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Abstract. We present an SVM-based learning algorithm for informa-
tion extraction, including experiments on the influence of different algo-
rithm settings. Our approach needs fewer SVM classifiers to be trained
than other recently proposed SVM-based systems. Another distinctive
feature is the use of a variant of the SVM, the SVM with uneven mar-
gins, which is particularly helpful for mixed-initiative (adaptive) infor-
mation extraction. We also compare our system to other state of the art
systems (including rule learning and statistical learning algorithms) on
three IE benchmark datasets: CoNLL-2003, the CMU seminars corpus,
and the software jobs corpus. The experimental results showed that our
system had a compatible performance. It outperformed a recent SVM
system, achieved the highest scores on eight out of 17 categories on the
jobs corpus, and was second best on the remaining nine.

1 Introduction

Information Extraction (IE) is the process of automatic extraction of informa-
tion about pre-specified types of events, entities or relationships from text such
as newswire articles or Web pages (see [10] for a comprehensive overview of IE).
A lot of work has been done on named entity recognition, a basic task of IE,
which aims to classify the proper nouns and/or numerical information in doc-
uments. Actually most IE tasks can be viewed as the task of recognising some
information entities from the text. IE can be useful in many applications, such
as information gathering in a variety of domains, automatic annotations of web
pages for semantic web, and knowledge management.

Machine learning techniques have been used for IE and achieved state of the
art results. In the applications of machine learning to IE, a learning algorithm
usually extracts a model from a set of documents which have been manually
annotated by the user. Then the model can be used to extract information from
new documents. Usually the algorithm would learn a more accurate model if
given more training examples. However, manual annotation is a time-consuming
process. Hence, in many applications the so called adaptive or mixed-initiative
learning is desirable (see e.g., Alembic [14], Amilcare [9]). In a mixed-initiative
IE system, a few documents are manually annotated first (i.e., the user has the
initiative to begin with). The system learns an initial model from this small pool
of annotated examples. Then the model is applied to tag new documents (the
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system starts having some initiative by suggesting the tags) and the results are
corrected by the user. Then the system updates the model based on the user’s
corrections, and the process continues until the user is satisfied with the system
performance and allows it to work fully automatically. In order to lower the
overhead of training a learning system, this kind of human-machine interactive
approach is crucial for building an efficient and flexible IE system. Therefore, an
important part of this work is focused on evaluating our learning algorithm on
growing amounts of data, starting from a small set of annotated documents.

Machine learning algorithms for IE can be classified broadly into two main
categories: rule learning and statistical learning. The former induces a set of
rules from a training set, while the later learns a statistical model or classifiers.
Support Vector Machines (SVM) is a general supervised machine learning al-
gorithm, that has achieved state of the art performance on many classification
tasks, including named entity recognition (see e.g. [21], [24]). [21] compared three
commonly used methods for named entity recognition – the SVM with quadratic
kernel, maximal entropy method, and a rule based learning system, and showed
that the SVM based system performed better than the other two. In our view,
the comparison between different learning methods in [21] is more informative
than the comparison in, e.g., the CoNLL-2003 share task (see [27]), because the
former used both the same corpus and the same features for all the systems,
while in the later different systems used the same corpus but different features.1

[21] also described an efficient implementation of the SVM with quadratic ker-
nel. [24] used a lattice-based approach to named entity recognition and employed
the SVM with cubic kernel to compute transition probabilities in a lattice. Their
results on CoNLL-2003 shared task were comparable to other systems but were
not the best ones.

This paper describes an SVM-based learning algorithm for IE and present
detailed experimental results. In contrast to previous similar work, our SVM
model (see Section 2) uses an uneven margins parameter which has been shown
in [23] to improve the performance for document categorisation (especially for
small categories). Detailed experiments to investigate different experimental set-
tings of the SVM based algorithm on several benchmark datasets was carried
out (see Section 4.1). The experimental datasets were chosen to enable thorough
comparisons between our approach and other state of the art learning algorithms
(see Section 4.2). The algorithm was also evaluated in simulated mixed-initiative
settings, where only a small number of documents was given for learning initially
and then more and more documents were provided incrementally. Section 5 cov-
ers related work.

1 The still ongoing Pascal Challenge in evaluation of machine learning methods for IE
aims to provide a corpus and a pre-defined set of features, so different algorithms
can be compared better (http://nlp.shef.ac.uk/pascal/).
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2 The SVM Based Learning Algorithm

We used a variant of the SVM, the SVM with uneven margins [23], which has a
better generalisation performance than the original SVM on datasets where the
positive examples are much less than the negative ones. The uneven marginal
parameter has been shown previously to facilitate document classification on un-
balanced training data (see [23]). Given that IE classification tasks, particularly
when learning from small data sets, often involve unbalanced data, we decided
to use SVM with uneven margins, instead of the original SVM algorithm.

Formally, given a training set Z = ((x1, y1), . . . , (xm, ym)),where xi is the
n-dimensional input vector and yi (= +1 or −1) its label, the SVM with uneven
margins is obtained by solving the quadratic optimisation problem:

minimisew, b, ξ 〈w,w〉 + C
m∑

i=1

ξi

subject to 〈w,xi〉 + ξi + b ≥ 1 if yi = +1

〈w,xi〉 − ξi + b ≤ −τ if yi = −1

ξi ≥ 0 for i = 1, ..., m

In these equations, τ is the uneven marginal parameter which is the ratio of
negative margin to the positive margin in the classifier and is equal to 1 in the
original SVM. [23] also showed that the solution of the above problem could be
obtained by solving a related SVM problem.

