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Abstract. This paper presents an SVM-based learning system for in-
formation extraction (IE). One distinctive feature of our system is the
use of a variant of the SVM, the SVM with uneven margins, which is
particularly helpful for small training datasets. In addition, our approach
needs fewer SVM classifiers to be trained than other recent SVM-based
systems. The paper also compares our approach to several state-of-the-
art systems (including rule learning and statistical learning algorithms)
on three IE benchmark datasets: CoNLL-2003, CMU seminars, and the
software jobs corpus. The experimental results show that our system
outperforms a recent SVM-based system on CoNLL-2003, achieves the
highest score on eight out of 17 categories on the jobs corpus, and is
second best on the remaining nine.

1 Introduction

Information Extraction (IE) is the process of automatic extraction of information
about pre-specified types of events, entities or relationships from text such as
newswire articles or Web pages (see [10] for a comprehensive introduction to IE
and its applications). A lot of research has focused on named entity recognition,
a basic task of IE, which classifies proper nouns and/or numerical information
into classes such as persons, organizations, and dates. Effectively, most IE tasks
can be regarded as the task of recognizing some information entities within text.
IE can be useful in many applications, such as business intelligence, automatic
annotations of web pages with semantic information, and knowledge manage-
ment.

Over the past ten years, a number of machine learning techniques have been
used for IE and they have achieved state-of-the-art results, comparable to man-
ually engineered IE systems. When applying machine learning to IE, a learning
algorithm usually learns a model from a set of examples, grouped in documents,
which have been manually annotated by the user. Then the model can be used
to extract information from new documents. The accuracy of the learned model
usually increases with the number of training examples made available to the
system. However, as manual annotation is a time-consuming process, it is im-
portant for an IE system to have good performance on small training sets.

Machine learning algorithms for IE can be classified broadly into two main
categories: rule-based or relational learning on one hand, and statistical learning,
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on the other. For each entity class, rule-based methods induce a set of rules from
a training set, while statistical methods learn statistical models or classifiers.
Some systems based on rule or relational learning are SRV [16], RAPIER [2],
WHISK [26], BWI [18], (LP )2 [7], and SNoW [23]). Some example statistical
systems are HMMs [14], Maximal Entropy [4], and SVM [19] or [22].

These IE systems also differ from each other in the features that they use.
Some use only basic features such as token string, capitalization, and token type
(word, number, etc.), e.g. BWI. In addition, others use linguistic features such
as part-of-speech, semantic information from gazetteer lists, and the outputs of
other IE systems (most frequently general purpose named entity recognizers). A
few systems also exploit genre-specific information such as document structure,
see e.g. [4]. In general, the more features the system used, the better performance
it could achieve.

One of the most successful machine learning methods for IE is Support Vector
Machine (SVM), which is a general supervised machine learning algorithm. It
has achieved state-of-the-art performance on many classification tasks, including
named entity recognition (see e.g. [19], [22]). For instance, [19] compares three
commonly used methods for named entity recognition – SVM with quadratic
kernel, maximal entropy, and a rule based learning system, and shows that the
SVM-based system outperforms the other two. In our view, this comparison [19]
is more informative than the comparison in, e.g., the CoNLL-2003 shared task
(see [25]), because the former uses both the same corpus and the same features
for all three systems, while in the later different systems used the same corpus
but different features1. As already discussed above, more features usually result
in better performance and therefore, it is important to use the same or similar
features on the same dataset when comparing different algorithms.

This paper describes an SVM-based learning algorithm for IE and presents
detailed experimental results. In contrast to similar previous work, our SVM
model (see Section 2) uses an uneven margins parameter which has been shown
[21] to improve the performance for document categorization (especially for small
categories). Detailed experiments investigating different SVM parameters on
three benchmark datasets were carried out (see Section 4.1). The experimen-
tal datasets were chosen to enable thorough comparison between our approach
and other state-of-the-art learning algorithms (see Section 4.2). The learning
curve of the algorithm was also evaluated by providing a small number of initial
examples and then incrementally increasing the size of the training data (see
Section 4.3). Section 5 covers related work.

2 The SVM Based IE System

Due to named entities often spanning more than one word, a classifier-based
IE system needs to be designed to cope with this problem. In our SVM-based

1 The Pascal Challenge in evaluation of machine learning methods for IE aims to
provide a corpus and a pre-defined set of features, so different algorithms can be
compared better (http://nlp.shef.ac.uk/pascal/).
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system, called GATE-SVM, two SVM classifiers were trained for each entity
type – one classifier to recognize the beginning of the entity and another one
for the end. One word entities are regarded as both start and end. In contrast,
[19] trained four SVM classifiers for each entity type – besides the two SVMs
for start and end (like ours), also one for middle words, and one for single word
entities. They also trained an extra SVM classifier to recognize words which do
not belong to any named entity. Another approach is to train an SVM classifier
for every possible transition of tags [22]. In this case, at least five classifiers
need to be trained for every entity type: two classifiers for the two transitions
between beginning and internal words, another two for the transitions between
a beginning word and a non-entity word, and one for the transition from an
internal word to a non-entity word. This approach also needs extra classifiers for
the transitions between two entity types. Therefore, depending on the number
of entities, this approach may result in a large number of SVM classifiers. Hence,
in comparison, our approach is simpler than the other two SVM-based systems,
in terms of requiring the lowest the number of SVM classifiers.

The rest of this section describes the other features of our system, namely
the SVM algorithm, and the pre-processing and post-processing procedures.

