
Web-based Collaborative Corpus Annotation: Requirements and a Framework
Implementation

Kalina Bontcheva, Hamish Cunningham, Ian Roberts, Valentin Tablan

Natural Language Processing Group
Department of Computer Science, University of Sheffield

211 Portobello, Sheffield S1 4DP, UK
Initial.Surname@dcs.shef.ac.uk

Abstract
In this paper we present Teamware, a novel web-based collaborative annotation environment which enables users to carry out complex
corpus annotation projects, involving less skilled, cheaper annotators working remotely. It has been evaluated by us through the creation
of several gold standard corpora, as well as through external evaluation in commercial annotation projects.

1 Introduction
For the past ten years, NLP development frameworks such
as OpenNLP, GATE, and UIMA have been providing tool
support and facilitating NLP researchers with the task of
implementing new algorithms, sharing, and reusing them.
At the same time, Information Extraction (IE) research and
computational linguistics in general has been driven for-
ward by the growing volume of annotated corpora, pro-
duced by research projects and through evaluation initia-
tives such as MUC (Marsh and Perzanowski, 1998), ACE1,
DUC (DUC, 2001), and CoNLL shared tasks. Some of the
NLP frameworks (e.g., AGTK (Maeda and Strassel, 2004),
GATE (Cunningham et al., 2002)) even provide text anno-
tation user interfaces. However, much more is needed in
order to produce high quality annotated corpora: a stringent
methodology, annotation guidelines, inter-annotator agree-
ment measures, and in some cases, annotation adjudication
(or data curation) to reconcile differences between annota-
tors.
Current tools demonstrate that annotation projects can be
approached in a collaborative fashion successfully (see Sec-
tion 2). However, we believe that this can be improved
further by providing a unified environment that provides a
multi-role methodological framework to support the differ-
ent phases and actors in the annotation process. The multi-
role support is particularly important, as it enables the most
efficient use of the skills of the different people and low-
ers overall annotation costs through having simple and ef-
ficient annotation web-based UIs for non-specialist annota-
tors. This also enables role-based security, project manage-
ment and performance measurement of annotators, which
are all particularly important in corporate environments.
This paper presents Teamware, a web-based software suite
and a methodology for the implementation and support
of complex annotation projects2. In addition to its re-
search uses, it has also been tested as a framework for

Authors are listed alphabetically.
1http://www.ldc.upenn.edu/Projects/ACE/
2Teamware is currently available as a hosted service over the

web for use by both researchers and companies. If you are inter-
ested in using the Teamware service or want to install it locally,
please contact the first author.

cost-effective commercial annotation services, supplied ei-
ther as in-house units or as outsourced specialist activities.
Teamware is based on GATE: a widely used, scalable and
robust open-source language processing framework.
The rest of the paper is structured as follows. We first dis-
cuss related work in Section 2 and then motivate the re-
quirements which need to be met (Section 3). Our archi-
tecture and implementation are discussed in Section 4, fol-
lowed by a discussion of three practical applications in Sec-
tion 5 and conclusions.

2 Related Work
Tools for collaborative corpus annotation enable re-
searchers to work together on annotating corpora regard-
less of their physical location. This problem can be de-
composed into two major tasks: (i) provide users with ac-
cess to distributed corpora over the web; and (ii) provide
visualisation and editing tools that require no installation
effort and are easy to use. Some of the most sophisticated
tools in this area are those developed by the Linguistic Data
Consortium, due to their need to run large-scale annotation
projects. The AGTK toolkit (Maeda and Strassel, 2004)
provides a shared relational database model for storing and
accessing corpora on a shared server, as well as being
a framework for development of collaborative annotation
tools based on these shared corpora. One example is the
specialised ACE annotation tool, which also comes with an
accompanying tool for annotation adjudication. Maeda et
al (2008) describe ACK (Annotation Collection Kit) which
is web based and uses comma-separated CSV files to define
the questions which an annotator has to answer (e.g., what
are the possible parts of speech of this word). In the con-
text of machine translation, they also discuss a workflow
system for post-editing machine translation results which
supports different user roles (editors in this case) and the
communication between them. While the LDC tool set is
very impressive, the various annotation tasks are covered by
separate, independent tools and in some cases, these tools
are specific to a particular annotation project (e.g., ACE,
GALE).
One way to generalise the annotation tools is to support
their customisation to a specific task by means of annota-



