions are made to better classify concepts. The concept definitions which only dif-
fer by their labels are detected as errors. Either these concepts should form one concept,
or should they have at least a differenciating role.

6. Discussion

Since the moment when TERMINAE was defined (1999), ontology learning and popula-
tion from texts has become a very active research field [46] [20] [47] [48]. Most of the
works carried out refer to similar trends as those grounding TERMINAE, but the scope of
automation is generally stronger (even more for ontology population, like in the systems
proposed by Navigli and Verlardi [49] or Tanev and Magnini [50] in this book). As a con-
sequence, the role of human interpretation in the exploration of linguistic data is much
less emphasized and delayed further in the process. Validation bears on pieces of con-
ceptual model. For further information, read [36] and [16] where most of the statements
and challenges of terminology engineering for ontology engineering are developed.

Although we may wish to introduce more automatic post-processing of extracted lin-
guistic data in TERMINAE, this could not always be feasible because we use rather small
corpora that cover very specific domains. Selection thresholds could be computed on the
output of term extractors by comparing corpus specific results with the one obtained on
other corpora. Among other difficulties with learning algorithms are their applicability
to small corpora, the cost of providing training data prepared by hand compared with the



gain actually brought by the learning tool, and error propagation when various tools are
combined. A significant effort is still needed before getting to an optimized collection of
relevant tools that could be efficiently combined. A further step would be then to make
explicit some selection criteria to sort results and to reuse the model under construction
as a semantic resource for a more powerful text procesing.

In more advanced frameworks such as Text-to-Onto [46] or Ahmad’s method [15]
various tools are combined. But, as underlined in [36] neither has the contribution of
each component been thoroughly evaluated nor has a systematic state of the art survey
been compiled. We need still to capitalize on available methods, tools, and results, and
the current book is a significant step towards this aim. A listing of existing techniques,
their properties and possible combinations would provide guidance for using the most
appropriate combination of techniques and tools for a given application.

Nevertheless, it is not trivial to imagine a cyclic process that would involve the
successive application of various NLP tools and learning algorithms. This is one of
the research challenges of the Semantic Web for the years to come. If such continuous
processes can be defined, even for simplified cases, semantic resources will be much
more easily available and document annotation will be facilitated. Let’s emphasize that
a toolkit of processes and methods dedicated to specific applications is needed. Indeed,
because each kind of application requires a particular kind of semantic resource [16]
[51], the design process will be slightly different, including more or less sophisticated
text analyses [30].

7. Conclusion

Many methodologies and even more tools have been defined to support ontology engi-
neering from texts, which is now known as Ontology Learning. This label reveals the
strong willingness to automate the process as much as possible. The goal is rather to
suggest "noisy" but reasonably large pieces of model than thousands of raw linguistic
data. In order to reduce human interpretation, many of the resources required for text
analysis are learned form training sets of tagged documents. Moreover, validation is de-
layed as much as possible in the process, and it bears on pieces of model. Another way
to reduce the validation effort is to rely on additional semantic and lexical resources,
sometimes on information extracted from the web, to provide an automatic selection of
extracted results: these results will be considered as valid if they can be found in one of
the resources.

In this context, TERMINAE may look like an old fashioned pioneer. By promoting a
supervised process and leaving an important part to the knowledge engineer, by provid-
ing little automatic processing of NLP results and a weak integration of the various NLP
tools, knowledge modeling from texts remains time consuming and costly. Nevertheless,
we would like to go on carrying out experiments in order to test some of its principles,
and to formalize the experience that we have gained over the last 10 years. We identify
three possible directions for future works, one of which being currently on the way :

Integrating more unsupervised processes We would like to reduce early human validation
and to make validation bear on pieces of conceptual model; we plan to better use
available statistics about NLP results and other linguistic or semantic resources;



Improving methodological guidance by implementing heuristics Most of the method guide-
lines for identifying relevant terms and relations, for extending the conceptual
model or focusing on some concepts could be implemented with rules. By firing
these rules, the method could be more active and suggest a list of tasks to the
knowledge engineer. In a similar way, rules could implement differential princi-
pals so that the model could be automatically diagnosed and criticized during the
normalization stage.

Reusing our experience to define a new platform We currently are two of the partners of a
French project, DAFOE4App7. The aim of DAFOE4App is to define a new plat-
form to support the early stages of conceptual modeling from texts. The tool should
integrate various NLP and text-mining facilities with an editor for reusing, editing
and building a conceptual model or an ontology. The method will include most of
TERMINAE and ARCHONTE methodological guidelines.
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Abstract. Due to the well-known difficulties implied by manually build-
ing an ontology, machine-driven knowledge acquisition techniques—in
particular in the field of ontology learning—are promoted by many on-
tology engineering methodologies as a feasible alternative to aid ontology
engineers in this challenging process. Though the benefits of ontology
learning are widely acknowledged, to date its systematic application is
considerably constricted by the lack of adequate methodological sup-
port. The advantages of an elaborated ontology learning methodology
are twofold; on the one hand it reduces the need for a high expertise
level in this field: a detailed description of the process and best practices
in operating it in a variety of situations make ontology learning tech-
niques more accessible to large communities of ontology developers and
users; on the other hand the methodology clearly formalizes the ways
ontology learning results are integrated into a more general ontology
engineering framework, thus opening up new application scenarios for
these techniques and technologies. In this article we aim at contributing
at the operationalization of ontology learning processes by introducing a
methodology describing the major coordinates of these processes in terms
of activities, actors, inputs, outputs and support tools. The methodology
was employed to build an ontology in the legal domain. We present the
lessons learned from the case study, which are used to empirically vali-
date the proposed process model.

1 Introduction

Ontology learning is targeted at acquiring knowledge in form of ontological cat-
egories such as concepts, taxonomies, properties or axioms from information
sources describing a specific domain of interest. Due to the well-known difficulties
related to manually building an ontology, knowledge acquisition and in particu-
lar ontology learning are promoted by many ontology engineering methodologies
as one of the fundamental support activities aiming at aiding ontology engineers
in this challenging process [1]. In order to achieve this goal ontology learning
approaches combine methods and techniques from a multitude of disciplines,



e.g., Machine Learning, Computational Linguistics or Knowledge Representa-
tion, with a (still) indispensable amount of human expertise, required to evaluate
and refine the results of the information extraction and classification tasks.

The popularity of this emerging research field is indicated by the rich in-
ventory of tools and methods for (automatically) learning ontologies from semi-
structured knowledge sources or textual documents. However, the issue of in-
tegrating these methods into a generic methodology, and furthermore into the
overall ontology engineering process, has been marginally explored by the Se-
mantic Web community yet. Maedche [2] has presented a high-level ontology
learning architecture. The proposed ontology learning process model builds on
the idea of data mining as a process (e.g. [3]) with the phases of business and data
understanding, data preparation, modeling, evaluation and deployment. However,
no holistic approach similar to or extending the aforementioned one is known so
far. Similarly, Aussenac-Gilles et al. [4, 5] propose a process model to support
the generation of ontological categories from text based on a specific learning
algorithm, but does not integrate the process model into a generic ontology engi-
neering methodology. As a consequence current ontology learning methods and
tools, though producing valuable results, can not be optimally applied to arbi-
trary real-world ontology engineering scenarios. On the one hand, in absence of
a user-friendly, fine grained process description, ontology learning can not be
performed by domain experts without a considerable technical assistance. On
the other hand, the integration of the knowledge acquisition results into the on-
tology development task is still performed in an ad-hoc, unsupervised manner,
thus deteriorating the quality and limiting the flexibility of the overall engineer-
ing process.

This chapter aims at contributing to the alleviation of this problem by
proposing a fine-grained ontology learning process model which explicitly ad-
dresses the aforementioned issues. The methodology was applied and empirically
validated in an ontology-related case study in the legal domain.

The remaining of this chapter is organized as follows: we give a high-level
overview of the general ontology engineering process in Section 2 and situate the
ontology learning process model within the general process (cf. Section 3). The
main components of the model are elaborated in Section 4. Section 5 describes
the setting in which the methodology was applied and the findings of this case
study evaluation. The conclusions of our work and some directions for future
development are discussed in Section 6.

2 Ontology Engineering in a Nutshell

Ontology Engineering (OE) is formally defined as “the set of activities that con-
cern the ontology development process, the ontology life cycle, and the method-
ologies, tools and languages for building ontologies”[1]. This section summarizes
the most important of these activities.



Ontology engineering methodologies support ontology building for central-
ized ontology applications.1 [7, 8] focus on the consensus building process in
collaborative ontology engineering. Methodologies guiding the ontology reuse
process, e.g., [9, 10] or the ontology learning process, the focus of this book,
complete the picture.
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Fig. 1. Ontology Engineering Activities

Methodologies divide the ontology building process in a varying number of
stages, and propose a number of activities for each stage. The importance of a
particular activity within a methodology primarily depends on, e.g., the charac-
teristics of the ontology-based application, the complexity of the ontology to be
built, the availability of information sources, and the experience of the ontology
engineers.

[1] differentiates among management, development-oriented and support ac-
tivities within an ontology engineering process (cf. Fig. 1). The organizational
setting of the overall process is covered by so-called ontology management activ-
ities. In the pre-development phase the feasibility study examines if an ontology-
based application or the use of an ontology in a given context is the right way
to solve the problem at hand. Domain analysis, conceptualization and imple-
mentation are classical ontology development activities. The maintenance and

1 Refer for example to [1, 6] for recent overviews.



the use of the ontology are post-development activities. Ontology support ac-
tivities, e.g., knowledge acquisition (KA), evaluation, reuse, and documentation
are performed in parallel to the core development activities.

Methodologies additionally define the roles of the individuals involved in the
ontology building process. They primarily differentiate between domain experts
providing knowledge w.r.t. the domain to be modeled, ontology engineers with
expertise in fields such as knowledge representation or ontology tools, and users
applying the ontology for a particular purpose.

3 General process

Ontology learning is intended to be performed in conjunction with the main
ontology development process: during the domain analysis phase ontology en-
gineers and domain experts analyze the feasibility of a learning approach and
specify the excerpts of the target ontology which could be developed in this way.
The results of the learning process are integrated into the final ontology in a
subsequent phase, such as conceptualization or implementation (see Figure 1).
During the ontology learning process ontology engineers and ontology learning
experts collaborate with domain experts in order to extract relevant knowledge
from information sources, such as text documents, Web sites, databases or ta-
bles. In order to achieve this goal, they have to specify the main parameters of
the learning process: the corpora used as input for the learning tools, the most
suitable tools and methods, as well as the desired outcomes and the way they
should be evaluated. Depending on the particularities of the application sce-
nario, the learning process can be arbitrarily complex: multiple ontologies might
be acquired from external sources, and need to be integrated into a final result;
various tools might be used on different corpora to generate (parts of) the same
ontology, some phases of the learning procedure need to be repeated in order to
improve their outcomes etc.