2.1 The SVM With Uneven Margins

The GATE-SVM system uses a variant of the SVM, the SVM with uneven mar-
gins [21], which has a better generalization performance than the original SVM
on imbalanced dataset where the positive examples are much less than the nega-
tive ones. The original SVM treats positive and negative examples equally such
that the margin of the SVM hyperplane to negative training examples is equal
to the margin to positive training examples. However, for imbalanced training
data where the positive examples are so rare that they are not representative
of the genuine distribution of positive examples, a larger positive margin than
the negative one would be beneficial for the generalization of the SVM classifier
(see detailed discussion in [21]). Therefore, [21] introduced an uneven margins
parameter into the SVM algorithm. The uneven margins parameter is the ratio
of the negative margin to the positive margin. By using this parameter the un-
even margins SVM is able to handle imbalanced data better than the original
even margins SVM model.

The uneven margins parameter has been shown previously to facilitate doc-
ument classification on unbalanced training data (see [21]). Given that IE clas-
sification tasks, particularly when learning from small data sets, often involve
imbalanced data (refer to Table 3 below), we expected to gain more benefits from
SVM with uneven margins over the original SVM algorithm, which is confirmed
in our experimental results presented in Section 4.

Formally, given a training set Z = ((x1, y1), . . . , (xm, ym)),where xi is the
n-dimensional input vector and yi (= +1 or −1) its label, the SVM with uneven
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margins is obtained by solving the quadratic optimization problem:

minimisew, b, ξ 〈w,w〉 + C
m∑

i=1

ξi

subject to 〈w,xi〉 + ξi + b ≥ 1 if yi = +1

〈w,xi〉 − ξi + b ≤ −τ if yi = −1

ξi ≥ 0 for i = 1, ..., m

In these equations, τ is the uneven margins parameter which is the ratio of the
negative margin to the positive margin in the classifier and is equal to 1 in the
original SVM. Like other parameters of learning algorithms, the value of τ can
be empirically determined by, for example, n-fold cross-validation on training
set or hold-out development set. Moreover, from Table 5 in Section 4 we can see
that the performance of the uneven margins SVM is not sensitive to the value
of the uneven margins parameter. Therefore, a reasonable estimation of the τ
can help the uneven margins SVM to achieve significantly better results than
the original SVM model on imbalanced data.

The solution of the quadratic optimization problem above can be obtained by
solving a related SVM problem (see [21]). In other words, it is not necessary to
solve the uneven margins SVM problem directly. Instead, we can solve a corre-
sponding standard SVM problem first by using an existing SVM implementation
and then obtain the solution of uneven margins SVM through a transformation.

2.2 The Feature Vector Input to the SVM

When statistical learning methods are applied to IE tasks, they are typically
formulated as classification, i.e., each word in the document is classified as be-
longing or not to one of the target classes (e.g., named entity tags). The same
strategy is adopted in this work, which effectively means that each word is re-
garded as a separate instance by the SVM classifier. First of all, each document
is processed using the open-source ANNIE system, which is part of GATE2 [11].
This produces a number of linguistic (NLP) features. The features include to-
ken form, capitalization information of words, token kind, lemma, part-of-speech
tag, semantic classes from gazetteer lists, and named entity type according to
ANNIE’s rule-based recognizer. Table 1 shows an example of text with its as-
sociated NLP features. Note that a token may not have all the NLP features
considered, e.g. the token “Time” did not have the Lookup feature because it
does not occur in ANNIE’s gazetteer lists.

Given this input, a feature vector was derived from the NLP features of each
token in the following way:

1. All possible features from the training documents are collected and indexed
with a unique identifier, and each dimension of the feature vector corresponds

2 Available from http://www.gate.ac.uk/
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Table 1. NLP Features for the text sample “Time: 3:30 PM”. The features are token
form, capitalization information (Case), simple token kind (Tokenkind), part-of-speech
(Pos), semantic classes from gazetteer lists (Lookup), and named entity types according
the ANNIE. The Unknown type for word “Time” meant that ANNIE identified the
word “Time” as a named entity but could not recognize its type of entity.

Token Case Tokenkind Lemma Pos Lookup Entity

Time upperInitial word time NNP Unknown
: punctuation : :
3 number 3 CD Time
: punctuation : : Time

30 number 3 CD Time
PM allCaps word pm NNP time Time

to one feature (e.g. a given token string such as “Time” or a part-of-speech
(POS) category such as “CD”).

2. For each token, each component of the feature vector that corresponds to the
value of the respective NLP feature are set to 1, and all other components
are set to 0.

Table 2 presents the feature vectors for the tokens listed in Table 1. We can see
that the vectors are very sparse – only several components out of an approxi-
mately 20000 dimensional vector are non-zero.

Table 2. Feature vectors for the tokens of text “Time: 3:30 PM”. The vectors are
presented in a compact form, i.e. only the indexes and values of all nonzero components
are shown. Refer to Table 1 for the NLP features.

Token Feature Vector

Time 4835:1 11811:1 11815:1 19009:1 19697:1 19780:1
: 399:1 11816:1 12213:1 19682:1
3 187:1 11818:1 12001:1 19685:1 19778:1
: 399:1 11816:1 12213:1 19682:1 19778:1

30 188:1 11818:1 12002:1 19685:1 19778:1
PM 3621:1 11812:1 11815:1 17292:1 19697:1 19752:1 19778:1

Since in information extraction the context of the word is usually as impor-
tant as the word itself, the SVM input vector needs to take into account features
of the preceding and following words, in addition to those of the given word. In
our experiments the same number of left and right words was taken as a context.
In other words, the current word was at the centre of a window of words from
which the features are extracted. This is called a window size. Therefore, for
example, when the window size is 3, the algorithm uses features derived from 7
words: the 3 preceding, the current, and the 3 following words. Due to the use
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of a context window, the SVM input vector is the combination of the feature
vector of the current word and those of its neighboring words.