2.1 Use of Context in the Feature Vectors

When statistical learning methods are applied to IE tasks, they are typically
formulated as classification, i.e., each word in the document is classified as be-
longing or not to one of the target classes (e.g., named entity tags). The same
strategy was adopted in this work, which effectively means that each word is
regarded as a separate instance by the SVM classifier. First an input vector
is formed, based on a large number of features. Since in IE the context of the
word is usually as important as the word itself, the features in the input vector
come not only from the given word to be classified, but also from preceding and
following words. In our experiments the same number of left and right words
was taken as a context. In other words, the current word was at the centre of a
window of words from which the features are extracted. This is called a window

size. Therefore, for example, when the window size is 3, the algorithm uses fea-
tures derived from 7 words: the three preceding, the current, and the 3 following
words.

Due to the use of a context window, the SVM input vector is the combination
of the feature vector of the current word and those of the neighbouring words.
The feature vector derived from a word is a long sparse vector. First, the algo-
rithm collects all possible features from the training documents. Each feature
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(e.g. a token or a part-of-speech (POS) category) corresponds to one dimen-
sion in the feature vector. So the vectors tend to have thousands of dimensions,
but only with a small number of nonzero components which correspond to the
features of the words. We set the value of nonzero components to 1.

As the input vector of the SVM comes from the words in a window surround-
ing the current word, we can weight those feature vectors from different words
according to our knowledge about the relative importance of the neighbouring
words. Two weighting schemes for the feature vectors from neighbouring words
were investigated. The first is equal weighting, which keeps every nonzero com-
ponent of the feature vector as 1 in the combined input vector, i.e., treats all
neighbouring words as equally important. The second weighting scheme is the
reciprocal scheme, which weights the surrounding words reciprocally to the dis-
tance to the word in the centre of the current window, reflecting the intuition
that the nearer a neighbouring word is, the more important it is for classifying
the given word. Formally it means that the nonzero components of the feature
vector corresponding to the jth right or left neighbouring word are set to be equal
to 1/j in the combined input vector. Therefore, we also refer to this scheme as
1/j weighting.

2.2 Post-processing

In our system we train two SVM classifiers for each type of entity – one classifier
for the start and another one for the end word. One word entities are regarded
as both start and end. In contrast, [21] trained four SVM classifiers for each
named entity type – besides the two SVMs for start and end (like ours), also one
for middle words, and one for single word entities. They also trained an extra
SVM classifier to recognise words which do not belong to any named entity. [24]
trained an SVM classifier for every possible transition of tags so, depending on
the number of entities, that may lead to a large number of SVM classifiers.

As our SVM classifiers only identity the start or end word for every target
class, some post-processing is needed to combine these into a single tag. We
implemented a module with three different stages to post-precess the results
from SVM classifiers:

– The first stage uses a simple procedure to guarantee the consistency of the
recognition results. It scanned a document to remove start tags without
matching end tags and end tags without preceding start tags.

– The second stage filters out candidate entities from the output of the first
stage, based on their length. Namely, the tags of a candidate entity are
removed if the entity’s length (the number of words) is not equal to the
length of any entity of the same type in training set (a similar method was
used in [20]).

– In contrast with the above two stages where each candidate entity is con-
sidered separately, the third stage puts together all possible tags for a given
word and choses the best one. In detail, the output x of the SVM classifier
(before thresholding) was first transferred into a probability via the Sigmoid
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function s(x) = −0.5 + 1/(1 + exp(−βx)) where β was set as 2.0 in our ex-
periments (also see [21] and [24]). Then a probability for an entity candidate
was computed as 2 ∗ s(xs) ∗ s(xe), where xs and xe are the outputs of the
SVM classifier for the start and end words of the candidate, respectively.
Finally, for each given word, the probabilities for all possible tags were com-
pared to each other and the tag with the highest probability Ph is assigned
if Ph is greater than 0. Otherwise no tag is assigned to the word.

In our implementation the user can choose which of these three stages they
want to be used during training, i.e., only the first, the first and the second,
and all three. Note that both [21] and [24] used a Viterbi search algorithm as a
post-procedure for their SVM classifiers, which corresponds to our third stage.

3 The Experimental Datasets

The system was evaluated on three corpora covering different IE tasks – named
entity recognition (CoNLL-2003) and template filling or scenario templates [26]
(seminars and jobs corpora). There were several reasons for choosing these cor-
pora. Firstly, CoNLL-2003 provides the most recent evaluation results of many
machine learning algorithms on named entity recognition. Secondly, the semi-
nars and jobs corpora have also been used recently by many learning systems,
both wrapper induction and more linguistically oriented ones (see Section 5 for a
detailed discussion). Thirdly, the CONLL-2003 corpus differs from the other two
corpora in two important aspects: (i) in CONLL-2003 there are many entities per
document, whereas the jobs and seminar corpora have only a small number per
document; (ii) CONLL-2003 documents are mostly free text, whereas the other
two corpora contain semi-structured documents. Therefore, the performance of
our SVM algorithm was evaluated thoroughly on these three corpora as our
goal was to design a versatile approach, with state-of-the-art performance both
on domain-independent IE tasks (e.g., named entity recognition) and domains-
specific ones (e.g., template filling).