tion schemas, e.g., Callisto (Day et al., 2004), GATE (Cun-
ningham et al., 2002). A somewhat more complex, but
more powerful approach is to model the different linguistic
annotation tasks with ontologies, e.g., Knowtator (Ogren,
2006). All these tools also provide support for measuring
inter-annotator agreement, while Knowtator also supports
semi-automatic adjudication and the creation of a consen-
sus annotation set. However, they all require installation
on the user’s machine and are designed primarily for expert
annotators. All except GATE, also do not provide support
for bootstrapping the manual annotation by running an au-
tomatic NLP system first.
With respect to workflows, these have been studied pre-
dominantly in the context of configuring a set of NLP mod-
ules into an application. For example, both GATE (Cun-
ningham et al., 2002) and UIMA(Ferrucci and Lally, 2004)
support workflows3, but not for asynchronous annotation
tasks. Neither do they provide business process monitoring
(e.g., time spent by annotators, their performance levels,
progress, overall costs).
Recently researchers began experimenting with using Ama-
zon’s Mechanical Turk to recruit non-expert annotators.
Experiments (Snow et al., 2008) show that on average 10
unskilled annotators are needed in order to reach the quality
of an expertly annotated gold standard. Multi-role collab-
orative annotation environments like ours have the poten-
tial to lower the number of required low-skilled annotators
through the involvement of an expert curator, assisted with
automatic bootstrapping and adjudication tools. In addi-
tion, there are also many cases when reliable gold-standard
creation is still required and/or when the data cannot be re-
leased on the web for public annotation.
To summarise, in comparison to previous work Teamware
is a novel general purpose, web-based annotation frame-
work, which:

• structures the roles of the different actors involved in
large-scale corpus annotation (e.g., annotators, edi-
tors, managers) and supports their interactions in an
unified environment;

• provides a set of general purpose text annotation tools,
tailored to the different user roles, e.g., a curator man-
agement tool with inter-annotator agreement metrics
and adjudication facilities and a web-based document
tool for in-experienced annotators;

• supports complex annotation workflows and provides
a management console with business process statis-
tics, such as time spent per document by each of its
annotators, percentage of completed documents, etc;

• offers methodological support, to complement the di-
verse technological tool support.

3 Requirements for Multi-Role
Collaborative Annotation Environments

As discussed in the previous section, collaborative corpus
annotation is a complex process, which involves different

3Called controllers in GATE.

kinds of actors (e.g., annotators, editors, managers) and
also requires a diverse range of pre-processing, a user in-
terface, and evaluation tools. Here we structure all these
into a coherent set of key requirements, which arise from
our goal to provide cost-effective corpus annotation.
Firstly, due to the multiple actors involved and their com-
plex interactions, a collaborative environment needs to sup-
port these different roles through user groups, access priv-
ileges, and corresponding user interfaces. Secondly, since
many annotation projects manipulate hundreds of docu-
ments, there needs to be a remote, efficient data storage.
Thirdly, significant cost savings can be achieved through
pre-annotating corpora automatically, which in turns re-
quires support for automatic annotation services and their
flexible configuration. Last, but not least, a flexible work-
flow engine is required to capture the complex require-
ments and interactions.
Next we discuss the four high-level requirements in finer-
grained details.

3.1 Typical Division of Labour
Due to annotation projects having different sizes and com-
plexity, in some cases the same person might perform more
than one role or new roles might be needed. For example, in
small projects it is common that the person who defines and
manages the project is also the one who carries out quality
assurance and adjudication. Nevertheless these are two dis-
tinct roles (manager vs editor), involving different tasks and
requiring different tool support.
Annotators are given a set of annotation guidelines and
often work on the same document independently. This is
needed in order to get more reliable results and/or measure
how well humans perform the annotation task (see more on
Inter-Annotator Agreement (IAA) below). Consequently,
manual annotation is a slow and error-prone task, which
makes overall corpus production very expensive. In order
to allow the involvement of less-specialised annotators, the
manual annotation user interface needs to be simple to learn
and use. In addition, there needs to be an automatic training
mode for annotators where their performance is compared
against a known gold standard and all mistakes are identi-
fied and explained to the annotator, until they have mastered
the guidelines.
Since the annotators and the corpus editors are most likely
working at different locations, there needs to be a commu-
nication channel between them, e.g., instant messaging. If
an editor/manager is not available, an annotator should also
be able to mark an annotation as requiring discussion and
then all such annotations should be shown automatically
in the editor console. In addition, the annotation environ-
ment needs to restrict annotators to working on a maximum
of n documents (given as a number or percentage), in or-
der to prevent an over-zealous annotator from taking over
a project and introducing individual bias. Annotators also
need to be able to save their work and, if they close the
annotation tool, the same document must be presented to
them for completion the next time they log in.
From the user interface perspective, there needs to be sup-
port for annotating document-level metadata (e.g., lan-
guage identification), word-level annotations (e.g., named