As the input vector of the SVM combines the feature vectors of all words
in the context window, these vectors can be weighted differently, depending on
the relative importance of the neighboring words. In this work, two weighting
schemes for the feature vectors from neighboring words were investigated. The
first is the commonly used equal weighting, which keeps every nonzero compo-
nent of the feature vector as 1 in the combined input vector, i.e., treats all
neighboring words as equally important. The second weighting scheme is the
reciprocal scheme, which weights the surrounding words reciprocally to the dis-
tance to the word in the centre of the current window, reflecting the intuition
that the nearer a neighboring word is, the more important it is for classifying
the given word. Formally it means that the nonzero components of the feature
vector corresponding to the jth right or left neighboring word are set to be equal
to 1/j in the combined input vector. Therefore, we also refer to this scheme as
1/j weighting.

2.3 Post-processing the Results from the SVM Classifiers

As we train two different SVM classifiers to identity the start or end word for each
target class, some post-processing is needed to combine these into a single tag.
Therefore, our system has a module with three different stages to post-process
the results from the SVM classifiers:

– The first stage uses a simple procedure to guarantee the consistency of the
recognition results. It scans a document to remove start tags without match-
ing end tags and end tags without preceding start tags.

– The second stage filters out candidate entities from the output of the first
stage, based on their length. Namely, the tags of a candidate entity are
removed if the entity’s length (the number of words) is not equal to the
length of any entity of the same type in the training set (a similar method
was used in [18]).

– In contrast to the above two stages where each candidate entity is considered
separately, the third stage puts together all possible tags for a given word and
chooses the best one. In detail, the output x of the SVM classifier (before
thresholding) is first transferred into a probability via the Sigmoid function
s(x) = 1/(1 + exp(−βx)) where β is set to 2.0 (also see [19] and [22]). Then
a probability for an entity candidate is computed as s(xs) ∗ s(xe), where xs

and xe are the outputs of the SVM classifier for the start and end words
of the candidate, respectively. Finally, for each given word, the probabilities
for all possible tags are compared to each other and the tag with the highest
probability Ph is assigned if Ph is greater than 0.25. Otherwise no tag is
assigned to the word.

The three stages of the procedure can be applied sequentially to process the
outputs of the classifiers. On the other hand, we can also obtain several post-
processing procedures which consist of, e.g. only the first, or the first and the
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second, or all three stages. We will compare the different kinds of post procedures
in Section 4.1. Note that both [19] and [22] used a Viterbi search algorithm as a
post-procedure for their SVM classifiers, which corresponds to applying the first
and third stages of our algorithm.

3 The Experimental Datasets

The system was evaluated on three corpora covering different IE tasks – named
entity recognition (CoNLL-2003) and template filling or scenario templates [24]
(seminars and jobs corpora). There are several reasons for choosing these cor-
pora. Firstly, CoNLL-2003 provides the most recent detailed evaluation results
of machine learning algorithms on named entity recognition. Secondly, the sem-
inars and jobs corpora have also been used recently by many learning systems,
both wrapper induction and more linguistically oriented ones (see Section 5 for a
detailed discussion). Thirdly, the CONLL-2003 corpus differs from the other two
corpora in two important aspects: (i) in CONLL-2003 there are many entities per
document, whereas the jobs and seminar corpora have only a small number per
document; (ii) CONLL-2003 documents are mostly free text, whereas the other
two corpora contain semi-structured documents. Therefore, the performance of
our SVM algorithm was evaluated thoroughly on these three corpora as our
goal was to design a versatile approach, with state-of-the-art performance both
on domain-independent IE tasks (e.g., named entity recognition) and domains-
specific ones (e.g., template filling).

In more detail, the first corpus is the English part of the CoNLL-2003 shared
task dataset — language-independent named entity recognition3. This corpus
consists of 946 documents for training, 216 documents for development (e.g.,
tuning the parameters in learning algorithm), and 231 documents for evaluation
(i.e., testing), all of which are news articles taken from the Reuters English
corpus (RCV1) [20]. The corpus contains four types of named entities — person,
location, organization and miscellaneous names.

The other two corpora are the CMU seminar announcements and the software
job postings4, in both of which domain-specific information is extracted into a
number of slots. The seminar corpus contains 485 seminar announcements and
four slots – start time (stime), end time (etime), speaker and location of the
seminar. The job corpus includes 300 computer related job advertisements and
17 slots encoding job details, such as title, salary, recruiter, computer language,
application, and platform.

Table 3 shows the statistics for the CoNLL-2003, seminars and jobs datasets,
respectively. As can be seen from that table, the non-annotated words are much
more than the annotated words, particularly for domain-specific datasets like
seminar announcements and software job postings. In other words, all three
corpora are imbalanced datasets where the number of positive examples is much
lower than the negative ones.

3 See http://cnts.uia.ac.be/conll2003/ner/
4 Available from http://www.isi.edu/info-agents/RISE/repository.html.



VIII

Table 3. Number of examples for each entity/slot type, together with the number of
non-tagged words, in CoNLL-2003 corpus, seminars announcements, and software jobs
postings, respectively.

Conll03 LOC MISC ORG PER Non-entity
Training set 7140 3438 6321 6600 191627
Test-a set 1837 922 1341 1842 47926
Test-b set 1668 702 1661 1617 43654

Seminars Stime Etime Speaker Location Non-entity
980 433 754 643 157647

Jobs Id Title Company Salary Recruiter State
304 457 298 141 312 462
City Country Language Platform Application Area
659 345 851 709 590 1005

Req-years-e Des-years-e Req-degree Des-degree Post date Non-entity
166 43 83 21 302 127302

Machine learning systems typically separate the corpus into training and
test sets. Since the CoNLL-2003 corpus already has the training, development
and test set pre-specified, the system is trained on the training set, different
experimental settings are tested on the development set, and the optimal ones
are used in the run on the test set in order to obtain the performance results,
which are then used for comparison to other systems.