In more detail, the first corpus is the English part of the CoNLL-2003 shared
task dataset — language-independent named entity recognition2. This corpus
consists of 946 documents for training, 216 documents for development (e.g.,
tuning the parameters in learning algorithm), and 231 documents for evaluation
(i.e., testing), all of which are news articles taken from the Reuters English
corpus (RCV1) [22]. The corpus contains four types of named entitis — person,
location, organisation and miscellaneous names.

The other two corpora are the CMU seminar announcements and the software
job postings3, in both of which domain-specific information was extracted into
a number of slots. The seminar corpus contains 485 seminar announcements
and four slots – start time (stime), end time (etime), speaker and location of a
seminar. The job corpus includes 300 computer related job advertisements and

2 See http://cnts.uia.ac.be/conll2003/ner/
3 Available from http://www.isi.edu/info-agents/RISE/repository.html.
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17 slots such as title, salary and recruiter of the job and computer language, and
application and platform required by job.

Table 1 shows the statistics for the CoNLL-2003, seminars and jobs datasets,
respectively. We can see that the non-annotated words are much more than
the annotated words, particularly for domain-specific datasets like seminar an-
nouncements and software job postings.

Table 1. Number of examples for each entity/slot type, together with the number of
non-tagged words, in CoNLL-2003 corpus, seminars announcements, and software jobs
postings, respectively.

Conll03 LOC MISC ORG PER Non-entity
Training set 7140 3438 6321 6600 191627
Test-a set 1837 922 1341 1842 47926
Test-b set 1668 702 1661 1617 43654

Seminars Stime Etime Speaker Location Non-entity
980 433 754 643 157647

Jobs Id Title Company Salary Recruiter State
304 457 298 141 312 462
City Country Language Platform Application Area
659 345 851 709 590 1005

Req-years-e Des-years-e Req-degree Des-degree Post date Non-entity
166 43 83 21 302 127302

Machine learning systems typically separate the corpus into training and
test sets. Since the CoNLL-2003 corpus already has the training, development
and test set pre-specified, the system is trained on the training set, different
experimental settings are tested on the development set, and the optimal ones
are used to obtain the final results on the test set, which are then used for
comparison with other systems.

The other two corpora do not provide such different sets, therefore training
and testing need to be carried out differently. In our experiments we opted for
splitting the corpora into two equal training and test sets by randomly assigning
documents to one or the other4. In order to obtain more representative results,
we carried out several runs and the final results were obtained by averaging
the results from each run. Many of the learning systems evaluated on these
corpora used the same approach and we adopted it to facilitate comparison (see
Section 4.2).

All corpora were also pre-processed with the open-source ANNIE system,
which is part of GATE [11]. This enabled us to supply our system with a num-
ber of linguistic (NLP) features, in addition to information already present in
the document such as words and capitalisation information. The NLP features

4 As the total number of documents in the seminar corpus is 485, we randomly split
the dataset into 243 training documents and 242 testing ones.
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are domain-independent and include token kind (word, number, punctuation),
lemma, part-of-speech (POS) tag, gazetteer class, and named entity type ac-
cording to ANNIE’s rule-based recogniser5. The following section discusses the
experiments using our system on the three corpora.

4 Experimental Results

This section presents the experimental results on the three datasets described
above. As already discussed in Section 2, two SVM classifiers were trained for
each entity and slot filler, one for the start and one for the end words. The re-
sulting models were then run on the test set and the post-processing procedures
described in Section 2 were applied. The procedure described in [23] were em-
ployed to obtain the solution of the SVM with uneven margins by solving an
SVM problem. We used the SVM package SVMlight version 3.56 for solving the
SVM. Unless stated otherwise, the default values of the parameters in SVMlight
3.5 were used.

The results below are reported using the F1-measure, which is the har-
monic mean of precision and recall. In other words, F1 = (2 ∗ precision ∗
recall)/(precision + recall), where precision is the percentage of correct en-
tities found by the system and recall is the percentage of entities in the test set
which are found by the system. A tag is considered correct if it matches exactly
the human-annotated tag, both in terms of its type and its start and end offset
in the document.7

The overall performance of the algorithm on a given corpus can be obtained
in two different ways. One is the so called macro-averaged F1, which is the mean
of F1 of all the entity types or slots in the corpus. The other is the micro-averaged

measure8, obtained by adding together the recognition results on all entity types
first and then computing precision, recall, and F-measure. Some researchers ar-
gue that the macro-averaged measure is better than the micro-averaged one (see
e.g. [30]), because the micro-averaged measure can be dominated by the larger
classes so that it reflects less the performance of the algorithm on smaller classes.
On the other hand, if all classes are of a comparable size, as is often the case
in IE datasets, then the macro-averaged measure is not very different from the
micro-averaged one. In addition, commonly used IE evaluation tools such as the
MUC scorer [26] tend to use the micro-averaged measure. We use macro-averaged

5 We also investigate the effect of different NLP features. We will present those results
concerning different kinds of NLP features in another paper.

6 Available from http://www.joachims.org/svm light
7 Although the results taking account both exact and partial match are informative

in some applications, we only report results using exact match in order to make our
results comparable to those reported on the CoNLL-2003 corpus, as well as in other
previous work. In order to get an estimate of the influence of partial matching, we
carried out some experiments which showed that partial match resulted in additional
0.01 – 0.03 F1 over the results from exact match only.

8 See http://www.itl.nist.gov/iaui/894.02/related projects/muc/muc sw/muc sw manual.html
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F-measure in Section 4.1 where we need to obtain an overall measure of the sys-
tem’s performance, e.g., for the purpose of establishing the impact of different
parameters on the system’s performance. In Section 4.2 the macro-averaged F-
measure is used for comparing the overall performance of our system with the
seminars and jobs datasets, while the the micro-averaged F-meauser is used on
the CoNLL-2003 dataset since it was used in the CoNLL-2003 share task.