Our methodology distinguishes among the following eight process stages:

1. Feasibility study
2. Requirements specification
3. Selection of information sources
4. Selection of ontology learning methods and tools
5. Learning preparation
6. Learning execution
7. Ontology evaluation
8. Ontology integration

An overview of process model including roles of the participants, main process
stages and the associated activities, decisions, input and output parameters, as
well as support tools is depicted in Figure 2. Depending on the outcomes of a
particular process stage the learning workflow can be executed in a linear or
iterative manner.
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The process model has been defined after extensively surveying recent on-
tology learning literature, studying the ontology learning activities implicitly
supported by the tools currently available, and from empirical findings of sev-
eral case studies in the field. We collected the activities covered by these sources
and mapped them to established equivalents in ontology engineering. Identify-
ing the communalities between the activities across the various approaches and
renaming the activities using common ontology engineering terminology was
rather straightforward. None of the analyzed approaches covered the entire pro-
cess model; most of them implicitly supported a simplified version of the process
model, while others had a different focus.

4 Process stages

In the following we elaborate the eight process stages introduced above in terms
of their low-level activities, the roles involved in these activities, the input and
output parameters, the decisions which have to be taken in order to produce the
desired outputs and potential technological support.

4.1 Feasibility study

The feasibility study is targeted at assessing the general feasibility of an on-
tology learning approach in the context of building an ontology in a particular
application setting. Provided that a positive feasibility study with respect to the
possibility of solving a specific issue by means of ontologies has been carried out,
the goal of this phase is to approximate the risks and problems which might
endanger the knowledge acquisition task. The link to the global ontology engi-
neering process is provided by the input parameter of this phase i.e. the ontology
requirements specification document (ORSD).

Roles As part of an ontology engineering process, this process step is mainly
operated by the same key actors, ontology engineers (OE) and domain experts
(DE). Ontology learning experts (OLE) are additionally required to realistically
assess the impact of technical issues on the success of the learning process.

Input factors In order to approximate the appropriateness of a learning ap-
proach the participants analyze the ontology requirements specification document
(ORSD). An excerpt of a typical ORSD is depicted in Table 1 [11].

Output factors The result of this process step is a risk analysis document
(RAD) analyzing potential risk factors and proposing risk management strate-
gies. An example for a risk analysis document is provided in Table 2 below.



Activities During the feasibility study the ontology learning team performs the
following activities:

– Specify types of ontologies: The activity is necessary as particular types of
ontologies (e.g. domain ontology, task ontology, upper-level ontology) opti-
mally require different methods and techniques for knowledge acquisition.
This should be done considering the sub-domains already indicated in the
ontology requirements specification document.
Identify information sources: In this activity ontology learning and domain
experts collect a set of information sources potentially useful for the learning
process.

– Identify required competencies: The ontology learning team should identify
the types of competencies required in the operation of the process. Typical
examples might be
• Linguistic expertise: This is required to select appropriate methods and

tools and to supervise their usage in the concrete setting.
• Domain expertise: Knowledge of the domain is crucial for the selection

of appropriate information sources and for the evaluation of the resulting
ontology with respect to domain-specific criteria such as correctness or
completeness [12].

• Tool know-how: Experience with ontology learning tools as well as other
auxiliary ontology management environments is important so as to con-
figure and execute the learning task.

• Language know-how: This is required for selecting and eventually cus-
tomizing the domain-related information sources, which might be avail-
able in a particular natural language.

– Identify stakeholders: In this activity the ontology learning team should an-
alyze and identify the stakeholders of the learning process in order to be able

Item Description

Goal, domain and scope Tourist information about activities, attractions,

environmental information in European cities

Size 200 concepts

Granularity level Major activities

Terminology Concept labels in English and Spanish

Knowledge sources Domain experts, databases, Lonely planet Web site

Users Tourists

Application scenarios Selection of travel destination

Supported applications Web portal

Competency questions 1). What can one do in Barcelona?
2). Where can I sky and bike?
3). Which city with good weather has a museum exhibiting
the art of Picasso?
...

Table 1. Excerpt of an ontology requirements specification document (ORSD)



Item Description

Domain The domain modelled by the ontology

Purpose The purpose the ontology is used for

Scope The application scope

Roles Roles involved in the setting

Critical issues

Knowledge- Style of speech
sources Document structure

Number of knowledge sources
High-level of expertise
Translation to further languages or forms
Laborious search heuristics
Fuzzy evaluation of the utility of the sources

Ontology Learning Fulfill requirements with respect to
Tools language, input and output forms etc.

Domain Feasible coverage by documents
Appropriate sub-domain modularization

Organizational Multi-site development
issues Tight schedule

Technical and technological Appropriate hardware and software
issues

Personnel Resource management
issues Level of expertise

Table 2. Template for the risk analysis document (RAD)

to optimize its operation and outcomes to this target group.

– Identify critical points: The central activity in this process stage is concerned
with the analysis of risk factors, which might have a significant impact on
the overall process and the expected results, and the elaboration of a risk
management procedure. Examples of such risk factors could be related to the
quality of the knowledge sources, the lack of domain, language or technical
expertise, the lack of adequate tools etc.

Decisions It should be decided for or against building (parts of) the target
ontology by learning.

Support tools Currently there are no established tools to support the feasibility
study.

4.2 Requirements specification

The goal here is to identify and specify requirements for the ontology learning
process, whose feasibility has been positively assessed in the previous step. The



task can be seen as an instantiation of the more general ontology requirements
specification to the particularities of the learning task. In this case some of the
original requirements are to be further revised and adapted to the new context.
New requirements, especially those related to the technological infrastructure
applicable for knowledge acquisition purposes, may also arise.

Roles This process step is performed collaboratively between ontology engi-
neers, domain experts and ontology learning experts. While the former two are
essential for the specification of the ontology-centric requirements, the latter are
responsible for the definition of particular knowledge acquisition requirements
such as those with respect to tools and techniques.

Input factors The activities in this step are performed on the basis of the ontol-
ogy requirements specification document (ORSD) and the risk analysis document
(RAD) produced at step 1.

Output factors The result of this phase is an ontology learning requirements
specification document (ORLSD) covering the requirements regarding the on-
tology to be learned and the ontology learning task to be carried out for this
purpose. A template for an ontology learning requirements specification docu-
ment (OLRSD) is depicted in Table 3.

Activities The following activities are relevant to complete the requirements
specification:

– Refine ORSD: The original requirements specification needs to be revised
and extended for the purpose of ontology learning.

– Specify information sources requirements: The ontology learning experts
specify which linguistic and technological criteria need to be fulfilled by
the un- or semi-structured information sources used to learn the ontology.
Representation-specific issues such as the domain knowledge to be covered
by these information sources and the natural language of the domain de-
scriptions are also relevant.

– Specify tool requirements: Ontology learning experts identify which tool fea-
tures with respect to inputs, outputs, language, type of learning method
might be required.

– Specify personnel requirements: The team also provides details on the level
of expertise required for the participants in this process phase and the need
for additional experts

Decisions The ontology learning team needs to decide whether and when a
feasible set of requirements has been collected and specified so as to allow an
efficient and effective process operation.

Support tools Currently this step is not supported by dedicated tools.



Item Description (source)

Domain Domain formalized in the ontology (from the ORSD)

Purpose The purpose the ontology is used for (from the ORSD)

Scope The application scope (from the ORSD)

Roles The roles involved in the setting
(from the ORSD plus ontology learning specific)

Design Guidelines

Number of ontological primitives The size of the ontology to be learned

Granularity level The granularity of the ontology to be learned

Terminology The language to be used in the learned ontology

Knowledge Sources

Domain experts Experts to be involved in the learning
process (from the ORSD)

Data bases Partially from the ORSD

Documents The learning corpus (partially from the ORSD)

Further sources Ontologies, lexis, thesauri (partially from the ORSD)

Users

Application scenario Description of the application setting
(adapted from the ORSD)

Use cases Description of the main use cases
(adapted from the ORSD)

Supported application The target application embedding the ontology
(from the ORSD)

Ontology

Competency questions Adapted from the ORSD

Ontology Learning

Input Language, format

Output Language, format

Learning result The types of primitives required to be learned

Automatization level User interaction required or not

Learning quality Minimal quality measures

Table 3. Template for the ontology learning requirements specification document
(OLRSD)

4.3 Selection of the information sources

After specifying the requirements for the ontology learning process, its main
coordinates—the information sources to be used as input for acquiring ontolog-
ical knowledge and the tools and methods involved in achieving this goal—are
to be selected and configured. In terms of the process model this is represented
in form of two closely related process steps. The execution order of these steps
is not dictated by the methodology; due to the interdependencies between their
outcomes, the concrete execution workflow strongly depends on the particulari-
ties of the ontology engineering setting. In case the information sources involved
in the learning process are fixed in advance, the selection step is reduced to the
identification of a subset of this corpus, which is responsible for the generation of



the ontology. In case the tools and methods applied during the ontology learning
process are known in advance, the selection of the information sources should
take into consideration this restriction. Finally, if none of these parameters is
pre-defined, the two steps can be executed iteratively, until an optimal config-
uration between information sources and knowledge acquisition methods and
tools is achieved.

Roles The execution of this task requires both domain and technical expertise.
The former is needed in order to assess the representativeness of the learning
corpus with respect to the domain to be modelled. The latter is related to on-
tology learning methods and tools being able to deal with a particular corpus
and to produce the expected results.

Input factors As input the ontology learning team uses the ontology learning
requirements specification document (OLRSD) summarizing the main aspects
related to the learning task, the information sources to be selected and possibly
the methods and tools applied. The latter holds true if the selection is realized
in an iterative manner or if the usage of certain technologies has been decided
in advance.

Output factors The result of this process phase is a collection of information
sources (learning corpus).

Activities In this process stage the following activities need to be performed:

– Search additional information sources: First the team might look for infor-
mation sources in addition to those identified during the previous process
steps and mentioned in the ontology learning requirements specification doc-
ument (OLRSD).

– Evaluate information sources: According to the criteria specified in the OLRSD
the set of information sources should be evaluated with respect to language,
domain, representation, structure etc.

– Select and customize information sources: The sources which have been posi-
tively assessed might be subject to various customization operations in order
to allow their seamless usage in the learning process. Customization includes
the translation to different languages or formats, basic parsing operations,
the digitalization or other form of processing.

Decisions During this process step the participants need to decide whether they
produced a corpus which allows for a feasible execution of the learning task.

Support tools In order to enable or speed up the construction of the ontol-
ogy learning corpus a wide range of technological support tools can be applied.



Some of them are general-purpose, such as search engines used to discover the
domain-specific knowledge sources. Other are closely related to the form of the
information sources to be used: language translators, text recognition systems,
text processing tools etc.

4.4 Selection of the ontology learning methods and tools

This process step aims at identifying the exact methods and tools which are to
be used to extract the target ontology/ontologies. As aforementioned, the out-
comes and execution of this step might be influenced by a previously pre-selected
learning corpus. Furthermore the decision with respect to specific ontology learn-
ing tools and methods might trigger a re-iteration of the selection process: if no
feasible methodical or technological support is available for the input informa-
tion sources, the ontology learning team might consider a revision of the corpus
followed by their assignment to the learning tools and methods. An overview of
the dependencies between methods and information sources they are typically
applied on is provided in Table 4 below. A recent overview of some of the most
relevant tools and methods is provided in [13].