The other two corpora do not provide such different sets, therefore training
and testing need to be carried out differently. In our experiments we opted for
splitting the corpora into two equal training and test sets by randomly assigning
documents to one or the other5. In order to obtain more representative results,
we carried out several runs and the final results were obtained by averaging
the results from each run. Many of the learning systems evaluated on these
corpora used the same approach and we adopted it to facilitate comparison (see
Section 4.2).

All corpora were also pre-processed with the open-source ANNIE system [11],
in order to obtain the linguistic (NLP) features used in the SVM input vector, as
discussed in Section 2.2 above. These features are used in addition to information
already present in the documents such as words and capitalization information.
The NLP features are domain-independent and include token kind (word, num-
ber, punctuation), lemma, part-of-speech (POS) tag, gazetteer class, and named
entity type according to ANNIE’s rule-based recognizer6. The following section
discusses the experimental results on the three corpora.

5 As the total number of documents in the seminar corpus is 485, we randomly split
the dataset into 243 training documents and 242 testing ones.

6 We also investigated the effect of the different NLP features, but due to space limi-
tations the results will be included in another paper.
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4 Experimental Results

As already discussed in Section 2, two SVM classifiers are trained for each entity
or slot filler, one for the start and one for the end words. The resulting models are
then run on the test set and the post-processing procedures described in Section
2 are applied. The algorithm described in [21] is used to obtain the solution of
the SVM with uneven margins by solving an SVM problem. More specifically,
the SVM package SVMlight version 3.57 is used for solving the SVM problem.
Unless otherwise stated, the default values of the parameters in SVMlight 3.5
are used.

The results below are reported using the F1-measure, which is the har-
monic mean of precision and recall. In other words, F1 = (2 ∗ precision ∗
recall)/(precision + recall), where precision is the percentage of correct en-
tities found by the system and recall is the percentage of entities in the test set
which are found by the system. A tag is considered correct if it matches exactly
the human-annotated tag, both in terms of its type and its start and end offset
in the document.

The overall performance of the algorithm on a given corpus can be obtained
in two different ways. One is the so called macro-averaged F1, which is the mean
of F1 of all the entity types or slots in the corpus. The other is the micro-averaged

measure8, obtained by adding together the recognition results on all entity types
first and then computing precision, recall, and F-measure. Some researchers ar-
gue that the macro-averaged measure is better than the micro-averaged one (see
e.g. [28]), because the micro-averaged measure can be dominated by the larger
classes so that it reflects less the performance of the algorithm on smaller classes.
On the other hand, if all classes are of a comparable size, as is often the case
in IE datasets, then the macro-averaged measure is not very different from the
micro-averaged one. Therefore, we use macro-averaged F-measure in Section 4.1
where an overall measure of the system’s performance is needed, e.g., for the
purpose of establishing the impact of different parameters on the system’s per-
formance. In Section 4.2 the macro-averaged F-measure is used for comparing
the overall performance of our system with the seminars and jobs datasets, while
the micro-averaged F-measure is used on the CoNLL-2003 dataset since it was
used in the CoNLL-2003 shared task.

4.1 Influence of Different Parameters on the Algorithm’s

Performance

First of all, we carried out some preliminary experiments to determine the opti-
mal parameter settings for each of three datasets. In order to avoid testing each
possible setting against all others, the different settings of the parameters are
investigated sequentially. The (possibly only slightly advantageous) best setting

7 Available from http://www.joachims.org/svm light
8 See http://www.itl.nist.gov/iaui/894.02/related projects/muc/muc sw/muc sw manual.html
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obtained for one parameter from the current experiment was used in subsequent
ones.

The first group of experiments is for different sizes of the context window,
while linear kernel and all NLP features are used. Then other parameters are
investigated sequentially, namely the impact of SVM kernels (linear, quadratic
and cubic), two values of the uneven margin parameter τ (1.0 and 0.4), differ-
ent combinations of NLP features, two weighting schemes for the features from
neighboring tokens, and finally three post-processing procedures derived from
the three post-processing stages discussed in Section 2. In this way, the optimal
settings listed in Table 4 were obtained (note the difference for the different
corpora).

Table 4. The optimal settings of system for the three datasets, obtained by the se-
quentially optimal experiments. For NLP features “all” means all the NLP features
obtained from the ANNIE system. For post-processing “all” means that all the three
stages of the procedure are used.

Setting window size SVM kernel τ NLP features Weighting Post-processing

Conll03 2 quadratic 0.4 all except POS 1/j all
Seminars 5 quadratic 0.4 all 1/j all
Jobs 3 linear 0.4 all except POS 1/j all

It should be noted that while keeping the number of experiments down, such
sequential optimization may not result in the most optimal parameter settings.
For instance, the optimal window size from the first group of experiments using
linear kernel may not be optimal for the later experiments using quadratic kernel.
Hence, the optimal setting obtained at each stage may not be the global optimal
value, although we believe the differences to be quite small.

Next, a series of experiments was conducted to investigate the influence of
the different parameters. In these experiments, we used different settings of one
parameter and adopted the values of all other parameters, as presented in Table
4 for each dataset. Due to space limitations, this paper focuses on the experi-
mental results for the unique features in our system, namely the uneven margins
parameter τ , the reciprocal weighting scheme, and the post-processing proce-
dures.

As already discussed above, on the CoNLL-2003 dataset, the system is trained
on the train set and the results are reported on the development set. Each of
other two datasets is split randomly in two, with one partition used for training
and the other for testing, and the results are averaged over ten runs.

Uneven Margins Parameter. Our system uses the uneven margins SVM
model, while other SVM-based systems for IE use the original SVM algorithm
with even margins (see e.g. [19] and [22]). As discussed in Section 2, the uneven
margins parameter τ is the ratio of the negative margin to the positive margin.
If τ = 1, the uneven margins SVM is equivalent to the original SVM model.
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As already discussed, the uneven margins parameter helps the SVM handle
imbalanced training sets, i.e., sets where the positive training examples are much
rarer compared to the negatives ones (a common problem in classification for
IE).