4.1 Influence of Different Parameters in the Algorithm

As part of the system evaluation, we conducted a series of experiments to investi-
gate the influence of different algorithm settings. The first group of experiments
looked into different window sizes. Then we tested different SVM kernels and
values of the uneven marginal parameter. Finally we compare the two weighting
schemes and the three stages of the post-processing introduced in Section 2.

In order to avoid testing each possible setting against all others, the optimal
setting obtained from one group of experiments was used in subsequent exper-
iments. However, while keeping the number of experiments down, this kind of
sequential optimisation may not result in the most optimal parameter settings.
For example, the optimal window size from the first group of experiments us-
ing linear kernel may not be optimal for the later experiments using quadratic
kernel. Hence, the optimal setting obtained at each stage may not be the global
optimal value, although we believe they are near each other.

Window size. We first did experiments using different window sizes on the
three datasets. All NLP features, discussed in Section 3 were used together with
word and capitalisation information. Table 2 presents the results for window
size between 0 to 6. As can be seen, the results improve substantially when the
window size changes from 0 to 1, which confirms that context is important in
IE. The results also show that different datasets have different optimal window
sizes – 5 for the seminars, 3 for the jobs, and 2 for the CoNLL-2003 dataset.
Therefore, all subsequent experiments used the window size most optimal for the
given dataset. In actual fact, even within the same dataset, different entities/slots
seem to have different optimal window sizes. For example, although 5 is the best
window size for the overall performance on the seminars corpus, the F-measure
for the location slot at window size 3 (0.845) is higher than the one for window
size 5 (0.816). However, in order to simplify the experimental settings, the overall
optimal window sizes were used on each corpus.

Table 2. Different window sizes: macro-averaged F1 on the three datasets. SVM with
linear kernel, equal weighting, and all NLP features were used.

Dataset 0 1 2 3 4 5 6

CoNLL03 shared task 0.732 0.863 0.873 0.863 0.859 0.853 0.843
Seminar announcements 0.261 0.645 0.735 0.809 0.840 0.842 0.824
Job advertisements 0.479 0.748 0.754 0.774 0.748 0.762 0.743
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SVM Model selection. The next set of experiments focused on testing
different parameters of the SVM algorithm. We used the same features as above,
equal weighting, and the optimal window size for each corpus, that was deter-
mined in the previous experiments. Three types of SVM kernels were compared,
namely, linear, quadratic, and cubic kernels (see e.g. [21] and [24]). The results
are presented in Table 3, which shows once again that different datasets have
different optimal kernels. Among the three kernels, the quadratic kernel is the
best for the CoNLL-2003 dataset, while the linear kernel is the best for the other
two datasets.

Table 3. Results of three kernels for the SVM: macro-averaged F1 on the three datasets.

Dataset Linear Kernel Quadratic kernel Cubic kernel

CoNLL03 shared task 0.873 0.883 0.875
Seminar announcements 0.842 0.827 0.795
Job advertisements 0.774 0.737 0.699

An SVM parameter that also affects the performance is the uneven marginal
parameter τ (see Section 2). As already discussed, τ is the ratio of negative
margin to positive margin. The optimal value of τ is dependent on the dataset.
In order to check the effect of uneven marginal parameter, we carried out exper-
iments with two values for τ : τ = 0.4 and τ = 1. The former was the optimal
value of τ for the document classification in [23], whle the latter reduced the
learning algorithm to the original SVM. We did the experiments for the linear
and quadratic kernels, respectively, as they were the ones that performed best.
The results are presentedin Table 4. We can see that τ = 0.4 gave better results
than the original SVM with τ = 1 in 3 out of 4 cases on the seminars and jobs
corpora but had slightly worse result on the CoNLL-2003 dataset. Table 4 also
shows that the quadratic kernel yields better results than the linear kernel for
τ = 0.4 on the CoNLL-2003 and seminars datasets, whereas the linear kernel
is better for the jobs corpus. Therefore, in the following experiments of this
subsection, the quadratic kernel with τ = 1 was used on the CoNLL-2003, the
quadratic kernel with τ = 0.4 was used on seminars datasets, and the linear
kernel with τ = 0.4 was used on the jobs dataset.

Table 4. The SVM uneven marginal parameter τ . Macro-averaged F1 results with
linear and quadratic kernels on the three datasets.

Dataset Linear kernel Quadratic kernel

τ = 1 τ = 0.4 τ = 1 τ = 0.4

CoNLL03 0.873 0.870 0.883 0.877
Seminar 0.842 0.835 0.827 0.854
Job 0.774 0.789 0.737 0.781
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Two weighting schemes. Table 5 presents the results for two weight-
ing schemes – the equal weighting and the reciprocal weighting of neighbouring
words. In the former, all the features of the current word as well as neighbour-
ing words are weighted equally. In the latter, the features of neighbouring word
are weighted reciprocally to the distance to the current word. Table 5 shows
that the reciprocal scheme produced better results than equal weighting on the
CoNLL-2003 data in two NLP feature sets, and performed better in one of the
two feature sets on the other two corpora. Consequently, 1/j weighting scheme
is used for the subsequent experiments on the three corpora.