Domain Method Features used Prime purpose

Free text Clustering Syntax Extract

Inductive logic Syntax, logic Extract
programming representation
Association Syntax, tokens Extract
rules
Frequency- Syntax Prune
based
Pattern matching - Extract
Classification Syntax, Refine

Semantics

Dictionaries Information Syntax Extract
extraction

Knowledge base Concept Relations Extract
induction
A-Box Mining

Semi-structured Naive Bayes Relations Reverse
Schemata Engineering

Relational Data correlations Relations Reverse
Schemata Engineering

Table 4. Ontology learning methods and sources according to [14]

Roles Compared to the selection of the information sources, this step is mainly
technological. Its execution requires expertise in the ontology learning field: with



respect to the particularities of the analyzed methods and the feasibility of the
tools implementing these methods.

Input factors Just as in the previous step the activities performed here make
use of the ontology learning requirements specification document (OLRSD), the
information sources and the learning technology available.

Output factors The process step is completed when the team selected which
ontology learning tools and techniques will be used in the process.

Activities The decision upon the technological infrastructure of the process
should be based on the results of the following activities:

– Search ontology learning tools: Ontology learning experts might need to look
for additional ontology learning technology prior to selecting the appropriate
one.

– Evaluate tools usability: Given an inventory of techniques and tools for ex-
tracting ontological knowledge from unstructured and semi-structured re-
sources, ontology learning experts evaluate which technology is appropriate
according to the pre-defined requirements. Specific criteria such as the ap-
plied linguistic methods, types of ontological knowledge extracted, natural
language, input characteristics, additional knowledge sources or components
required, but also more general ones like the user friendliness are relevant in
this context.

– Select learning tool(s): After assessing the usability of the tools in relation
to the application setting, ontology learning experts select the ones which
will be used in the next step.

Decisions In this step the team needs to decide whether the evaluated technol-
ogy is likely to be adequate for producing the prospected ontology. A negative
decision with this respect might trigger a re-iteration of the process at the pre-
vious step, in order to produce a learning corpus which better fits the available
knowledge acquisition methods and tools.

Support tools There are no dedicated tools supporting this selection step.

4.5 Learning preparation

This step gives full particulars about the ontology learning process. After iden-
tifying the information sources from which the target ontology will be extracted
and the methods and tools appropriate for performing this task, ontology learn-
ing experts are required to configure the technical infrastructure of the knowledge
acquisition procedure which will be executed in the next step. The distinction
between the preparation and the execution of the learning task is due to the



complexity of the former, which might imply complicated parameter settings
at individual tool and at global workflow level. In particular, besides providing
the optimal input parameters to the learning tools applied for each of the sub-
domains and sub-corpora, the learning experts are expected to clearly specify
and guide the tool execution, the interaction between tools and between domain
experts and tools, and the ways intermediary results are to be integrated.

Roles Ontology learning experts are indispensable for the correct and effective
preparation of the learning procedure. Domain experts might be involved in
this phase in order for them to get familiar with the technology generating the
ontology they have to subsequently evaluate.

Input factors This phase makes use of the ontology learning requirements
specification document (OLRSD), the learning corpus, and the ontology learn-
ing tools and their documentation. All these resources provide input for the
configuration of the learning infrastructure.

Output factors The result of this phase is a configured tool environment,
including the documentation of the configuration and the execution plan for the
learning task.

Activities The preparation of the ontology learning tools includes the following
activities:

– Assign tools to sub-domains and information sources: if fragments of the
final ontology are to be extracted from different information sources using
different learning tools, ontology learning experts need to specify these in-
terdependencies.

– Configure tools: ontology learning experts select the most appropriate learn-
ing method or algorithm to be applied for a particular purpose, and configure
the tools in order to produce the desired output.

– Specify user interaction points: ontology learning experts define the interac-
tion points and guide domain experts in providing the required input during
the tool execution.

– Specify order of tool execution: in case several tools are applied for a joint
knowledge acquisition task the team needs to define the exact learning work-
flow.

Decisions The learning preparation phase ends with a positive decision upon
the feasibility of the learning environment.

Support tools This phase involves the ontology learning tools to be used in
the process. The aforementioned activities are carried out manually.



4.6 Learning execution

This step is dedicated to the actual acquisition of the ontological knowledge on
the basis of the configuration specified so far. The learning tools require the
domain and learning experts to support the required tool interaction and to
evaluate the correct accomplishment of each learning sub-task. The detection of
major problems in the configuration of the tools imposes a re-iteration of the
process at the previous step.

Roles Domain experts and ontology learning experts supervise the execution
of the tools.

Input factors In order to feasibly supervise the execution of the learning tools,
the team needs access to various resources. General information and require-
ments are provided by the ontology learning requirements specification docu-
ment (OLRSD). The learning corpus and tools are implicitly required for the
generation of the ontology. Further on, the configuration and execution plan
contains further details on the way the tools are to be used to create the desired
output.

Output factors At the end of this phase, a preliminary ontology/ontologies
is/are available.

Activities The learning execution phase can be further divided into the subse-
quent activities:

– Execute tools: This activity directly refers to the actual acquisition of the
planned ontology/ontologies with the help of the ontology learning tools.

– Provide user input: If the ontological knowledge is not extracted in a fully
automatic manner, the participants should provide the input required to
continue this task.

– Evaluate intermediary results: Intermediary outputs returned during this
process phase should be evaluated immediately in order to detect potential
errors in the learning process at an early stage.

– Re-iterate learning execution: If the results are not satisfactory, the ontology
engineering team should decide whether a re-iteration of this process step or
of the entire process is feasible and should optimize the learning environment
according to experiences gained so far.

Decisions Either the learning process is completed, or a reiteration of the
learning process with revised parameters is performed.

Support tools This phase involves the ontology learning tools to be used to
generate the target ontological content. The aforementioned activities are pri-
marily accomplished manually. Support can be provided in terms of automatic
means to evaluate the intermediary results on the basis of pre-defined metrics.



4.7 Ontology evaluation

Given a correct execution of the ontology learning tools, ontology engineers and
domain experts jointly assess the quality of the achieved results, i.e. the learned
ontologies. The evaluation is guided by the requirements specified for each of
the ontologies to be generated in the ontology learning requirements specifica-
tion document OLRSD. Methodologically, the process leans at existing general-
purpose, as well as at more specific, NLP-based evaluation techniques (cf. for
instance [15] for a recent overview of the methods, and [16] for specific evalu-
ation techniques for NLP). In case the assessment is negative, the engineering
teams decides upon the activities which are to be performed in order to improve
the quality of the learning outcomes, be that a different ontology building strat-
egy, a complete re-iteration of the process or (manual) revisions at ontological
level. Ontology learning experts are needed to assess the feasibility of a re-vised
ontology learning cycle given the experiences gained so far.

Roles Domain experts and ontology engineers evaluate the results of the learn-
ing process. Ontology learning experts need to be involved in the decision upon
a re-iteration of the learning task.

Input factors The evaluation step is based on the requirements contained in
the ontology learning requirements specification document and of course on the
learned ontological sources.

Output factors The evaluation step produces a reviewed and revised version of
the input ontology which can be integrated with the results achieved in parallel
engineering approaches.

Activities Activities in this step depend on the evaluation methodology chosen
for the particular application scenario.

Decisions The engineering team needs to decide whether the learning results
are feasible for the application scenario, or whether they need to be improved
either through a re-iteration of the learning process or through other means such
as manual ontology building.

Support tools Ontology editors can be used to visualize the input ontology
in a language-independent manner. Further on, this step can take advantage of
automatic test environments which evaluate the learning process from a method-
specific perspective.



4.8 Ontology Integration

Feasible learning outputs need to be integrated into the final ontology. This
applies for both learned ontologies and for the ones built using other methods
(e.g. manually built, translated from other formats). This step, which is not
specific to ontology learning processes, is to be performed according existing
integration methodologies, methods and tools in ontology engineering (cf. for
instance). [17, 18].

Roles Ontology engineers are the main actors for the implementation of the
integration task. Domain experts might be required to provide additional input.

Input factors The engineering team resorts to the original ontology require-
ments specification document ORSD and the ontologies developed in the process.

Output factors A preliminary application ontology is generated at the end of
this process phase.

Activities Integration of ontologies includes the following activities:

– Translate: Ontologies created using different engineering methods might be
represented in different languages. Translators help in overcoming this het-
erogeneity.

– Integrate ontologies: This activity refers to the execution of a particular
merging algorithm and on the resolution of possible conflicts.

– Evaluate results: This refers to the evaluation of the integration tools with
respect to the results produced.

Decisions The integration phase is finalized with the decision upon the feasi-
bility of the produced application ontology.

Support tools Various ontology management tools for translating, partition-
ing, merging and integrating ontological content are useful to speed-up this pro-
cess phase.

5 Case study

In this section we describe a case study in the legal domain in which five domain
experts followed the ontology learning methodology introduced in the previous
sections with the purpose of developing ontologies for the Iuriservice prototype
II (see below). The case study was embedded into a project aiming at method-
ological and technological support for a better knowledge transfer of applied
legal knowledge to young judges in Spain.



5.1 Objectives of the Case Study

The main objective of the case study was to validate the proposed methodology
from an operational point of view. In particular we were interested in the under-
standability of the process description, the coverage of the decision support, and
the required training effort for non-experts in order to apply the methodology
to concrete scenarios. As a secondary goal we aimed at identifying shortcomings
of currently available ontology learning applications as regarding their usability.

5.2 Data collection and analysis techniques

Three experienced ontology engineers were involved in the case study, being re-
sponsible for guiding the case study participants and for collecting and analyzing
the data. They conducted structured interviews with the five domain experts on
a face-to-face basis. The interviews contained pre-defined questions related to
the objectives of the case study, and open questions in which the domain ex-
perts could express their experiences with and their view on the methodology. In
addition to the personal interviews the ontology engineers directly observed the
domain experts performing some of the activities covered by the methodology.
Furthermore, as an additional information source, they had access to all speci-
fication documents proposed by the methodology and filled out by the domain
experts during the operation of the case study. At the end of the data collection
procedure, the results of the interviews, individual observations and the docu-
mentation available were analyzed manually by the evaluators in order to obtain
a holistic view on the experiences of the case study participants in applying the
ontology learning methodology.

5.3 Organization setting

The case study was situated in the context of the European research project
SEKT, Semantically Enabled Knowledge Technologies, which developed and de-
ployed technologies for knowledge management. The project had a duration of
three years while the aforementioned case study had a duration of four months.
The organization conducting the case study was responsible for the development
of a system which should provide Spanish judges with access to frequently asked
questions (FAQ) related to the application of legal text book knowledge in real
life situations through a natural language interface. The system, called Iuriser-
vice, should respond with a list of question-answer pairs, which offer solutions to
the problem specified by the judge, and a set of related, up-to-date and relevant
case rulings, which are stored in the La Ley case base from CENDOJ (Figure 3).
Thus, the software should be capable of clearing-up doubts concerning judicial
practice and case resolution by providing justified and uniform answers to the
raised questions (Figure 4). Within the system, ontologies represent the existing
FAQs, the content of the case rulings and support the mapping between the
user questions and the pre-defined FAQs. A detailed description of the technical



Fig. 3. A part of the Iuriservice architecture. The left side shows the FAQ system,
whereas the right part shows how supporting cases are retrieved from the case base.