Table 5 presents the results for different values of uneven margins parameter
for the three datasets. Firstly, the SVM with uneven margins (τ < 1.0) performs
statistically significantly better than the original SVM (τ = 1.0) on the two
datasets – Seminars and Jobs. On the other hand, the uneven margins model
obtains only marginal improvements over the even margins model on the CoNLL-
2003 data. This is because the classification problems on the first two corpora
are much more imbalanced than those on the CoNLL-2003 dataset. The more
imbalanced a classification problem is, the more helpful the uneven margins
parameter is. Also see the results for small training sets in Section 4.3. Secondly,
it can be seen that the results for the τ in an interval (e.g. the interval (0.4, 0.6))
are quite similar, showing that the performance is not particularly sensitive to
the value of τ . Finally, τ = 0.6 achieves slightly better results than τ = 0.4
on the Jobs data. However, due to the small difference, all other experiments
presented in this paper preserve the experimental settings from Table 4, meaning
that τ = 0.4 is used on both the Seminar and Jobs datasets.

Table 5. Results for different settings of uneven margins parameter of the SVM: macro-
averaged F1 (%) on the three datasets. The standard deviation is shown in parenthesis,
indicating the statistical significances of the results. The best performance figures on
each dataset appear in bold.

τ 1.0 0.8 0.6 0.4 0.2 0.0

Conll03 89.0 89.6 89.7 89.2 85.3 65.6
Seminars 81.7(±0.6) 84.0(±0.7) 85.8(±0.8) 86.2(±0.8) 82.6(±1.0) 55.4(±1.4)
Jobs 79.0(±1.4) 79.9(±1.2) 81.0(±0.9) 80.8(±1.0) 79.0(±1.3) 57.7(±1.5)

Two Weighting Schemes. We compared two weighting schemes for com-
bining the features from surrounding words – the commonly used equal weighting

and the reciprocal weighting of features from neighboring words (discussed in Sec-
tion 2.2 above). Table 6 presents the results of the two weighting schemes on
the three datasets. While the reciprocal scheme produces slightly better results
than equal weighting on all the three datasets, the difference is not statistically
significant.

Post-processing Procedures As discussed in Section 2.3, a three-stage
post-processing procedure is used to combine the results of the SVM classifiers.
In brief, in the first stage filters out the spurious start or end tags. The sec-
ond removes entities with length not equal to the length of any example tag in
the training set. The third stage outputs the category with the highest prob-
ability. Based on these three different filtering strategies, three post-processing
procedures were experimented with: the first strategy only; the first and second
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Table 6. Two weighting schemes: macro-averaged F1 (%) on the three datasets. In
bold are the best performance figures for every dataset.

Equal weighting 1/j weighting

Conll03 88.4 89.2
Seminars 85.5(±1.0) 86.2(±0.8)
Jobs 80.5(±1.0) 80.8(±1.0)

strategies; and finally all three in sequence. In the first and second procedures,
if one piece of text is assigned more than one tag, then the last tag according to
the tag order in Table 3 is assigned.

Table 7 presents the results before post-processing as well as the results for
the three procedures on the three corpora. Compared to the results with no post-
processing, the results are improved significantly by post-processing. However,
procedures 2 and 3 only obtain slightly better results than their previous stages.

Table 7. Comparison of the results without and with the post-processing procedures:
macro-averaged F1 (%) on the three datasets. Proc1, Proc2 and Proc3 denote respec-
tively the three post-processing stages. In bold are the best performance figures for
every dataset.

No post-processing Proc1 Proc2 Proc3

Conll03 87.5 89.0 89.1 89.2
Seminars 81.7(±1.0) 85.5(±0.9) 85.7(±0.9) 86.2(±0.8)
Jobs 77.0(±0.7) 79.9(±0.9) 80.3(±0.9) 80.8(±1.0)

4.2 Comparison to Other Systems

This section compares our system to other machine learning approaches on the
three datasets. Since our system uses the NLP features produced by GATE and
the learning algorithm based on SVM, we call our system GATE-SVM. In the
experiments described in this subsection, we used similar settings to those in the
other systems, in order to enable a fair comparison.

The significance boundaries of the results on the CoNLL-2003 corpus, pre-
sented in this paper, are estimated via bootstrap sampling method [25] and can
be used to determine if a result is significantly different than all others.

For the other two datasets, the significance boundaries of previous results
are not available. Since we ran ten experiments on each of the two datasets,
the standard deviations from the results of the ten experiments are used as the
significance measure in the comparison to other systems.

Named Entity Recognition The performance of GATE-SVM on named
entity recognition is evaluated on the CoNLL-2003 dataset. Since this set comes
with development data for tuning the learning algorithm, different settings were
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tried in order to obtain the best performance on the development set. The differ-
ent SVM kernel types, window sizes, and values of the uneven margin parameter
τ were tested. The results showed that quadratic kernel, window size 4 and
τ = 0.5 produce best results on the development set. These optimal values are
slightly different from those obtained in Section 4.1, which shows that the val-
ues for learning parameters selected through sequential optimization may not be
globally optimal. The 1/j weighting scheme and all three post-processing stages
are used.

Table 8. Comparison to other systems on the CoNLL-2003 shared task: F -measure (%)
on each entity type and the overall micro-averaged F-measures. The macro-averaged
F-measure (MA F1) is also included for comparison. Test-a denotes the development
set and test-b is as the test set. The only difference between GATE-SVM-1 and GATE-
SVM-2 is in the NLP feature used (see text). The best performance figures for each
entity type and overall appear in bold.