Table 5. Two weighting schemes: macro-averaged F1 on the three datasets. The results
are on two sets of NLP features, respectively. The first feature set denoted by WCTL
includes the four NLP features, word, case information, tokenkind and Lemma. The
second feature set added the gazetteer and named entity recognition information to
the first feature set.

Dataset WCTL WCTL + Gaz + NE

Equal weighting 1/j weighting Equal weighting 1/j weighting

CoNLL03 0.863 0.873 0.883 0.890
Seminar 0.845 0.838 0.861 0.867
Job 0.789 0.804 0.796 0.787

Three stages of the post-processing procedures Table 6 presents results
for the three tages of post-processing procedure discussed in Section 2. In brief,
the first procedure removes the spurious start or end tags. The second procedure
evaluates the lengths of candidate tags and removes a candidate if its length is
not equal to the length of any tag of the same type in the training set. The third
procedure considers all tags simultaneously and outputs the one with the highest
probability. Table 6 presents the results of the three procedures with two NLP
feature sets on the three corpora. The first feature set includes the basic NLP
features: the word itself, case information, token kind and lemma. The second
one includes two additional features based on the gazetteer and the named entity
recognition system ANNIE.

The results in Table 6 show that the second procedure has better performance
than the first on all datasets. However, the third procedure is better than the
second in most cases. Therefore, subsequent experiments will use the third post-
processing procedure, i.e., output the tag with the highest probability.

4.2 Comparison to Other Systems

In this subsection we compare our system with others on the three datasets.
Since our system uses the NLP features produced by GATE and the learning
algorithm based on SVM, we call our system GATE-SVM. In the experiments
described in this subsection we would use the same settings as other systems in
order to make a fair comparison.
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Table 6. Three post-processing procedures: macro-averaged F1 on three datasets. The
results are on two sets of NLP features, respectively. Proc1, Proc2 and Proc3 denote
the three post-processing procedures described in the text.

Dataset WCTL WCTL+Gaz+Entity

Proc1 Proc2 Proc3 Proc1 Proc2 Proc3

CoNLL03 0.8731 0.8757 0.8756 0.8895 0.8912 0.8918
Seminar 0.8382 0.8400 0.8400 0.8675 0.8677 0.8686
Job 0.8045 0.8054 0.8050 0.7871 0.7889 0.7891

Note that [27] presented the estimated significance boundaries for the results
of many systems on the CoNLL-2003 corpus, which was computed via bootstrap
sampling method. The significance boundaries can be used to determine if one re-
sult is significantly different from other results. We used the significance interval
presented in [27] when we compare our results with others on the CoNLL-2003
dataset. However, unfortunately, the significance boundaries are not available for
the previous results on the seminars and jobs corpora. Therefore, we estimated
the significance boundaries for our results on the two datasets by also using the
bootstrap sampling method (see [13] ). In detail, for one experiment, 1999 ran-
dom repetition samples of documents had been chosen and the distribution of
F1 in these samples was assumed to be the distribution of the performance of
the experiment. As in [27], we chose the significance boundaries as the left and
right boundaries of the interval with centered 90% of the distribution of the F1

value.
Named Entity Recognition We first evaluated our system on the CoNLL-

2003 dataset. Since there was a development set for tuning the learning algo-
rithm, we tried different settings to obtain the best performance on the develop-
ment set. Once again we only tested the different SVM kernel types, the window
sizes, and the uneven margin parameter τ . We found that the quadratic kernel,
window size 4 and τ = 0.5 produced best results on the development set9. The
1/j weighting scheme and the probability post-processing procedure were used.

Table 7 presents the best results of our algorithm on the CoNLL-2003 dataset,
together with the results of the top system in the CoNLL-2003 share task evalu-
ation [15] and another participating SVM-based system [24]. Our system outper-
formed the other SVM-based system but is slightly worse than the best result.
Compared to the summarised results in [27], our overall result is slightly bet-
ter than the third best system that participated in the original CoNLL-2003
evaluation but there is no significant difference between the two results.

Template Filling The results on the seminar corpus are available for quite
a few systems. Those include rule learning systems such as SRV [19], Whisk [28],
Rapier [2], BWI [20], SNoW [25] and (LP )2 [7], as well as statistical learning

9 Note that the optimal values of window size and τ were different from their values
obained in Section 4.1 (namely, window size as 2 and τ = 1), which showed that the
optimal values of learning parameters selected through the sequential optimisation
might not be global optimal.
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Table 7. Comparison with other systems on CoNLL-2003 shared task: F -measure on
each entity type and the overall micro-averaged F-measure. The macro-averaged F-
measure is also included for comparison. Test-a denotes the development set and test-b
– the test set.

System test set LOC MISC ORG PER MA F1 Overall

GATE-SVM test-a 0.9370 0.8613 0.8700 0.9303 0.8996 0.9083

test-b 0.8925 0.7779 0.8229 0.9092 0.8506 0.8630

Best one test-a 0.9612 0.8906 0.9024 0.9660 0.9301 0.9387
test-b 0.9115 0.8044 0.8467 0.9385 0.8753 0.8876

Another test-a 0.9375 0.8602 0.8590 0.9391 0.8990 0.9085
SVM System test-b 0.8877 0.7419 0.7900 0.9067 0.8316 0.8467

systems such as HMM [16] and maximum entropy (MaxEnt) [4]. See Section 5
for more details about the previous work.