Fig. 4. Screenshot of the Iuriservice II system giving an answer. The user question can
be seen on the top of the screenshot, while the bottom part shows the answer [20]



realization of the system is beyond the scope of this work and can be found in
V. R. Benjamins et al. [19].

Ontology learning techniques were used in two ways for developing, extend-
ing, and maintaining the application ontologies. First, they were applied for
supporting the creation of the initial ontology that was used to model the pro-
fessional knowledge in the system to represent the FAQs. This was done prior
to the development of the methodology described in this chapter, and so the
experiences gained there were used as an input for the development of the ontol-
ogy learning methodology. Later, ontology learning was applied to the case base
in order to describe them by means of ontologies, and to raise the accuracy in
retrieving the most relevant cases for a given problem. The following case study
description focuses on this second ontology learning experiment, in which the
participants made use of our methodology.

5.4 Case study description

In this section we describe the operation and the main results of the case study
in the legal domain. We first give an overview of the general ontology engineering
process which the ontology learning activity was an integral part of. Then we
elaborate on the experiences made with the ontology learning methodology. The
description of the case study is based on [20].

Integration into Ontology Engineering Process The project started with
a feasibility study followed by a requirements engineering phase. The feasibil-
ity study showed that ontologies can support the retrieval of FAQs and that
an ontology-based system can increase the quality of the retrieval results to a
feasible extent. As a consequence, a team of ontology engineers and experts in
the legal domain proceeded with the development of the application ontology.
As part of the domain analysis the legal experts conducted questionnaire-based
interviews extracting nearly 800 competency questions for the areas of domestic
violence, on-duty period, procedural doubts and imprisonments. This knowledge
acquisition activity ensured that the ontology to be built truly models profes-
sional legal knowledge which refers to the core of professional work that contains
the experience of the daily treatment of cases. From the competency questions
the ontology development team created the Ontology of Professional Judicial
Knowledge (OPJK) which was subsequently used as a basis to retrieve correct
question-answer pairs for a given user-specified problem. Additionally to this
functionality, the system should select and provide the judge with the most rel-
evant precedence cases for the formulated query. Due to the large amount of
precedence cases available, a manual approach to formalizing the knowledge in
this corpus was not pursued. Thus ontology learning tools were applied on the
case corpus in order to extract and formalize domain knowledge, and to allow
for the retrieval of the most relevant cases based on the ontological similarity
between the specified question and the cases.



The Ontology Learning Activity In order to develop the ontology capturing
the knowledge implicitly contained in the corpus of precedence cases, the legal
experts followed the eight steps proposed by our ontology learning methodology.

Feasibility study As part of the feasibility study the participants analyzed the
available case rulings, and learned that they are semi-structured, containing
metadata as well as textual descriptions of the cases. The metadata could be
used to pre-categorize the text modules as summary, case descriptions and
ruling. The word choice, as well as the phrasing were found to be lengthy and
significantly different from the competency questions. From a technical point
of view the documents required pre-processing and preparation to be usable
as input for an ontology learning tool. As the case rulings were in Spanish
some of the available ontology learning tools needed further customization
to provide the required language support.

Requirements specification In order to extend the ORSD and obtain the
OLRSD, the participants selected the competency questions which directly
referred to case rulings. It was decided to concentrate on the sub-domain
domestic violence for which the domain experts expected to extract 700
concepts. The scope for tool support was restricted to the identification
of relevant terms in Spanish and the semi-automatic generation of a class
hierarchy. Regarding the integration of the learned ontology with the OPJK
it was decided to map equivalent concepts in a subsequent step.

Selection of information sources The case rulings were stored in the database
La Ley from CENDOJ, which is a government supported organization to
archive juridical knowledge in Spain. From this database 1000 documents
were selected covering the sub-domain domestic violence.

Selection of ontology learning methods and tools In the context of the
project only two tools, namely OntoGen [21] and Text2Onto [22] were con-
sidered for the task. While the former is better suited to visually cluster the
selected documents according to domains and to identify relevant terms, the
latter has its strength in building hierarchies and select multi-word terms.
A preliminary test in automatically building hierarchies was not satisfac-
tory and therefore it was decided to build the hierarchy manually. Major
drawbacks of the evaluated tools were the missing interaction possibilities,
requiring many unnecessary interactions with the user interface in order to
apply manual corrections to the built hierarchy and extracted terms.

Learning preparation The case rulings were extracted from the data base and
the different parts of the rulings were prepared in order to comply with the
input format of OntoGen and Text2Onto. It was decided to extract relevant
terms from the case ruling summary, the case description and the ruling sep-
arately. The learning preparation required several pre-runs on the selected
texts in order to fine-tune the extraction parameters. For example the per-
formance of Text2Onto could be improved by filtering the text with specific
linguistic patterns. Several different linguistic patterns were tested in order
to achieve better results. Again, this step required deep understanding of
the underling algorithms, a situation which might hinder its wider adoption.



The users asked for an interactive mechanism and support to select the best
extraction patterns.

Learning execution We run the different algorithms on the extracted texts
(Figure 5). Although we could export and import the extracted terms into
the ontology editor, it was difficult to choose relevant terms from the extrac-
tion list. It was therefore decided to build the ontology from the extracted
terms manually, while taking the outcomes of the learning tools into account.
At this point ontology engineers would require a functionality of a tool sup-
porting the comparision between the requirements listed in the OLRSD and
the learned ontology. Due to the number of learned ontology entities, it is
tedious and errorprone to manually evaluate all entities again after each re-
run of the algorithm. Since the building of the ontology involved the manual
transcription of the learned entities into the ontology editor the evaluation
of the intermediary results was performed iteratively until the built ontology
covered all requirements.
Another difficulty was that there was no version of TextToOnto available
that could deal with Spanish text, thus only a very small and basic selection
of the algorithms implemented in this tool could be applied to the Spanish
corpus. These results were still helpful for building the ontology, but they
could not be used directly.

Fig. 5. The ontology learned from the cases in the Ontogen system



Ontology evaluation The ontology was manually built from the automati-
cally extracted terms. Therefore, there was no need to evaluate the learned
ontology separately.

Ontology integration We integrated the OPJK with the learned ontology by
mapping similar concepts. This allowed to calculate similarity measures be-
tween the FAQs and the concepts of the learned ontology. The final evalu-
ation of the learned ontology was achieved by assessing the ranking of the
cases.
The resulting ontologies were used, as shown in Fig. 3, in order to find the
most similar cases to a given user question.

5.5 Lessons Learned and Open Issues

Our lessons learned relate to the operation of the ontology learning process and
to the tools used for this purpose. The domain experts appreciated the process
description as it guided them through the ontology learning effort. They were
satisfied with the level of detail of the description, especially the fine-grained
elaboration of the single tasks and the clear definition of the results of each
phase were particularly helpful. The direct interaction with the learning software
required, however, additional efforts. We hope to establish this process model as
a guideline for tool developers to implement process support accordingly.

A detailed report on the user interface requirements for ontology learning
tools is out of the scope of this paper. Our case study showed that ontology
learning tools require explicit process support in order to allow for their applica-
tion in a real life ontology engineering context. Currently non-ontology learning
experts cannot achieve good results as the customization of the tools requires a
deeper knowledge of the applied algorithms. We thus suggest to develop meth-
ods to support the selection of these algorithms and their customization as the
algorithms can be optimized for different scenarios. In this context we encour-
age developers to spend more effort in good user interface design. Moreover,
the integration of manual and automatic ontology building needs improvement.
For example the integration with competency questions would help the ontology
engineer to decide whether the learned ontology is complete or not.

Ontology learning tools proved to be particularly useful in visualizing the
available knowledge and in showing that it is organized within distinct sub-
domains, which could then be considered separately.

Beyond the scope of the case study we are aware of several open issues in
our work which require further investigation. A number of activities covered
by the process model are particularly challenging even for experts in the field
of knowledge acquisition and ontology learning if they are not familiar with
the functionality and the methods embedded in each of the tools potentially
to be utilized. Such activities need to be further elaborated in order to ease
their operation in real-world scenarios. The best examples are the evaluation
of the learning results and the selection of tools for (partially) building the
ontology. For the former we ideally should extend our process model with in-
depth considerations of the possible evaluation approaches and relate these to



the tools and methods employed. For the latter the methodology would surely
benefit from further examples complemented by explanations of the trade-offs
associated with each method and their appropriateness with respect to various
properties of the target ontology, the application using it or the learning corpus.

6 Conclusions

In this chapter we have presented an ontology learning methodology which is
integrated into the overall ontology engineering process. The proposed method-
ology has eight phases. It starts with a feasibility study and requirements speci-
fication phase and ends with the integration of the learned ontologies with other
ontologies developed in a given context. The methodology describes in detail
input and output factors, activities which should be performed in each of the
phases and decision criteria. It thus provides domain experts with detailed guid-
ance for selecting and preparing information sources, applying ontology learning
tools and evaluating the learned ontology.

Furthermore, we have described a case study in which we have applied the
methodology. In the case study, legal experts built an ontology with the help
of ontology learning tools for case rulings in the domain of domestic violence
and integrated it with a manually build ontology capturing professional legal
knowledge. As a result of our observations we could validate our hypothesis
that in order for domain experts to effectively and efficiently apply ontology
learning methods they require a detailed methodology guiding them through the
respective process. However, we found that current ontology learning tools are
by far too complicated to be applied by domain experts on their own, and that
such tools need at least major improvements from a usability point of view. We
envision that the proposed methodology will contribute to the wider adoption
of ontology learning as a viable method to develop ontologies and will help tool
developers to implement their tools in a more user-oriented way.
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Abstract. An important aspect of ontology learning is a proper evaluation. Gen-
erally, one can distinguish between two scenarios: (i) quality assurance during an
ontology engineering project in which also ontology learning techniques may be
used and (ii) evaluating and comparing ontology learning algorithms in the labora-
tory during their development. This paper gives an overview of different evaluation
approaches and matches them against the requirements of the scenarios. It will be
shown that different evaluation approaches have to be applied depending on the
scenario. Special attention will be paid to the second scenario and the gold standard
based evaluation of ontology learning for which concrete measures for the lexical
and taxonomic layer will be presented.

Keywords. ontology learning, evaluation

1. Introduction

When it comes to the evaluation of ontology learning one has todistinguish between two
different scenarios: On the one hand there is the scenario where an ontology learning
algorithm is used in the context of an automatic or semi-automatic approach to ontology
engineering (cf. [1] and [2]). On the other hand there is the evaluation of the ontology
learning algorithm itself (cf. [3] and [4]). Both scenariosdiffer in their requirements with
regard to their evaluation thus leading to different evaluation approaches.