entities, POS tags), and relations and trees (e.g., co-
reference, syntax trees). Ideally, the interface should of-
fer some generic components for all these, which can be
customised with the project-specific tags and values via an
XML schema or other similar declarative mechanism. The
UI also needs to be extensible, so specialised UIs can easily
be plugged in, if required.
Editors or curators are responsible for measuring Inter-
Annotator Agreement (IAA), annotation adjudication,
gold-standard production, and annotator training. They also
need to communicate with annotators when questions arise.
Therefore, they need to have wider privileges in the sys-
tem. In addition to the standard annotation interfaces, they
need to have access to the actual corpus and its documents
and run IAA metrics. They also need a specialised adju-
dication interface which helps them identify and reconcile
differences in multiply annotated documents. For some an-
notation projects, they also need to be able to send a prob-
lematic document back for re-annotation by different anno-
tators.
Project managers are typically in charge of defining new
corpus annotation projects and their workflows, monitoring
their progress, and dealing with performance issues. De-
pending on project specifics, they may work together with
the curators and define the annotation guidelines, the as-
sociated schemas (or set of tags), and prepare and upload
the corpus to be annotated. They also make methodological
choices: whether to have multiple annotators per document;
how many; which automatic NLP services need to be used
to pre-process the data; and what is the overall workflow
of annotation, quality assurance, adjudication, and corpus
delivery.
Managers need a project monitoring tool where they can
see:

• Whether a corpus is currently assigned to a project
or, what annotation projects have been run on the cor-
pus with links to these projects or their archive reports
(if no longer active). Also links to the the annotation
schemas for all annotation types currently in the cor-
pus.

• Project completion status (e.g., 80% manually anno-
tated, 20% adjudicated).

• Annotator statistics within and across projects: which
annotator worked on each of the documents, what
schemas they used, how long they took, and what was
their IAA (if measured).

• The ability to lock a corpus from further editing, either
during or after a project.

• Ability to archive project reports, so projects can be
deleted from the active list. Archives should preserve
information on what was done and by whom, how long
it took, etc.

3.2 Remote, Scalable Data Storage
Given the multiple user roles and the fact that several anno-
tation projects may need to be running at the same time,
possibly involving different, remotely located teams, the

data storage layer needs to scale to accommodate large, dis-
tributed corpora and have the necessary security in place
through authentication and fine-grained user/group access
control. Data security is paramount and needs to be en-
forced as data is being sent over the web to the remote an-
notators. Support for diverse document input and output
formats is also necessary, especially stand-off ones when it
is not possible to modify the original content. Since mul-
tiple users can be working concurrently on the same docu-
ment, there needs to be an appropriate locking mechanism
to support that. The data storage layer also needs to pro-
vide facilities for storing annotation guidelines, annotation
schemas, and, if applicable, ontologies. Last, but not least,
a corpus search functionality is often required, at least one
based on traditional keyword-based search, but ideally also
including document metadata and linguistic annotations.

3.3 Automatic annotation services
Automatic annotation services can reduce significantly an-
notation costs (e.g., annotation of named entities), but un-
fortunately they also tend to be domain or application spe-
cific. Also, several might be needed in order to bootstrap
all types that need to be annotated, e.g., named entities, co-
reference, and relation annotation modules. Therefore, the
architecture needs to be open so that new services can be
added easily. Such services can encapsulate different IE
modules and take as input one or more documents (or an
entire corpus). The automatic services also need to be scal-
able, in order to minimise their impact on the overall project
completion time. The project manager should also be able
to choose services based on their accuracy on a given cor-
pus.
Machine Learning (ML) IE modules can be regarded as a
specific kind of automatic service. A mixed initiative sys-
tem (Day et al., 1997) can be set up by the project manager
and used to facilitate manual annotation behind the scenes.
This means that once a document has been annotated manu-
ally, it will be sent to train the ML service which internally
generates an ML model. This model will then be applied
by the service on any new document, so that this document
will be partially pre-annotated. The human annotator then
only needs to validate or correct the annotations provided
by the ML system, which makes the annotation task signif-
icantly faster (Day et al., 1997).

3.4 Workflow Support
In order to have an open, flexible model of corpus annota-
tion processes, we need a powerful workflow engine which
supports asynchronous execution and arbitrary mix of au-
tomatic and manual steps. For example, manual annotation
and adjudication tasks are asynchronous. Resilience to fail-
ures is essential and workflows need to save intermediary
results from time to time, especially after operations that
are very expensive to re-run (e.g. manual annotation, ad-
judication). The workflow engine also needs to have status
persistence, action logging, and activity monitoring, which
is the basis for the project monitoring tools.
In a workflow it should be possible for more than one an-
notator to work on the same document at the same time,
however, during adjudication by editors, all affected anno-



tations need to be locked to prevent concurrent modifica-
tions. For separation of concerns, it is also often useful
if the same corpus can have more than one active project.
Similarly, the same annotator needs to be able to work on
several annotation projects.