One problem with carrying out comparisons on the seminar corpus is that
the different system used different experimental setups. The SRV, SNoW and
MaxEnt systems reported results averaged over 5 runs. In each run the dataset
was randomly divided into two partitions of equal size. One partition was used
for training and another for test. Furthermore, for the SRV system, a third of
the training set, randomly selected, was set aside for validation. WHISK’s results
were from 10-fold cross validation on a randomly selected set of 100 documents.
Rapier’s and (LP )2’s results were averaged over 10 runs, in each of which the
dataset was randomly split approximately into two halves, one part for training
and another part for testing. BWI’s and HMM results were obtained via standard
cross validation.

The GATE-SVM results reported here are the average over ten runs, fol-
lowing the methodology of Rapier and (LP )2. Table 8 presents the results of
our system on seminar announcements, together with the results of the other
systems. As far as it was possible, we used the same features as by the other sys-
tems to enable a more informative comparison. In particular, the results listed in
Table 8, including our system, did not use any gazetteer information and named
entity recogniser output. The features GATE-SVM used are words, capitalisa-
tion information, token types, lemmas, and POS tags. We just used the values
of learning parameters selected in Section 4.1, (e.g. window size as 5, quadratic
kernel, and τ = 0.4). We computed the F1 measure for each slot as well as the
macro-averaged F1 for overall performance for our system. Note that the major-
ity of systems evaluated on the seminars and jobs corpora only reported per slot
F-measures, without overall results. However, we think that an overall measure
was useful for comparing different systems on a dataset. Hence, we computed
the macro-averaged F1 for other systems from their F1 of every slots. The best
results for each slot and the overall performance appear in bold font.

We can see that the best results on different slots were achieved by different
system and the best overall performance was achieved by the (LP )2. We can alse
see that the results of GATE-SVM were not significantly different from the best
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Table 8. Comparison with other systems on CMU seminar corpus: F1 on each slot
and overal performance. Quadratic kernel and the uneven margin parameter τ = 0.4
were used in the SVM. MA F1 refer to the macro-averaged F1.

Speaker Location Stime Etime MA F1

GATE-SVM 0.690 0.813 0.948 0.927 0.845±0.030
(LP )2 0.776 0.750 0.990 0.955 0.868

SNoW 0.738 0.752 0.996 0.963 0.862
MaxEnt 0.653 0.823 0.996 0.945 0.854
BWI 0.677 0.767 0.996 0.939 0.846
HMM 0.711 0.839 0.991 0.595 0.784
Rapier 0.531 0.734 0.959 0.946 0.791
Whisk 0.183 0.666 0.926 0.861 0.657
SRV 0.563 0.722 0.985 0.779 0.760

results for the overall performance and on most slots. If the information from
the ANNIE gazetteer and named entity recogniser is used as additional features,
then the micro-averaged F1 for GATE-SVM is 0.862, which is better than the
0.857 for (LP )2 using the same features (see [7]), but is still worse than the 0.872
for the maximum entropy system (see [4]). However, note that our system just
used the general NLP features while [4] used genre-specific features (see Section
5 for some details). Furthermore, we did not optimise the parameter settings in
the experiments specifically for this corpus (see the discussions about optimising
the experimental settings for the CoNLL-2003 dataset above).

For the jobs postings corpus, our system was compared to two rule learning
systems, Rapier and (LP )2, which were evaluated on this dataset (see [2] and
[7] respectively).

Again, in order to make the comparison as informative as possible, we adopted
the same settings in our experiments as those used by (LP )2 [8]. In particular,
we executed ten runs using a random half of the corpus for training and the rest
for test. The results presented here are the mean of those obtained in the ten
runs. In contrast, Rapier’s results were obtained via 10-fold cross validation over
the entire dataset. Again, only basic NLP features are used: word, capitalisation
information, token types, and lemmas. The parameter values selected for the
jobs dataset in last subsection (e.g. window size as 3, linear kernel and τ = 0.4)
were used here. We also computed the macro-averaged F1 for other two systems
for a overall performance comparison.

Table 9 presents the results of our system as well as the results of the other
two systems on the jobs corpus. GATE-SVM achieves the best results among
all three on eight out of the 17 slots and the second best results on nine of the
seventeen slots. Overall, the macro-averaged F1 of GATE-SVM is better than
the other systems. However, the significance boundaries indicate that the three
system are not significantly different from each other.
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Table 9. Comparison with other systems on the jobs corpus: F1 on individual type
of entity and the overall figure. Quadratic kernel and the uneven margin parameter
τ = 0.4 were used. The highest score on each slot appears in bold.

Slot GATE-SVM (LP )2 Rapier Slot GATE-SVM (LP )2 Rapier

Id 0.977 1.000 0.975 Platform 0.801 0.805 0.725
Title 0.496 0.439 0.405 Application 0.702 0.784 0.693
Company 0.772 0.719 0.700 Area 0.468 0.537 0.424
Salary 0.865 0.628 0.674 Req-years-e 0.808 0.688 0.672
Recruiter 0.784 0.806 0.684 Des-years-e 0.819 0.604 0.875

State 0.928 0.847 0.902 Req-degree 0.875 0.847 0.815
City 0.955 0.930 0.904 Des-degree 0.592 0.651 0.722

Country 0.962 0.810 0.932 Post date 0.992 0.995 0.995

Language 0.869 0.910 0.818 Macro-averaged F1 0.808±0.063 0.772 0.760

4.3 Mixed-Initiative Information Extraction

In mixed-initiative (or adaptive) information extraction we are concerned with
the ability of an information extraction system to adapt to a new domain or
application with minimum effort. From the point of the learning algorithm’s
view, a mixed-initiative system is required to learn an initial model from a small
number of training examples. Then the performance of system would improve
gradually as more and more training instances become available (e.g., from the
user annotating new texts).