In Fig. 1 one can see the general approach of ontology learning: It takes as input a
domain centered corpus and tries to learn an ontology which conceptualizes the infor-
mation implicitly available in the corpus. Depending on thescenario, different aspects
of ontology learning have to be evaluated. In the first scenario not only the learning al-
gorithm influences the results but another important aspectis the choice of the correct
corpus which has to contain information relevant for the task. In the second scenario one
is only interested in the quality of the learning algorithm itself.

We argue in this paper that in the first scenario the functional dimension of an on-
tology should be evaluated by means of an extrinsic, task-based evaluation, i. e. in the
running application for which the ontology is engineered. This kind of evaluation en-
sures that the objective of using an ontology, improving a certain task, is really achieved.
But this approach is not feasible in the second scenario where the aim is to compare
ontology learning algorithms. Its objective is the assessment of the quality of different
learning algorithms. In this scenario, an intrinsic or task-neutral evaluation by means of
a gold-standard based evaluation is usually the better choice.



Figure 1. General Approach of Ontology Learning

After describing the two scenarios and their requirements with regard to the evalu-
ation in more detail we will focus in the remainder of this paper on the second scenario
and especially on the gold standard based evaluation of the lexical and taxonomic layer
of ontologies. It will be shown that existing measures have been faulty and that a well-
founded evaluation model is largely missing. Therefore, wedescribe a new framework
for gold standard-based evaluation of ontology learning which includes measures for the
lexical and the taxonomic layer of an ontology. The framework avoids common mistakes
and we show by analytical considerations and by some experiments that it fulfills crucial
evaluation criteria that other frameworks do not meet.

2. Evaluation Scenarios and Approaches

In the following, we will present the two scenarios in more detail and list several applica-
ble evaluation approaches. We will distinguish between approaches which try to measure
the functional dimension of a learned ontology and the ones which measure the structural
dimension (cf. [5]). The functional dimension of an ontology is related to its conceptual-
ization while the structural dimension is related to the representation of an ontology as a
graph. It will be shown that, depending on the scenario, different evaluation approaches
for the functional dimension should be used.

2.1. Scenario 1: Quality Assurance During Ontology Engineering

In this scenario ontologies are evaluated during the ontology engineering process as part
of the quality assurance. Typical questions for evaluatingan ontology are whether it
is consistent, complete, concise and expandable (see [6]).For this purpose, in [5] and
[7] it is proposed to measure the structural and functional dimension of ontologies and
their usability profile. The requirements which should be fulfilled by an ontology with
regard to the dimensions will be usually defined during the start phase of an ontology
engineering project.

For example, one may check whether the target domain of the ontology is suffi-
ciently modeled to fulfill the functional requirements and/or whether the ontology helps
to improve the performance in the task for which it is designed. As a consequence of
such an evaluation one may e. g. decide to further extend someaspects of the ontology.
During the structural evaluation it is checked whether certain criteria are fulfilled which
are related to the design principles of good ontologies and which help to improve an
ontology’s overall quality. In [5] it is additionally proposed to evaluate the usability pro-



file of an ontology. During such an evaluation the quantity and quality of the ontology’s
metadata is checked which address the communication context of an ontology.

In this scenario, the evaluation of ontologies is seen as an important part of the
quality assurance process. In many cases the ontologies will be manually engineered.
But in case of semi-automatic approaches to ontology engineering (cf. [1] and [2]) also
the output of ontology learning algorithms is contained in the engineered ontology and
it is thus also evaluated during the quality assurance process.

The following approaches to a functional and structural evaluation can be identified
in this scenario:

Task-based ApproachesTask-based approaches try to measure in how far an ontology
helps to improve the results of a certain task. They will usually measure the func-
tional dimension of an ontology but also the structural dimension may influence
the outcome of task-based evaluations. For example, if one designs an ontology for
improving the performance of a web search engine (cf. [8]) one may collect sev-
eral example queries and compare whether the search resultscontain more relevant
documents if a certain ontology is used. A task-based evaluation is influenced by
many aspects which have to be kept constant during all evaluations so that changes
in the results can be put down to the changes in the used ontologies. The choice of
concrete measures for such an evaluation is dependent on thetask, e. g. for the web
search engine example one may adapt measures known from information retrieval
but also other success criteria may be defined.
Because every task-based evaluation is individual, no finite set of well-suited mea-
sures can be defined. Nevertheless, some principles can be identified: Usually, it
is not enough to know whether an ontology is better or worse than another but
one wants to conclude on concrete shortcomings in its conceptualization. Thus, in
[9] it is demanded that a task-based evaluation allows for concluding on insertion,
deletion and substitution errors in the ontology, i. e. whether there are superfluous,
missing or off-target concepts and/or relations. But again, there is no universally
valid way how the principles can be realized in a concrete task-based evaluation.
In [9] it is only demonstrated for one example task.

Corpus-based ApproachesCorpus-based approaches are used for checking in how far
an ontology sufficiently covers a given domain. They addressthe functional dimen-
sion of an ontology. For this purpose, the ontology is compared with the content of
a text corpus which is representative for the domain. The content of the corpus is
analyzed with natural language techniques, e. g. in [10] Latent Semantic Analysis
and a clustering method were applied for identifying terms in the corpus. The list
of identified terms was then compared with the terms in the evaluated ontology.
Similar approaches for evaluating the lexical layer of an ontology are described in
[11] and [12] while [13] contains a preliminary method applicable for evaluating
triples in ontologies.
All the corpus-based approaches have in common that they involve information ex-
traction and/or ontology learning techniques in the evaluation. Thus they are only
partially suitable for evaluating ontologies which were learned with other ontology
learning algorithms because the information extraction and/or ontology learning
techniques from the corpus-based approaches are like a benchmark which can not
be outperformed by other ontology learning algorithms. In [11] it is proposed to



evaluate and extend ontologies at the same time with such an approach, e. g. by
suggesting terms which are currently missing in the ontology and which would
improve the evaluation results.

Criteria-based Approaches In this category fall a wide variety of evaluation measures
which all have in common that they measure in how far an ontology or taxon-
omy adheres to certain desirable criteria. One can distinguish between measures
related to the structure of an ontology, e. g. if it is represented as a graph, and more
sophisticated measures which e. g. evaluate a taxonomy based on philosophical
notions.
Structural measures are quite straightforward and easy to understand: For example,
one may measure the average depth of paths from root to leaf nodes in a directed
graph, how many nodes have more than one ingoing arc (i. e. multi-hierarchical
nodes) or whether there are cycles in the directed graph (cf.[5] and [7]). But also
for ontologies based on frame logic or description logic onemay define structural
measures, e. g. for detecting potential inconsistencies inthe partitioning of a tax-
onomy (cf. [6]). Such a partitioning error measure may for example find instances
belonging to more than one class where two or more of the classes are defined as
disjoint.
For the structural measures it is usually no problem to have afully automatic eval-
uation. This is not the case for the more sophisticated measures like OntoClean
[14] which evaluates taxonomies based on philosophical notions like the essence,
identity and unity which should be taken into account duringmodeling an ontol-
ogy in order to avoid common pitfalls. For example, a property is essential for an
entity if it holds for that entity in every possible world. Furthermore, a property is
rigid if it is essential for all its possible instances. In [14], this is explained with
the example relationshaving a brainandbeing a student. In this example, thehav-
ing a brain relation is essential for all human beings thus it is a rigid property. In
contrast thebeing a studentrelation, which is not essential for any human being as
everyone can become a student or cease to be a student at any time. Thus it would
be an anti-rigid property. (For more examples and explanations see [14].) Because
of this high complexity, OntoClean is designed for manuallyanalyzing ontologies
although an approach for partially automating this processwas recently proposed
(see [15]).

The most important success criterion for an ontology engineering project is whether
the final ontology helps to improve the task for which it was engineered. Thus, improv-
ing the results during a task-based evaluation can be seen asthe most important goal.
Corpus-based and criteria-based evaluation approaches only help to pinpoint the remain-
ing problems which should be addressed in an improved version of the ontology. The
main assumption behind corpus-based and criteria-based evaluation measures is that an
improvement with regard to the measures correlates with an improvement in the task-
based evaluation (see [8] where the correlation was shown for OntoClean [14]).

2.2. Scenario 2: Comparing Ontology Learning Algorithms

In this scenario one tries to assess and compare ontology learning algorithms with each
other. It can be used by researchers to improve an existing learning algorithm or to find
out how changing the values of input parameters affects the results. An example how



such an evaluation may look like is available in [4]. It is thegoal in this scenario to
measure the quality of an ontology learning algorithm. Thisshould ideally be done by
looking at the output (i. e. the learned ontology) and comparing it with the input (i. e. the
content of the corpus). As we will see below, there basicallyexist two approaches how
one can approximate the comparison with the input by either making a manual evaluation
by human experts or a gold-standard based evaluation where the gold-standard covers
the content of the corpus.

With regard to the functional dimension of the learned ontology one is interested
in measuring in how far the learning algorithm is able to conceptualize the information
from a given corpus (e. g. whether it extracts isA-relationsbetween relevant concepts)
and which fraction is found. This corresponds to measuring the precision and recall (see
4.1). But also from evaluating the structural dimension of the learned ontology one may
draw interesting conclusions on the qualities of a learningalgorithm.

In the following, two approaches to measuring the functional dimension will be
presented which are specific for the needs in this scenario and which are different to the
approaches from the first scenario. In contrast, it is possible to re-use a subset of the
structural measures described in 2.1. Thus, we will concentrate here on the evaluation of
the functional dimension.

In the previous scenario, a task-based evaluation was considered as ideal for evalu-
ating the functional dimension of an ontology. This is not the case for the evaluation and
comparison of ontology learning algorithms. Here, it wouldbe necessary to filter out the
influence of the task on the evaluation results in order to make valid conclusions on the
strength and weaknesses of the learning algorithm itself. For example, the results of a
task-based evaluation would be influenced by many other factors like the choice of the
corpus, the task itself or the algorithm used for performingthe task. Additionally, it is
very difficult to conclude from the results of a task-based evaluation on the concrete pre-
cision and recall values achieved by the learning algorithm. Instead, it would be valuable
to have a more direct approach to measuring those dimensionsof interest. All in all, the
following list of criteria should be fulfilled by an evaluation in this scenario:

• The evaluation should be task neutral and allow developers to easily pinpoint the
advantages and disadvantages of a learning algorithm. Weighing the different ad-
vantages and disadvantages of a learning algorithm is then up to the ontology en-
gineer who has a concrete task in mind. This weighing can be based on his expe-
rience or even on a task-based evaluation where it was shown that certain aspects
of an ontology are more important than others.

• All influencing factors of the evaluation have to be sufficiently described so that its
results can be reproduced at another time and place. This is important for having
a proper scientific evaluation in general and also applies for other approaches and
scenarios like task-based evaluation approaches.

• It should be possible to do additional evaluation runs at lowcost because frequent
and large-scale evaluations are required during developing ontology learning al-
gorithms, e. g. in order to find the parameter values of the learning algorithm for
which the best results are achieved. It has to be ensured thatall evaluation runs are
performed under the same conditions in order to have comparable results.