System test set LOC MISC ORG PER MA F1 Overall

GATE-SVM-1 test-a 93.70 86.13 87.00 93.03 89.96 90.83
test-b 89.25 77.79 82.29 90.92 85.06 86.30

GATE-SVM-2 test-a 93.46 86.36 86.76 92.24 89.70 90.49
test-b 89.20 77.66 81.60 90.68 84.78 86.00

Best one test-a 96.12 89.06 90.24 96.60 93.01 93.87
test-b 91.15 80.44 84.67 93.85 87.53 88.76±0.7

Participating test-a 93.75 86.02 85.90 93.91 89.90 90.85
SVM Based System test-b 88.77 74.19 79.00 90.67 83.16 84.67±1.0

Table 8 presents the results of our system on the CoNLL-2003 dataset, to-
gether with the results of the top system in the CoNLL-2003 share task evalua-
tion [13] and another participating SVM-based system [22], which are taken from
the summary paper [25]. The results of our systems are given using two different
settings in order to make a fairer comparison to the SVM based system entered
in the shared task. GATE-SVM-1 uses all NLP features obtained from ANNIE,
except part-of-speech information. The only difference between GATE-SVM-1
and GATE-SVM-2 is that GATE-SVM-2 does not use the semantic informa-
tion from ANNIE’s gazetteer lists. Therefore, all types of NLP features used
by GATE-SVM-2 were also used by the participating SVM-based system. The
results of both GATE-SVM-1 and GATE-SVM-2 are significantly better the par-
ticipating SVM-based system. However, our results are significantly worse than
the best result, which was obtained by combining the outputs of four different
classifiers and other information.

Template Filling The seminar corpus has been used to evaluate quite a
few learning systems. Those include rule learning approaches such as SRV [17],
Whisk [26], Rapier [2], BWI [18], SNoW [23] and (LP )2 [7], as well as statistical
learning systems such as HMM [14] and maximum entropy (MaxEnt) [4]. See
Section 5 for more details.
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The major problem with carrying out comparisons on the seminar corpus
is that the different systems used different experimental setups. For instance,
SRV, SNoW and MaxEnt reported results averaged over 5 runs. In each run
the dataset was randomly divided into two partitions of equal size – one used
for training and one for testing. Furthermore, SRV used a randomly selected
third of the training set for validation. WHISK’s results were from 10-fold cross
validation on a randomly selected set of 100 documents. Rapier’s and (LP )2’s
results were averaged over 10 runs, instead of the 5 runs used in SRV, SNoW
and MaxEnt. Finally, BWI’s and HMM results were obtained via standard cross
validation.

The GATE-SVM results reported here are the average over ten runs, following
the methodology of Rapier and (LP )2. Table 9 presents the results of our system
on seminar announcements, together with the results of the other systems. As far
as it was possible, we use the same features as the other systems to enable a more
informative comparison. In particular, the results listed in Table 9, including
our system, did not use any gazetteer information and named entity recognizer
output. The only features in this case are words, capitalization information,
token types, lemmas, and POS tags. The settings for the SVM parameters were
taken from Table 4, i.e., window size 5, quadratic kernel, and τ = 0.4.

The F1 measure for each slot was computed together with the macro-averaged
F1 for the overall performance of the system. Note that the majority of systems
evaluated on the seminars and jobs corpora only reported per slot F-measures,
without overall results. However, an overall measure is useful when comparing
different systems on the same dataset. Hence, we computed the macro-averaged
F1 for the other systems from their per-slot F1.

Table 9. Comparison to other systems on CMU seminar corpus: F1 (%) on each slot
and overall performance (macro-averaged F1). Standard deviation for the MA F1 of
our system is presented in parenthesis. The best results for each slot and the overall
performance appear in bold font.

Speaker Location Stime Etime MA F1

GATE-SVM 69.0 81.3 94.8 92.7 84.5(±0.8)
(LP )2 77.6 75.0 99.0 95.5 86.8
SNoW 73.8 75.2 99.6 96.3 86.2
MaxEnt 65.3 82.3 99.6 94.5 85.4
BWI 67.7 76.7 99.6 93.9 84.6
HMM 71.1 83.9 99.1 59.5 78.4
Rapier 53.1 73.4 95.9 94.6 79.1
Whisk 18.3 66.6 92.6 86.1 65.7
SRV 56.3 72.2 98.5 77.9 76.0

Table 9 shows that the best results on the different slots are achieved by
different system and that the best overall performance is achieved by the (LP )2.
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The GATE-SVM did not perform as well as the best results on the Seminar
data. But it still outperformed many other systems.

However, if information from the ANNIE gazetteer and named entity recog-
nizer is used as additional features, then the macro-averaged F1 for GATE-SVM
is 0.862, which is better than the 0.857 for (LP )2 using the same features (see
[7]). While this is still slightly worse than the 0.872 of the maximum entropy
system (see [4]), a direct comparison between the GATE-SVM and that system
cannot be made. This is due to our system just using general NLP features
while [4] used genre-specific features (see Section 5 for further details). Further-
more, GATE-SVM’s parameter settings were not optimized specifically for this
corpus (see the discussions about optimizing the experimental settings for the
CoNLL-2003 dataset above).

On the jobs postings corpus, GATE-SVM is compared to two rule learning
systems, Rapier [2] and (LP )2 [7], which are among the few evaluated on this
dataset.

Again, in order to make the comparison as informative as possible, we adopted
the same settings in our experiments as those used by the system which reported
the highest results on this dataset, i.e., (LP )2 [8]. In particular, the results are
obtained by averaging the performance in ten runs, using a random half of the
corpus for training and the rest for testing. In contrast, Rapier’s results were
obtained via 10-fold cross validation over the entire dataset, thus making it im-
possible to adopt a unified approach. As in the previous experiment, only basic
NLP features are used: word, capitalization information, token types, and lem-
mas. The parameter values of window size 3, linear kernel and τ = 0.4) are used
here. The macro-averaged F1 for the other two systems is computed for overall
performance comparison.