Figure 1: Teamware Architecture Diagram

4 Teamware: Architecture, Implementation,
and Examples

Teamware is a web-based collaborative annotation and cu-
ration environment, which allows unskilled annotators to
be trained and then used to lower the cost of corpus an-
notation projects. Further cost reductions are achieved by
bootstrapping with relevant automatic annotation services,
where these exist, and/or through mixed initiative learning
methods. It has a service-based architecture which is par-
allel, distributed, and also scalable (via service replication)
(see Figure 1).
As shown in Figure 1, the Teamware architecture con-
sists of SOAP web services for data storage, a set of web-
based user interfaces (UI Layer), and an executive layer in
the middle where the workflows of the specific annotation
projects are defined. The UI Layer is connected with the
Executive Layer for exchanging command and control mes-
sages (such as requesting the ID for document that needs
to be annotated next), and also it connects directly to the
services layer for data-intensive communication (such as
downloading the actual document data, and uploading back
the annotations produced).

4.1 Data Storage and Ontology Services
The storage service provides a distributed data store for
corpora, documents, and annotation schemas. Input doc-
uments can be in all major formats (e.g. plain text,
XML, HTML, PDF), based on GATE’s comprehensive sup-
port. In all cases, when a document is created/imported
in Teamware, the format is analysed and converted into a
single unified, graph-based model of annotation: the one
of the GATE NLP framework. Then this internal annota-
tion format is used for data exchange between the service
layer, the executive layer and the UI layer. Different pro-
cesses within Teamware can add and remove annotation
data within the same document concurrently, as long as two
processes do not attempt to manipulate the same subset of
the data at the same time. A locking mechanism is used to

ensure this and prevent data corruption. The main export
format for annotations is currently stand-off XML, includ-
ing XCES (Ide et al., 2000). Document text is represented
internally using Unicode and data exchange uses the UTF-8
character encoding, so Teamware supports documents writ-
ten in any natural language supported by the Unicode stan-
dard (and the Java platform).
Since some corpus annotation tasks require ontologies,
these are made available from a dedicated ontology ser-
vice. This wraps the OWLIM (Kiryakov, 2006) semantic
repository, which is needed for reasoning support and con-
sequently justifies having a specialised ontology service,
instead of storing ontologies together with documents and
schemas.

4.2 Annotation Services
The Annotation Services (GAS) provide distribution of
compute-intensive NLP tasks over multiple processors. It
is transparent to the external user how many machines are
actually used to execute a particular service. GAS provides
a straightforward mechanism for running applications, cre-
ated with the GATE framework, as web services that carry
out various NLP tasks. In practical applications we have
tested a wide range of services such as named entity recog-
nition (based on the freely-available ANNIE system (Cun-
ningham et al., 2002)), ontology population (Maynard et
al., 2009), patent processing (Agatonovic et al., 2008), and
automatic adjudication of multiple annotation layers in cor-
pora.
The GAS architecture is itself layered, with a separation be-
tween the web service endpoint that accepts requests from
clients and queues them for processing, and one or more
workers that take the queued requests and process them.
The queueing mechanism used to communicate between
the two sides is the Java Messaging System (JMS)4, a stan-
dard framework for reliable messaging between Java com-
ponents, and the configuration and wiring together of all the
components is handled using the Spring Framework 5.
The endpoint, message queue and worker(s) are conceptu-
ally and logically separate, and may be physically hosted
within the same Java Virtual Machine (VM), within sepa-
rate VMs on the same physical host, or on separate hosts
connected over a network. When a service is first deployed
it will typically be as a single worker which resides in the
same VM as the service endpoint. This may be adequate
for simple or lightly-loaded services but for more heavily-
loaded services additional workers may be added dynam-
ically without shutting down the web service, and simi-
larly workers may be removed when no longer required.
All workers that are configured to consume jobs from the
same endpoint will transparently share the load. Multiple
workers also provide fault-tolerance – if a worker fails its
in-progress jobs will be returned to the queue and will be
picked up and handled by other workers.

4.3 The Executive Layer
Firstly, the executive layer implements authentication and
user management, including role definition and assignment.