By looking at the literature, one can identify the followingtwo approaches for mea-
suring the functional dimension in this scenario:



Manual Evaluation by Human Experts This evaluation approach can be found in sev-
eral papers about ontology learning algorithms like in [16]and [17] where the
learned ontology is presented to one or more human experts which have to judge
in how far the extracted information is correct (i. e. the precision is measured).
But the approach has several downsides: First of all, the extracted information is
not compared with the information found in the corpus but with the knowledge
of the human expert. While this is not so problematic for measuring the precision
of the learning algorithm it makes a reliable measurement ofthe recall nearly im-
possible. Furthermore, the most important influencing factor of the evaluation is
the choice of the human experts. Because they may not be available at another
time and place the last two criteria outlined before are not fulfilled. This problem
can only be avoided by asking a sufficiently large number of experts. Additionally,
every evaluation run comes with the same high costs as the first run thus making
frequent and large-scale evaluations unfeasible.

Gold Standard Based ApproachesGold standard based approaches compare the learned
ontology with a previously created gold standard which represents an idealized
outcome of the learning algorithm. A learning algorithm is considered to be better
when the learned ontology has a high similarity with the goldstandard. Examples
for this kind of evaluation can be found in papers like [3], [12] and [18]. The gold
standard based evaluation fulfills all the criteria from above: It can be used for
directly measuring the precision and recall of the learned ontology compared to
the gold standard. Furthermore, the evaluation results canbe reproduced and are
comparable if the same corpus, learning algorithm and gold standard are used.
Additionally, only for the first run of the evaluation the high costs of creating the
gold standard exist. Subsequent runs of the evaluation are then fully automatic.

Although the gold standard based evaluation seems to be ideal in this scenario there
remains one big issue: Where to get or how to create such a gold standard? On the one
hand, one may ask a human expert to create a gold standard based on the information
in the used corpus. Depending on the size of the corpus, this can constitute a very work
intensive approach. Another approach might be to take an already existing ontology and
choose the corpus accordingly so that it can be assumed that most of the information of
the gold standard is available in the corpus. An example of the latter approach is available
in [4].

Independent from this decision, the term “gold standard” may be misleading as there
exists not only one gold standard but, depending on who is asked, one may get several
gold standards which differ in their details. This is due to the different conceptualiza-
tion humans may have of a domain (cf. [5]). The same problem exists for the manual
evaluation by human experts. There it is typically addressed by measuring the consensus
between several experts (cf. [19]). A similar way may be usedfor the creation of the gold
standard. For example, one may involve several experts in the creation of the gold stan-
dard and measure their consensus or one may compare with several gold standards (and
measuring the agreement between those gold standards). Butregardless of this decision,
the main advantage of gold standard based evaluation remains that the conceptualizations
of the experts become explicitly available in form of the gold standard. This ensures that
every learning algorithm is compared against the same standard and that everyone can
control how thoroughly the gold standard was created.



There exist many measures for the gold standard based evaluation of ontologies.
They can be distinguished between measures which only evaluate the lexical layer of an
ontology, the ones which also take the concept hierarchy or taxonomic layer into account
and the ones which evaluate the non-taxonomic relations contained in an ontology. In this
paper we will concentrate on the measures for evaluating thelexical and the taxonomic
layer.

On the lexical layer “binary” measures are often used that compare the terms from
the reference and the learned ontology based on an exact match of strings. Examples for
this kind of measure are theTerm Precision and Term Recallas they are presented in [18].
There exist several other names for these measures likeLexical Precision and Recallor
simply precision and recall(see [20] and [21]). Another example of a lexical evaluation
measure is theString Matchingmeasure presented in [22] and [19]. This measure is
based on the edit distance between two strings. It is therefore more robust with regard to
slightly different spellings and typing errors (e. g. “center” and “centre”).

The comparison of concept hierarchies or taxonomies is morecomplicated than the
comparison of the lexical layer of ontologies. Such concepthierarchy measures are often
divided into kinds of local and global measures. The local measure compares the similar-
ity of the positions of two concepts in the learned and the reference hierarchy. The global
measure is then computed by averaging the results of the local measure for concept pairs
from the reference and the learned ontology.

Furthermore, we have to distinguish between different learning approaches. An ex-
ample for such an approach is theGeneral Named Entity Identification(GNE) where the
algorithm has to find for previously unknown concepts their maximally specific general-
ization from a given ontology, i. e. it adds them as leaf nodesto the ontology. Examples
of measures suitable for evaluating GNE algorithms are available in [23]. They partially
depend on the assumption that the compared ontologies only differ in their leaf nodes.

But in this paper we will concentrate on another, more general approach where on-
tologies are learned from scratch, i. e. without a seed ontology which is extended. In the
case of concept hierarchies, it leads to the fact that not only the positions of leaf nodes
may differ between the learned and the reference hierarchy but also the position of inner
concepts. Thus, the evaluation measures can not depend on the assumption that large
portions of the two compared hierarchies (i. e. the seed hierarchy) match exactly.

One of the first examples of such a concept hierarchy evaluation measure is theTax-
onomic Overlap(TO) presented in [22] and [19]. The local taxonomic overlapcompares
two concepts based on the set of all their super- and sub concepts. In opposite to the
local overlap, which is a symmetric measure, this is not the case for the global taxo-
nomic overlap measures proposed in [22], [19] and [4], i. e. they can be computed into
two directions. In [4] this asymmetry is interpreted as a kind of precision and recall. But
in section 4.5 we will show that this is a misinterpretation of the asymmetry, as local
taxonomic overlap already constitutes a kind of combination of precision and recall.

Another example is theAugmented Precision and Recall(AP & AR) presented in
[24] and [25]. It is also divided into a global and a local partof the measure. For the
local part two alternatives may be used: TheLearning Accuracy(LA) and theBalanced
Distance Metric(BDM). LA was proposed by [26]. It compares two concepts based
on their distance in the tree (e. g. the length of the shortestpath between the root and
their most specific common abstraction). BDM further develops the idea of LA by taking
further types of paths and a branching factor of the conceptsinto account (see [24]).



Table 1. Rating of concept hierarchy measures

multi dimensionality proportional error effect usage of interval

TO − + ?

AP & AR ◦ + ?

LA − ◦ ?

OntoRand1 − + +

TPcsc

(cf. section 4.3)
+ + +

The latest measure for comparing concept hierarchies is theOntoRandindex pro-
posed in [27]. It is a symmetric measure which extends techniques used in the clustering
community for comparing two partitions of the same set of instances. A concept hierar-
chy is seen as a hierarchical partitioning of instances. ForOntoRand two alternatives ex-
ist to measure the similarity of concepts. The first alternative is based on the set of com-
mon ancestors. The second alternative is based on the distance between two concepts in
the tree (like LA and BDM). An important constraint imposed on the concept hierarchy
is that both compared hierarchies must contain the same set of instances.

3. Criteria for Good Evaluation Measures

Given this variety of evaluation measures for doing a gold standard based evaluation of
concept hierarchies it is now the question what is a “good” measure and can we give some
criteria according to which to evaluate the different measures. Measures fulfilling the
following criteria will help to avoid misinterpreting evaluation results and ease drawing
the right conclusions for the improvement of the evaluated ontology learning algorithm.

The most important criterion is that an ontology is evaluated alongmultiple dimen-
sions. This criterion is formulated in several papers like [24] and [28]. But instead of hav-
ing a measure which aggregates the evaluation of all those dimensions into a single value
one should use separate measures for each of the dimensions.Thus a user can weight
different kinds of errors based on his own preferences. Thisenables to better analyze the
strengths and weaknesses of a learned ontology.

As we will show in 5, it is very important that a measure is onlyinfluenced by exactly
one dimension and/or type of error. For example, if one uses measures for evaluating the
lexical layer of an ontology (e.g the lexical precision and recall) and one also wants to
evaluate the quality of the learned concept hierarchy (e. g.with the taxonomic overlap),
then a dependency between those measures should be avoided.

The second criterion is that the effect of an error onto the measure should bepro-
portional to the distance between the correct and the given result. Forexample, an er-
ror near the root of a concept hierarchy should have a stronger effect on the evaluation
measure than an error nearer to the leafs (see also [28]).

The third criterion is closely related to the previous one. For measures with a closed
scaleinterval (e. g. [0..1]), a gradual increase in the error rate should also lead to a
gradual decrease in the evaluation results. For example, ifa measure has the interval
[0..1] as its scale but already slight errors lead to a decrease of the returned results from
1 to 0.2 then it is difficult to distinguish between slight andsevere errors (see [27]).



In Tab. 1 it is shown in how far the measures for the functionaldimension described
in section 2.2 meet the criteria listed in this section. The rating is based on the descrip-
tions in [19], [24] and [27]. Additionally, the new findings from section 4.5 were used
for rating the taxonomic overlap. A measure can improve its multi dimensionality by
two factors: either by removing the influence of the lexical layer on the evaluation of
the concept hierarchy or by separately measuring differentaspects of the hierarchy (e. g.
precision and recall). None of the measures removes the influence of the lexical layer and
only the augmented precision and recall distinguishes between two aspects of the hier-
archy. The Learning Accuracy does not achieve the best scorefor the proportional error
effect because it considers the distance between the correct and the given answer only
to some small extent (see [24]). In the following a truly multi dimensional approach for
evaluating an ontology will be presented, thus overcoming the problems of the current
measures.

4. Comparing Learned Ontologies with Gold Standards

In this section measures will be presented which can be used for an evaluation of the
lexical layer and the concept hierarchy of an ontology. The measures extend the idea
of precision and recall to the gold standard based evaluation of ontologies. The lexical
layer of an ontology will be evaluated with lexical precision and recall (see section 4.2).
For the concept hierarchy a framework of building blocks will be defined in section
4.3. This framework defines a family of measures and it will beused for systematically
constructing a measure which fulfills the criteria from section 3.

In the following the simplified definition of a core ontology will be used. This defi-
nition of an ontology only contains the lexical layer and theconcept hierarchy. Similarly
to [4], we define a core ontology as follows:

Definition 1 The structureO := (C, root,≤C) is called a core ontology.C is a set of
concept identifiers androot is a designated root concept for the partial order≤C on C.
This partial order is called concept hierarchy or taxonomy.The equation∀c ∈ C : c ≤C

root holds for this concept hierarchy.

In this definition of a core ontology the relation between terms on the lexical layer
and their associated concept is a bijection, i. e. each term is associated with exactly
one concept and each concept with exactly one term. Thus it ispossible to use the a
term as the identifier of a concept. This restriction simplifies the following formulas.
Nevertheless it would be possible to generalize them to the case where ann : m relation
between concepts and terms exists (in analogy to [22] and [19]).

4.1. Precision & Recall

This section gives a short overview of precision, recall andF-measure, as they are known
from information retrieval (see [29]). They are used for comparing a reference retrieval

1In [27] two different variants of OntoRand are presented. One variant is based on a tree distance while
the other is based on finding the common ancestor in the concept hierarchy. For the comparison in Tab. 1 the
measure based on the common ancestors was used because it was shown in [27] that it is superior to the tree
distance based measure.