Table 10. Comparison to other systems on the jobs corpus: F1 (%) on each entity
type and overall performance as macro-averaged F1. Standard deviation for the MA
F1 of our system is presented in parenthesis. The highest score on each slot and overall
performance appears in bold.

Slot GATE-SVM (LP )2 Rapier Slot GATE-SVM (LP )2 Rapier

Id 97.7 100 97.5 Platform 80.1 80.5 72.5
Title 49.6 43.9 40.5 Application 70.2 78.4 69.3
Company 77.2 71.9 70.0 Area 46.8 53.7 42.4
Salary 86.5 62.8 67.4 Req-years-e 80.8 68.8 67.2
Recruiter 78.4 80.6 68.4 Des-years-e 81.9 60.4 87.5
State 92.8 84.7 90.2 Req-degree 87.5 84.7 81.5
City 95.5 93.0 90.4 Des-degree 59.2 65.1 72.2
Country 96.2 81.0 93.2 Post date 99.2 99.5 99.5
Language 86.9 91.0 81.8 MA F1 80.8(±1.0) 77.2 76.0

Table 10 presents the results of our system as well as the results of the other
two systems on the Jobs corpus. GATE-SVM achieves the best results among all
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three on eight out of the 17 slots and the second best results on the remaining
nine. Overall, the macro-averaged F1 of GATE-SVM is significantly better than
the other two systems.

4.3 Information Extraction from Small Training Sets

The application of SVM (or other supervised learning algorithms) to IE requires
a manually annotated training set. Since manual annotation is a time-consuming
process. learning from small data sets is highly desirable.

Consequently, we evaluated the learning algorithm on a growing number of
examples. For both the seminar and jobs corpora, a small number of documents
from the corpus were selected randomly as the training set and the remaining
ones were used for testing. For the CoNLL-2003 dataset the training documents
were chosen randomly from the training set and the results are reported on the
development set. In order to factor out randomness of results, the mean of ten
runs is reported. The same features and system parameters were used on each
of the three datasets as those in Section 4.2.

Fig. 1. Learning curves for overall F1 with a growing number of training documents
on the three datasets. On each dataset the uneven margins SVM is compared to the
original SVM model. For the Seminar and Jobs datasets, the error bar at a data point
show the 95% confidence interval derived from the standard deviations. For clarity, we
just show the confidence intervals for one curve in the Jobs graph – the confidence
intervals are similar for another curve.
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Figure 1 shows the learning curves of the SVM models with and without
uneven margins on the three datasets. The 95% confidence intervals for the data
points are also shown for the Seminars and Jobs datasets. System performance
improves consistently as more training documents become available. In addition,
the uneven margins SVM model demonstrates clearly better results than the
original SVM, in particular on a small number of training documents.

Table 11. Different numbers of documents for training: macro-averaged F1 (%) on
seminars dataset for every entity type.

10 20 30 40 50 60 70

stime 82.4 86.6 88.9 90.5 91.4 92.0 92.4
etime 70.7 80.6 85.9 88.1 88.5 89.2 90.6
speaker 30.7 42.4 55.6 60.6 63.4 65.5 65.9
location 48.4 58.6 63.7 67.0 69.6 69.9 70.9

Table 11 shows that some types of entities can be learned faster than others,
due to their more fixed internal structure. For example, start and end times
can be learned from as little as 10 documents, while at least 60 documents are
required to reach similar performance on speaker and location. When interpret-
ing these results one must bear in mind that most documents in the seminars
dataset provide only one, or maximum two, examples of each slot (the ratio
between number of documents and number of examples per slot in the corpus
ranges between 0.9 and 2). Therefore, in this case learning after 10 documents
is almost equivalent to learning from 10 to 15 examples per slot.

Table 12. Comparison of GATE-SVM with (LP )2: F1 (%) for each slot of the seminars
corpus and the macro averaged F1 for overall performance. The highest score on each
slot and overall performance appears in bold.

Number of training docs (LP )2 GATE-SVM

stime 30 84.0 88.9
etime 20 82.3 80.6
speaker 25 50.6 50.5
location 30 70.0 63.7

Another system which carried out such experiments on the seminars dataset
is (LP )2 [9]. Table 12 compares our system with the system based on (LP )2. In
a nutshell, our system is better than (LP )2 on the stime category but is worse
on etime, speaker and location.
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5 Related Work

This section briefly discusses previous work on applying machine learning to IE,
in particular those systems which were evaluated on the three datasets used in
our experiments. We first describe the applications of SVM to IE. Then we look
at the other algorithms evaluated on the CoNLL-2003 dataset. Finally, the rule
learning and statistical learning IE systems on the seminar announcements and
job postings corpora are reviewed.

5.1 SVM-based Systems

The SVM based system in [19] trained four SVM classifiers for each named
entity type – besides the two SVMs for start and end words like ours, one for
middle words, and one for single word entities. They also trained an extra SVM
classifier to recognize the words which do not belong to any named entity. [19]
used a sigmoid function to transfer the SVM output into a probability and then
applied the Viterbi algorithm to determine the optimal label sequence for a
sentence. The system was evaluated on a Japanese IE corpus. They used the
neighboring words with window size 2. Their experiments showed that the SVM
based system performed better than both maximum entropy and rule learning
systems on the same dataset using the same features. They also showed that
quadratic kernel was better than both linear and cubic kernels on their dataset.
[19] also described an efficient implementation of the SVM with quadratic kernel.

[22] used a lattice-based approach to named entity recognition and employed
SVM with cubic kernel to compute transition probabilities in a lattice. They
trained an SVM classifier for every possible transition of tags, meaning that
they may have a large number of SVM classifiers. They tested the system on the
CoNLL-2003 dataset using cubic kernel. They also took into account the features
from neighboring words with window size 3. Their result on the CoNLL-2003
corpus is comparable to ours (see Table 8). There are some other applications
of SVM for bio-named entity recognition (see e.g. [27]).