In order to evaluate our system in a mixed-initiative IE scenario, we eval-
uated the learning algorithm on a growing number of examples. For both the
seminar and jobs corpora, we fist sorted documents in alphabetic order by file
name. Then in each experiment the second half of corpus was used as a test set
and a small number of documents were picked randomly from the first half for
training. For the CoNLL-2003 dataset the training documents were chosen ran-
domly from the training set and the results are reported on the development set.
In order to factor out randomness of results, the mean of ten runs is reported.
The same experimental settings were used for each of the three dataset as those
in Section 4.2, respectively.

Table 10 presents the experimental results for different numbers of training
documents as well as for two values of uneven marginal parameter on the three
datasets, respectively. We can see that the system performance improved con-
sistently as more training documents were used. In addition, the uneven margin
parameter with value less than 1 gave better results, in particular on a small
number of training documents.

Table 11 shows that some types of entities can be learned faster than others,
due to their more fixed internal structure. For example, start and end times
can be learned from as little as 10 documents, while at least 60 documents are
required to reach similar performance on speaker and location. When interpret-
ing these results one must bear in mind that most documents in the seminars
dataset provide only one, or maximum two, examples of each slot (the ratio
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Table 10. Different numbers of documents for training: macro-averaged F1 on three
datasets. The results for two different values of the uneven margin parameter are com-
pared.

Dataset 10 20 30 40 50 60 70

τ = 0.4:

Seminar 0.555 0.677 0.704 0.734 0.754 0.770 0.787
Job 0.434 0.509 0.539 0.575 0.597 0.608 0.607
CoNLL03 0.606 0.664 0.704 0.722 0.728 0.752 0.764

τ = 1:

Seminar 0.377 0.485 0.572 0.621 0.633 0.683 0.701
Job 0.404 0.460 0.496 0.504 0.553 0.575 0.560
CoNLL03 0.462 0.586 0.652 0.683 0.686 0.714 0.735

Table 11. Different numbers of documents for training: macro-averaged F1 on seminars
dataset for every entity types. The uneven marginal parameter τ = 0.4.

10 20 30 40 50 60 70

stime 0.766 0.866 0.866 0.868 0.858 0.870 0.873
etime 0.783 0.839 0.873 0.882 0.881 0.875 0.877
speaker 0.275 0.448 0.540 0.558 0.584 0.628 0.633
location 0.393 0.555 0.535 0.629 0.692 0.708 0.752

between number of documents and number of examples per slot in the corpus
ranges between 0.9 and 2). Therefore, in this case learning after 10 documents
is almost equivalent to learning from 10 to 15 examples per slot.

Table 12. Comparison of the GATE-SVM with the (LP )2: F1 one each slot of the
seminars corpus.

Number of training docs (LP )2 GATE-SVM

stime 30 0.840 0.866
etime 20 0.823 0.839
location 30 0.700 0.535
speaker 25 0.506 0.476

Another system which carried out such experiments on the seminars dataset
is (LP )2 [9]. Table 12 compares our results with those of (LP )2. In a nutshell,
our system is better than (LP )2 on etime and stime categories but is worse
on location and speaker. Note that the F1 on speaker for our system increased
significantly to 0.539 if only five more training documents were added. However,
we do cannot compare this to the results of (LP )2 with 30 training documents,
as the paper [9] does not provide this information.
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5 Related Work

This section briefly describes previous work on applying machine learning to IE,
in particular those systems which were evaluated on the three datasets used in
our experiments. We first describe the applications of SVM to IE. Then we look
at the other algorithms evaluated on the CoNLL-2003 dataset. Finally, the rule
learning and statistical learning IE systems on the seminar announcements and
job postings corpora are reviewed.

5.1 SVM-based Systems

The SVM based system in [21] trained four SVM classifiers for each named
entity type – besides the two SVMs for start and end words like ours, one for
middle words, and one for single word entities. They also trained an extra SVM
classifier to recognise the words which do not belong to any named entity. [21]
used a sigmoid function to transfer the SVM output into a probability and
then applied the Viterbi algorithm to determine the optimal label sequence for
a sentence. The system was evaluated on a Japanese IE corpus. They used the
neighbouring words with window size 2. Their experiments showed that the SVM
based system performed better than both maximum entropy and rule learning
systems on the same dataset using the same features. They also showed that
quadratic kernel was better than both linear and cubic kernels on their dataset.
[21] also described an efficient implementation of the SVM with quadratic kernel.

[24] used a lattice-based approach to named entity recognition and employed
SVM with cubic kernel to compute transition probabilities in a lattice. They
trained an SVM classifier for every possible transition of tags, meaning that
they may have a large number of SVM classifiers. They tested the system on
the CoNLL-2003 dataset using cubic kernel. They also took into account the
features from neighbouring words (The window size 3 was used). Their result
on the CoNLL-2003 corpus is comparable to ours (see Table 7). There are some
other applications of SVM for bio-named entity recognition (see e.g. [29]).

5.2 Other Learning Methods Evaluated on the CONLL’2003 corpus

CoNLL-2003 corpus is a typical named entity recognition corpus with newswire
articles and entity types similar to the earlier MUC-6 and MUC-7 corpora [26].
Sixteen systems participated in the evaluation. All of them were based on sta-
tistical learning, except one system which used rule learning as one of four al-
gorithms which were combined as one classifier. The system with the best score
was exactly this combined system, based on robust risk minimisation, maximum
entropy, transformation based learning and HMMs, respectively (see [15].