(Ref ) with a computed retrieval (Comp) returned by a system. Precision and recall are
defined as follows:

P (Ref , Comp) =
|Comp ∩ Ref |

|Comp|
R(Ref , Comp) =

|Comp ∩ Ref |

|Ref |
(1)

It is interesting that precision and recall are the inverse of each other:

P (Ref , Comp) =
|Comp ∩ Ref |

|Comp|
= R(Comp,Ref ) (2)

TheF1-measure is used for giving a summarizing overview and for balancing the
precision and recall values. TheF1-measure is the harmonic mean ofP andR.

F1(Ref , Comp) =
2 · P (Ref , Comp) · R(Ref , Comp)

P (Ref , Comp) + R(Ref , Comp)
(3)

4.2. Lexical Precision & Recall

There exist several measures sufficient for evaluating the lexical layer of an ontology
(see section 2.2). In this subsection the lexical precisionand recall measures, as they are
described in [20], will be explained in a bit more detail. Later on they will be used in
conjunction with the measures for evaluating concept hierarchies, as they are presented
in section 4.3. Given a computed core ontologyOC and a reference ontologyOR, the
lexical precision (LP ) and lexical recall (LR) are defined as follows:

LP (OC ,OR) =
|CC ∩ CR|

|CC |
LR(OC ,OR) =

|CC ∩ CR|

|CR|
(4)

Figure 2. Example reference ontology (OR1, left) and computed ontology (OC1, right)

The lexical precision and recall reflect how good the learnedterms cover the target
domain. For example, if one comparesOC1 andOR1 in Fig. 2 with each other, one gets
LP (OC1,OR1) = 4

6
= 0.67 andLR(OC1,OR1) = 4

5
= 0.8.

4.3. Taxonomic Precision & Recall

In this subsection a framework of building blocks is described. It defines a family of tax-
onomic precision and recall measures from which two concrete measures will be selected
afterward. Only the equations for the taxonomic precision measures will be presented.
The corresponding equations for the taxonomic recall measures can be easily derived
from them because of equation (2). This framework extends and improves the framework
used for the taxonomic overlap measures in [19]. It especially replaces the previously
used equation for comparing the position of two concepts with each otherleading to a
completely different behavior of the measure(see also section 4.5).



4.3.1. Comparing Concepts

As mentioned before, measures for comparing two concept hierarchies with each other
are usually divided into a kind of local and a global measure (cf. section 2.2). The local
measure compares the positions of two concepts and the global measure is used for com-
paring two whole concept hierarchies. We start with describing the framework’s local
measure. It is then used in the definition of the global measure.

For the local taxonomic precision the similarity of two concepts will be computed
based on extracts from the concept hierarchy, which are characteristic for the position of
a concept in the hierarchy. That is,. two extracts should contain many common objects
if the characterized objects are at similar positions in thehierarchy. The proportion of
common objects in the extracts should decrease with increasing dissimilarity of the char-
acterized concepts. Given such a characteristic extractce, the local taxonomic precision
tpce of two conceptsc1 ∈ OC andc2 ∈ OR is defined as

tpce(c1, c2,OC ,OR) :=
|ce(c1,OC) ∩ ce(c2,OR)|

|ce(c1,OC)|
(5)

The characteristic extract from the concept hierarchy is animportant building block
of the local taxonomic measure and several alternative instantiations exist. As we will see
below, they have a major influence on the properties of the corresponding global measure.
For the taxonomic overlap measure described in [19] it was suggested to characterize a
concept by its semantic cotopy, i. e. all its super- and subconcepts. Given the concept
c ∈ C and the ontologyO, the semantic cotopysc is defined as follows:

sc(c,O) := {ci|ci ∈ C ∧ (ci ≤ c ∨ c ≤ ci)} (6)

If one uses the semantic cotopy for defining the local taxonomic precision measure
tpsc, the results will be heavily influenced by the lexical precision of OC because with
decreasing lexical precision more and more concepts ofsc(c,OC) are not contained in
OR andsc(c,OR). This increases the probability thatsc(c,OC) contains such concepts,
leading to a direct dependency between the lexical and the taxonomic precision. But
according to section 3, evaluation measures should be judged by whether the different
measures are independent of each other. So taxonomic measures based on the semantic
cotopy shouldn’t be used in conjunction with the lexical precision and recall.

This influence of lexical precision and recall on the taxonomic measures can be
avoided if one uses the common semantic cotopycsc as the characteristic extract. The
common semantic cotopy excludes all concepts which are not also available in the other
ontology’s set of concepts:

csc(c,O1,O2) := {ci|ci ∈ C1 ∩ C2 ∧ (ci <1 c ∨ c <1 ci)} (7)

In Tab. 2 and 3 one can see the influence of inserting and replacing concepts in a
hierarchy. The tables contain the setssc andcsc for the ontologiesOR1 andOC1 which
were already used as an example for lexical precision and recall (see Fig. 2). One can
see that inserting and replacing concepts without actuallychanging the hierarchy has no
effect on the common semantic cotopy while the semantic cotopy is heavily influenced
by these changes on the lexical layer of an ontology.



Table 2. Semantic cotopies for the ontologies in Fig. 2.

c sc(c,OR1) sc(c,OC1)

root {root, bike, car, van, coupé} {root, bike, BMX, auto, van, coupé}
car {root, car, van, coupé} –
auto – {root, auto, van, coupé}
van {root, car, van} {root, auto, van}

coupé {root, car, coupé} {root, auto, coupé}
bike {root, bike} {root, bike, BMX}

BMX – {root, bike, BMX}

Table 3. Common semantic cotopies for the ontologies in Fig. 2.

c csc(c,OR1,OC1) csc(c,OC1,OR1)

root {bike, van, coupé} {bike, van, coupé}
car {root, van, coupé} –
auto – {root, van, coupé}
van {root} {root}

coupé {root} {root}
bike {root} {root}

BMX – {root, bike}

Besides the previously described extracts of the concept hierarchy, further extracts
are imaginable. For example, the upwards cotopy (see [19]) or the set of all direct sub-
concepts might be used. In [30] also measures based on the direct subconcepts were eval-
uated. But [30] shows also that measures based on the semantic cotopy meet more of the
criteria from section 3.

4.3.2. Comparing Concept Hierarchies

It is now possible to define a framework for constructing a global taxonomic precision
measure. Fig. 3 shows the building blocks used in this framework for a global taxonomic
precision measure.

Figure 3. Building blocks of the global taxonomic precision measure

The set of conceptswhose local taxonomic precision values are summed up is the
first building block. Two alternatives may be used. The first alternative is to use the set
of conceptsCC from the learned ontology. If one chooses this alternative,the global
taxonomic precision is influenced by the lexical precision.For example, if the lexical
precision of a learned ontology is approximately 5% (like inthe empirical evaluation in
section 5.2) then for 95% of the concepts a local taxonomic precision value has to be
estimated because there doesn’t exist a corresponding concept in the reference ontology
(see below). If such an influence of the lexical precision should be avoided then the set



of common conceptsCC ∩ CR should be preferred. It especially makes sense if one also
uses a local taxonomic precision value based on the common semantic cotopy.

The local taxonomic precisionis the next building block. It is used for comparing
the position of a concept in the learned hierarchy with the position of the same concept
in the reference hierarchy. Thus the current concept has to exist in both hierarchies.

An estimationof a local taxonomic precision value is the last building block. It is
only used if the current concept isn’t contained in both ontologies. Its usage is therefore
influenced by the chosen set of concepts (see above). In [19] it is suggested to make
an optimistic estimation by comparing the current concept with all concepts from the
reference ontology and choose the highest local taxonomic precision value. This ensures
that concepts which do not match on the lexical layer (e. g. "auto" and "car" in Fig. 2)
will nonetheless match in the concept hierarchy and thus return a high local taxonomic
precision value. The optimistic estimation reduces the influence of lexical precision but
it may also cause misleading results.

In opposite to that, assuming a local taxonomic precision value of 0% if no match
on the lexical layer can be found maximizes the influence of the lexical precision. But if
one wants to completely eliminate the influence of lexical precision one should avoid this
estimation building block anyway. This is done by only averaging the local taxonomic
precision values of the common concepts.

4.3.3. Concrete Measures

In the following the previously presented building blocks will be combined to concrete
measures fulfilling the criteria from section 3. The measures will be evaluated in section
5. In [30] further measures are described and evaluated. This paper only contains the best
two pairs of measures.

The first pair of measures consists ofTPsc andTRsc. They are based on the se-
mantic cotopy and are thus influenced by the lexical layer. Inthe evaluation in section 5
they will be used for demonstrating the disadvantages of mixing the evaluation of lexical
layer and concept hierarchy. The other building blocks are selected so that they further
increase this influence. This is achieved by computing the local taxonomic precision for
all learned concepts and by estimating the local taxonomic precision as0 if the current
concept isn’t also contained in the reference ontology.

TPsc(OC ,OR) :=
1

|CC |

∑

c∈CC

{

tpsc(c, c,OC ,OR) if c ∈ CR

0 if c /∈ CR

(8)

TRsc(OC ,OR) := TPsc(OR,OC) (9)

All in all, the measuresTPsc andTRsc do not allow a separate evaluation of lexical
layer and concept hierarchy. For evaluation scenarios where a thorough analysis of the
learned ontologies is needed the measuresTPcsc andTRcsc are better suited. Here the
building blocks will be selected so that the influence of the lexical layer is minimized.
This is achieved by using the common semantic cotopy and by computing the taxonomic
precision values only for the common concepts of both ontologies. The latter makes the
estimation of local taxonomic precision values unnecessary.



TPcsc(OC ,OR) :=
1

|CC ∩ CR|

∑

c∈CC∩CR

tpcsc(c, c,OC ,OR) (10)

TRcsc(OC ,OR) := TPcsc(OR,OC) (11)

4.4. Taxonomic F- and F'-Measure

Like it is the case for precision and recall in information retrieval, also the taxonomic
precision and recall have to be balanced if one wants to output a combined measure.
Therefore the taxonomic F-measure is introduced, which is the harmonic mean of the
global taxonomic precision and recall.

TF (OC ,OR) :=
2 · TP (OC ,OR) · TR(OC ,OR)

TP (OC ,OR) + TR(OC ,OR)
(12)

A higher taxonomic F-measure corresponds to a better quality of the concept hierar-
chy. The meaningfulness with regard to the overall quality of the ontology (lexical level
+ taxxonomy) depends on the chosen building blocks. IfTF is not influenced by the
lexical level then the taxonomic F'-measure (see [4]) may additionally be computed. It is
the harmonic mean ofLR andTF :

TF ′(OC ,OR) :=
2 · LR(OC ,OR) · TF (OC ,OR)

LR(OC ,OR) + TF (OC ,OR)
(13)

4.5. Taxonomic Overlap

In [22] and [4] the taxonomic overlap measure is defined. It isalso divided into a global
and a local part of the measure. The global taxonomic overlapTO has the same building
blocks likeTP but instead of the local taxonomic precision it uses the local overlapto:

tosc(c1, c2,O1,O2) :=
|sc(c1,O1) ∩ sc(c2,O2)|

|sc(c1,O1) ∪ sc(c2,O2)|
(14)

Becauseto is a symmetric measure, it depends on the other building blocks (concept
set and estimation component) whether the global taxonomicoverlap is symmetric or
asymmetric. We have shown the following lemma (cf. [30] for its proof):

Lemma 1 Symmetric global taxonomic overlap measures can be solely derived from
taxonomic F-measures. The equationTO = TF/(2 − TF ) holds.