5.2 Other Learning Methods Evaluated on the CONLL’2003 corpus

CoNLL-2003 corpus is a typical named entity recognition corpus with newswire
articles and entity types similar to the earlier MUC-6 and MUC-7 corpora [24].
Sixteen systems participated in the evaluation. All of them were based on sta-
tistical learning, except one system which used rule learning as one of four algo-
rithms which were combined into one classifier. The system with the best score
was exactly this combined system, based on robust risk minimization, maximum
entropy, transformation based learning and HMMs, respectively (see [13].

Another system only based on maximum entropy obtained slightly worse
results (see [5]). They used many different features, including some genre-specific
one, such as the so-called zone related features which are dependent on the
structure of documents. Note that another two participating systems were also
only based on maximum entropy (see [1], [12]). In particular, the probability
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discriminate model used in [12] was quite similar to the one in [5]. The features
used in [12] were general and less than those in [5]. Both the scores of these two
systems ([1] and [12]) were significantly worse than the system described in [5],
which confirms the conjecture that appropriate features are at least as important
as the learning algorithm.

The SVM based participating system was discussed above (see [22]).

5.3 Learning Systems Evaluated on Template Filling

SRV is a relational learning (or inductive logic programming) algorithm for IE,
which deduces a set of rules for one type of information entity from training
examples (see [15]). It checked every text fragments of appropriate size in doc-
ument in order to identify if the fragment belongs to an entity or not. [16, 17]
tested SRV for IE on three datasets – the CMU seminars corpus, a collection of
600 newswire articles on corporate acquisitions from Reuters and a collection of
web pages of university computer science departments.

WHISK [26], another relational learning system for IE, was tested on col-
lections of structured, semi-structured and free-text documents, such as CNN
weather domain, seminar announcements, software jobs postings, and news story
articles. WHISK’s results on the seminars corpus were not as good as SRV’s,
which may be attributed to the fact that WHISK used less features – only the
token and its semantic class.

Rapier is also a rule based learning IE system (see [2]). It was tested on
two dataset: software jobs and seminar announcements. Its results on seminar
announcements are better than SRV.

BWI (Boosted Wrapper Induction) involved learning a wrapper (boundary
detector) for an information entity via a boosting procedure (see [18]). It was
evaluated on several collections such as seminar announcements, software job
postings, Reuters articles, and web pages. [18] also considered the neighboring
words as context and found, similar to us, that different datasets have a different
optimal window size. One should note that for rule based learning algorithms
the training time increases exponentially with window size.

(LP )2 is also a rule learning algorithm for IE (see e.g. [7]). (LP )2 was tested
on three datasets: seminar announcements, software job postings, and a col-
lection of 103 web pages describing computer science courses (see [9]). It also
compared three different sets of features. The effect of window size on the dif-
ferent entity types was also studied [9].

[23] presented another relational learning based IE system, SNoW. It learned
rules via a multi-class classifier by looking at a target fragment and its left and
right windows. It was evaluated on the seminar announcements dataset.

[14] exploited a general statistical model, Hidden Markov Models (HMMs),
for IE. It also used the shrinkage technique to deal with data sparseness for
HMM parameter estimations. It was tested on two corpora, the seminar an-
nouncements, and a collection of newswire articles from Reuters. It used similar
experimental settings to SRV and obtained better results on the seminars corpus.
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[4] used a probabilistic discriminate model for IE and used maximum entropy
for parameter estimations. It was tested on several corpora including seminar
announcements, the CoNLL-2003 corpus (see [5]) and the datasets from MUC-6
and MUC-7 (see [3]).

All previous work used features from a window surrounding the current word,
as well as features of the word itself. Both [18] and [7] investigated the effect
of window size on the performance of rule-based learning and noticed that the
computation times of both the rule learning algorithms BWI and (LP )2 increased
exponentially as the window size grew. On the other hand, the computation time
in an SVM based system only increases linearly with window size. Therefore, it
is easier for the SVM algorithm to select and use the optimal window size.

Basically the rule learning IE systems did not do any post-processing other
than simple consistency checking – they treated each type of entity separately.
The statistical learning algorithms compute a probability for each entity (or
transfer the output into a probability as in the SVM based IE algorithms),
such that they can select the best label for a fragment of text based on these
probabilities. In order to select the best labels for a sentence, a Viterbi-like search
algorithm was usually employed as a post-processor in the statistical learning
systems.

[2] and [7] also investigated the effects of growing quantities of training data.
[2] also considered active learning, where the system learns an initial model from
a small pool of annotated examples and then, based on the learned model, selects
additional examples for training.

6 Conclusions

This paper presents an SVM-based algorithm for IE and the experiments on three
benchmark datasets – the CoNLL-2003 dataset, the CMU seminars corpus, and
the software jobs corpus. The results show that our system is comparable to
other state of the art systems for IE.

While other SVM-based IE systems used the original SVM model which
treats the negative and positive margins equally, our system uses the SVM with
uneven margins. Our experiments show that the uneven margins SVM performs
significantly better than the original SVM on the three datasets, particularly for
small training sets.

In comparison to other similar SVM-based algorithms, our system is simpler,
i.e., it needs a smaller number of SVM classifiers per entity type than the other
two systems discussed respectively in [19] and [22]. Our system also obtained
better results than the SVM-based system in [22] on the CoNLL-2003 corpus.

We investigated two weighting schemes for the features of the surrounding
words and showed that the reciprocal weighting scheme performs slightly better
than the commonly used equal weighting. We also investigated several post-
processing procedures, ranging from using the SVM outputs for begin and end
tags separately to selecting the highest probability label based on the output
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of all SVM classifiers. We found that, while overall post-processing can improve
the results significantly, some of its stages only obtain small improvements.
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