Another system only based on maximum entropy obtained slightly worse
results (see [5]). They used quite a few features, including some genre-specific
features such as the so-called zone related features which are dependent on the
structure of documents. Note that another two participating systems were also
only based on maximum entropy (see [1], [12]). In particular, the probability
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discriminant model used in [12] was quite similar to the one in [5]. The features
used in [12] were general and less than those in [5]. Both the scores of these two
systems ([1] and [12]) were significantly worse than the system described in [5],
which confirms the conjecture that the appropriate features are as important as
the learning algorithm.

The SVM based participating system was discussed above (see [24]).

5.3 Learning Systems Evaluated on Template Filling

SRV is a relational learning (or inductive logic programming) algorithm for IE,
which deduces a set of rules for one type of information entity from training
examples (see [17]). It checked every text fragments of appropriate size in docu-
ment in order to identify if the fragment was an information entity or not. [18,
19] tested SRV for IE on three datasets – the CMU seminars corpus, a collection
of 600 newswire articles on corporate acquisitions from Reuters and a collection
of web pages of university computer science departments.

WHISK [28], another relational learning system for IE, was tested on col-
lections of structured, semi-structured and free-text documents, such as CNN
weather domain, seminar announcements, software jobs postings, and news story
articles. WHISK’s results on the seminars corpus were not as good as SRV’s,
which may be attributed to the fact that WHISK used less features – only the
token and its semantic class.

Rapier is also a rule based learning IE system (see [2]). It was tested on
two dataset: software jobs and seminar announcements. Its results on seminar
announcements are better than SRV.

BWI (Boosted Wrapper Induction) involved learning a wrapper (boundary
detector) for an information entity via a boosting procedure (see [20]). It was
evaluated on several collections such as seminar announcements, software job
postings, Reuters articles, and web pages. [20] also considered the neighbouring
words as context and found, similar to us, that different datasets have a different
optimal window size. One should note that for rule based learning algorithms
the training time increases exponentially with window size.

(LP )2 is also a rule learning algorithm for IE (see e.g. [7]). In [9] (LP )2 was
tested on three datasets: seminar announcements, software job postings, and a
collection of 103 web pages describing computer science courses. It compared
three different sets of features. [7] also discussed the different effects of window
size on different entity types.

[25] presented another relational learning based IE system, SNoW. It learned
rules via a multi-class classifier by looking at a target fragment and its left and
right windows. It was evaluated on the seminar announcements dataset.

[16] exploited a general statistical model, Hidden Markov Models (HMMs),
for IE. It also used the shrinkage technique to deal with data spareness for
HMM parameter estimations. It was tested on two corpora, the seminar an-
nouncements, and a collection of newswire articles from Reuters. It used similar
experimental settings to SRV and obtained better results on the seminars corpus.
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[4] used a probabilistic discriminant model for IE and used maximum entropy
for parameter estimations. It was tested on several corpora including seminar
announcements, the CoNLL-2003 corpus (see [5]) and the datasets from MUC-6
and MUC-7 (see [3]).

All previous work used features from a window surrounding the current word,
as well as features of the word itself. [20] and [7] investigated the effect of window
size on the performance of rule-based learning and noticed that the computation
time increased exponentially as the window size grew. On the other hand, the
computation time in an SVM based system only increases linearly with window
size. Hence it is easier for the SVM algorithm to select and use the optimal
window size. It also should be noted that previous systems treated the features
from words in the window as equally important. In other words, this is equivalent
to using the equal weighting scheme defined in Section 2. However, our exper-
iments demonstrated that the reciprocal 1/j weighting achieves better results
(see Section 4).

Basically the rule learning IE systems did not do any post-processing other
than simple consistency checking – they treated each type of entity separately.
The statistical learning algorithms compute a probability for each entity (or
transfer the output into a probability as in the SVM based IE algorithms),
such that they can select the best label for a fragment of text based on these
probabilities. In order to select the best labels for a sentence, a Viterbi-like search
algorithm was usually employed as a post-processor in the statistical learning
systems.

[2] and [7] also investigated the effects of growing quantities of training data,
which is useful for adaptive IE. [2] also considered active learning, where the
system learns an initial model from a small pool of annotated examples and
then, based on the learned model, selects additional examples for training.

6 Conclusions

This paper presents an SVM-based algorithm for IE and the experiments on
three benchmark datasets, the CoNLL-2003 dataset, the CMU seminars corpus,
and the software jobs corpus. The results showed that our system is comparable
to other state of the art systems on both traditional IE and mixed-initiative IE
tasks.

In comparison to other similar SVM-based algorithms, our algorithm is sim-
pler, i.e., it needs a smaller number of SVM classifiers per category than the
other two systems discussed respectively in [21] and [24]. GATE-SVM also ob-
tained better results than the SVM-based system in [24] on the CoNLL-2003
corpus. In addition, our algorithm uses an uneven margin parameter, which we
showed to be particularly useful for adaptive information extraction on a small
amount of training data.

We investigated two weighting schemes for the features of the surrounding
words and showed that the reciprocal weighting scheme performed better than
the commonly used equally weighting. We also investigated three post-processing



XIX

procedures: from using the SVM outputs for begin and end tags separately to
selecting the highest probability label based on the output of all SVM classifiers.
We found that the probability scheme gave best results. We also carried out the
experiments for investigating the influence of different algorithm settings.
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