This lemma implies that symmetricTO measures behave likeTF measures (see
[30] for a symmetricTO measure). In [22] and [4] an asymmetric overlap measure is de-
fined. There, this asymmetry is interpreted like a kind of precision and recall. But in [30]
it was shown that no strictly monotonic dependency exists between that asymmetricTO
measure and correspondingTP andTR measures. Thus the asymmetry can not be in-
terpreted like precision and recall. It should be avoided touse asymmetricTO measures
until the unclarity with regard to their interpretation is resolved. Instead corresponding
taxonomic precision and recall measures should be used.



Table 4. Evaluation of the ontologies in Fig. 4 with a semantic cotopy based measure

CompareOR2 with LP LR TPsc TRsc TFsc TF ′

sc

OC2 100.00% 57.14% 100.00% 51.02% 67.57% 61.92%

OC3 71.43% 71.43% 54.25% 54.25% 54.25% 61.67%

Table 5. Evaluation of the ontologies in Fig. 4 with a common semantic cotopy based measure

CompareOR2 with LP LR TPcsc TRcsc TFcsc TF ′

csc

OC2 100.00% 57.14% 100.00% 100.00% 100.00% 72.73%

OC3 71.43% 71.43% 100.00% 100.00% 100.00% 83.33%

5. Evaluation

In this section the measures presented in 4.3.3 will be analytically and empirically eval-
uated. In the analytical evaluation it will be checked in howfar they fulfill the criteria
defined in section 3. Subsequently in the empirical evaluation, it will be shown in how
far the choice of the measure influences the outcome of the evaluation of an ontology
learning task.

5.1. Analytical Evaluation

First, it will be checked in how far the taxonomic measures are independent of the mea-
sures for the lexical layer. This corresponds to the first criterion that a good set of mea-
sures allows for evaluating along multiple dimensions. Closely related to this criterion is
the objective that each measure is independent of the other measures. The ontologies in
Fig. 4 will be used for this purpose. Compared toOR2 there are three concepts missing
in OC2, but the hierarchy of the remaining concepts is not changed.Also in OC3 the hi-
erarchy is not changed but the natural language identifier oftwo concepts is changed (e.
g. "car" is renamed to "auto"). Thus the hierarchy of both ontologies is perfectly learned
but there are errors on the lexical layer. This has to be reflected by taxonomy measures
which are not influenced by errors on the lexical layer.

As one can see in Tab. 4 and 5 only the measuresTPcsc andTRcsc are independent
of the lexical precision and recall. But this was already expected from the properties
of the single building blocks of the taxonomic measures. It is more surprising to which
extent the lexical precision and recall influenceTPsc andTRsc. The errors on the lexical
layer of both learned ontologies lead to a higher decrease ofthe taxonomic measures
than of the lexical measures. This can be seen by comparing the values of the taxonomic
measures and of the lexical measures in Tab. 4. The values of the taxonomic measures
are lower than the corresponding values of the lexical measures although the evaluated
ontologies only contain errors on the lexical layer.

Figure 4. Reference ontology (OR2, left) and two learned ontologies (OC2, middle;OC3, right)



Table 6. Evaluation of the ontologies in Fig. 5 with a semantic cotopy based measure

CompareOR3 with LP LR TPsc TRsc TFsc TF ′

sc

OC4 100.00% 100.00% 66.67% 66.67% 66.67% 80.00%

OC5 100.00% 100.00% 83.33% 83.33% 83.33% 90.91%

Table 7. Evaluation of the ontologies in Fig. 5 with a common semantic cotopy based measure

CompareOR3 with LP LR TPcsc TRcsc TFcsc TF ′

csc

OC4 100.00% 100.00% 52.38% 52.38% 52.38% 68.75%

OC5 100.00% 100.00% 76.19% 76.19% 76.19% 84.49%

The second criterion of good evaluation measures was that the effect of an error onto
the measure should be proportional to the distance between the correct and the given
result. This criterion will be checked with the ontologies in Fig. 5. There, inOC4, the
two concepts "car" and "bike" are interchanged, corresponding to an error near the root
of the hierarchy. InOC5 the two leaf concepts "coupé" and "BMX" are interchanged.
Altogether the errors inOC4 are more serious than the errors inOC5. Thus measures
which fulfill this second criterion should rateOC4 worse thanOC5. In Tab. 6 and 7 one
can see that both pairs of measures fulfill this criterion.

Figure 5. Reference ontology (OR3, left) and two learned ontologies (OC4, middle;OC5, right)

The third and last criterion of good evaluation measures wasthat a gradual increase
in the error rate should lead to a more or less gradual decrease in the evaluation results.
One can see from the previously given examples thatTPcsc andTRcsc fulfill this cri-
terion. Especially for the ontologies in Fig. 4 it returned perfect evaluation results. The
opposite is true forTPsc andTRsc: Because these measures are influenced by errors in
the lexical layer as well as by errors in the concept hierarchy they will drop very fast if
both kinds of errors occur in an ontology. Additionally it was shown that they are more
strongly influenced by errors in the lexical layer than the lexical precision and recall
measure itself.

TPcsc andTRcsc are all in all better suited for evaluating a concept hierarchy and
drawing conclusions about the strengths and weaknesses of the used learning procedure.

5.2. Empirical Evaluation

In this section the previously described measures will be used in a real evaluation of con-
cept hierarchies learned with Hearst patterns (cf. [31], [3]). In this evaluation it will be
shown in how far the choice of the measure influences the nature of the results and sub-
sequently the conclusions which are drawn from the evaluation of a learning algorithm.
For the evaluation, several ontologies for the tourism domain were learned from a cor-
pus of 4596 tourism related Wikipedia articles with 6.54 million tokens. The reference
ontology was created by an experienced ontology engineer within the GETESS project
(see [32] and Tab. 8 for more details about the ontology).



If the Hearst patterns are applied on a collection of texts, it is very likely that the
same relation is extracted more than once. This informationcan be used for defining a
confidence value in the extracted relation. The confidence isincreased, with the number
of occurrences. The most often extracted relation gets a confidence value of 1.0. It drops
to 0.0 with descending occurrences. Four different thresholds θ were applied to the con-
fidence value for filtering the taxonomic relations. For moredetails on the experiment
and further results for other learning algorithms and document corpora see [30].

In Fig. 6, 7 and 8 one can see the evaluation results for the taxonomic and the lexical
layer of the learned ontologies. These raw evaluation results should now be used for
deciding for which threshold the best results were achieved. Fig. 7 and 8 contain the
evaluation of the taxonomic layer of the same ontologies butevaluated with the two
different measures from section 4.3.3.

Figure 6. Evaluation of the lexical layer depending on thresholdθ

Figure 7. Evaluation of learned ontologies withTPcsc depending on thresholdθ



Figure 8. Evaluation of learned ontologies withTPsc depending on thresholdθ

Table 8. Structural evaluation of the reference ontology and the learned ontologies

θ concepts circles avg. depth avg. sub sub. dev. avg. super super dev.

ref 294 1 5.14 5.22 4.42 1.03 0.17

0.0 14569 4973 119.29 3.57 53.2 1.52 2.2

0.3 893 97 3.8 2.81 14.89 1.22 0.87

0.6 246 24 3.29 2.68 8.39 1.16 0.78

0.9 116 2 3.17 2.76 6.06 1.08 0.35

Looking at the results in Fig. 7 one can see that there is a major improvement of the
quality on the taxonomic layer ifθ is increased from 0.0 to 0.3. But this improvement on
the taxonomic layer is accompanied by a decrease of the lexical recall (see Fig. 6) thus
it isn’t so clear whether the ontologies withθ = 0.0 or 0.3 are better. But from the low
lexical and taxonomic precision for aθ = 0.0 one may also conclude that this ontology
more or less “accidentally” contains correct terms and taxonomic relations (which lead
to the high recall values). So after a deeper analysis of the evaluation results one may
come to the conclusion that learning taxonomic relations with Hearst patterns works best
if the output ontology is moderately filtered based on the threshold values.

The conclusion based on the functional evaluation of the lexical and taxonomic layer
is also supported by the structural evaluation in Tab. 8. Thefirst row of the table contains
the values of the reference ontology against which the learned ontologies are compared.
The following rows contain the values of the learned ontologies. One can see that the
unfiltered concept hierarchy contains 4,973 circularity errors in the concept hierarchy (i.
e. a concept is also one of its superconcepts) and that the average cardinality of the paths
from the root to the leaf nodes (i. e. the average depth of the hierarchy) is 119. Addi-
tionally, it is interesting to look at the branching factor of the hierarchy: The concepts
have 3.57 direct subconcepts in average with a very high deviation of 53.2. The average
number of direct superconcepts is also quite high with 1.52 and a deviation of 2.2 (i. e.
there exist many multi-hierarchical concepts). All these structural measures show that the
hierarchy of the unfiltered ontology is more or less degenerated while the values for the
ontology withθ = 0.3 are close to the values of the manually built reference ontology.



The exemplary evaluation withTPcsc andTRcsc shows that they allow for sepa-
rately evaluating the taxonomic and lexical layer of an ontology. The different evalua-
tion measures have to be weighed and prioritized thus forming an overall picture of the
advantages and disadvantages of the ontologies and thus theused learning algorithm.

The separate evaluation of the functional dimension of the taxonomic and lexical
layer is not possible ifTPsc andTRsc are used instead. In constructing the measures in
section 4.3 as well as in the analytical evaluation in 5.1 it was predicted that there is a
strong dependency ofTPsc andTRsc on the respective measure from the lexical layer.
This dependency also becomes obvious by comparing Fig. 6 andFig. 8. Both graphs
show more or less the same information, i. e. the evaluation of the taxonomic layer is
superimposed by the influence of the lexical layer. Thus drawing conclusions about the
taxonomic layer and making a truly multidimensional evaluation is impossible because
the used measures are not independent of each other.

6. Conclusions

In this chapter we presented an overview of several existingapproaches to the evaluation
of ontologies. It was shown that in the scenario of evaluating ontology learning algo-
rithms a gold standard based evaluation approach is the bestchoice while for the quality
assurance during an ontology engineering project a combination of task-, corpus- and
criteria-based evaluation approaches should be used.

Focusing on the scenario of evaluating ontology learning algorithms, we presented
a framework for gold standard based evaluations. It was usedfor creating a measure for
the taxonomic layer. It was shown by means of an analytical and empirical evaluation
that it fulfills the three basic criteria for gold standard based evaluations: (i) allowing for
evaluating along multiple dimensions, (ii) taking the distance between correct and given
answer into account and (iii) the scale interval of the measure is used more evenly.
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