4http://java.sun.com/products/jms/
5http://www.springsource.org/



Figure 2: Dynamic Workflow Configuration: Example

In addition, administrators can define here which UI com-
ponents are made accessible to which user roles (the de-
faults are shown in Figure 1).
The second major part is the workflow manager, which is
based on JBoss jBPM6 and has been developed to meet
most of the requirements discussed in Section 3.4 above.
Firstly, it provides dynamic workflow management: cre-
ate, read, update, delete (CRUD) workflow definitions, and
workflow actions. Secondly, it supports business process
monitoring, i.e., measures how long annotators take, how
good they are at annotating, as well as reporting the overall
progress and costs. Thirdly, there is a workflow execution
engine which runs the actual annotation projects. As part of
the execution process, the project manager selects the num-
ber of annotators per document; the annotation schemas;
the set of annotators and curator(s) involved in the project;
and the corpus to be annotated.
Figure 2 shows an example workflow template. The dia-
gram on the right shows the choice points in workflow tem-
plates - whether to do automatic annotation or manual or
both; which automatic annotation services to execute and in
what sequence; and for manual annotation – what schemas
to use, how may annotators per document, whether they
can reject annotating a document, etc. The left-hand side
shows the actual selections made for this particular work-
flow, i.e., use both automatic and manual annotation; anno-
tate measurements, references, and sections; and have one
annotator per document. Once this template is saved by
the project manager, then it can be executed by the work-
flow engine on a chosen corpus and list of annotators and
curators. The workflow engine will first call the automatic

6http://www.jboss.com/products/jbpm/

annotation service to bootstrap and then its results will be
corrected by human annotators.
The rationale behind having an executive layer rather than
defining authentication and workflow management as ser-
vices similar to the storage and ontology ones comes from
the fact that Teamware services are all SOAP web services,
whereas elements of the executive layer are only in part im-
plemented as SOAP services with the rest being browser
based. Conceptually also the workflow manager acts like a
middleman that ties together all the different services and
communicates with the user interfaces.

4.4 The User Interfaces
The Teamware user interfaces are web-based and do not re-
quire prior installation. They either rendered natively in
the web browser or, for more complex UIs, a Java Web
Start wrapper is provided around some Swing-based GATE
editors (e.g., the document editor and the ANNIC viewer
(Aswani et al., 2005)). After the user logs in, the sys-
tem checks their role(s) and access privileges to determine
which interface elements they are allowed to access.

4.4.1 Annotator User Interface
When manual annotators log into Teamware, they see a
very simple web page with one link to their user profile
data and another one – to start annotating documents. The
generic schema-based annotator UI is shown in Figure 3
and it is a visual component in GATE, which is reused here
via Java Web Start7. This removes the need to install GATE
on the annotator machines and instead they just click on a
link to download and start a web application.

7http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp



Figure 3: The Schema-based Annotator UI

The annotation editor dialog shows the annotation types
(or tags) valid for the current project and optionally their
features (or attributes). These are generated automatically
from the annotation schemas assigned to the project by its
manager. The annotation editor also supports the modifi-
cation of annotation boundaries, as well as the use of reg-
ular expressions to annotate multiple matching strings si-
multaneously. To add a new annotation, one selects the text
with the mouse (e.g., “Bank of England”) and then clicks
on the desired annotation type in the dialog (e.g., Organi-
zation). Existing annotations are edited by hovering over
them, which shows their current type and features in the
editor dialog.

The toolbar at the top of Figure 3 shows all other actions
which can be performed. The first button requests a new
document to be annotated. When pressed, a request is sent
to the workflow manager which checks if there are any
pending documents which can be assigned to this annotator.
The second button signals task completion, which saves the
annotated document as completed on the data storage layer
and enables the annotator to ask for a new one (via the first
button). The third (save) button stores the document with-
out marking it as completed in the workflow. This can be
used for saving intermediary annotation results or if an an-
notator needs to log off prior to completing a document.
The next time they login and request a new task, they will
be given this document to complete first.

Ontology-based document annotation is supported in a sim-
ilar fashion, but instead of having a flat list of types on the
right, the annotator is shown the type hierarchy and when
they select a particular type (or class), they can then op-

tionally choose an existing instance or add a new one. This
UI also supports the annotation of relations by modelling
them as properties in the ontology and allowing annota-
tors to instatiate their values in the UI (not shown due to
lack of space). Similar to the schema annotation editor, the
ontology-based editor is a visual plugin from GATE deliv-
ered via Java Web Start.

4.4.2 Curator User Interface
As discussed in Section 3.1, curators (or editors) carry out
quality assurance tasks. In Teamware the curation tools
cover IAA metrics (e.g. precision/recall and kappa) to iden-
tify if there are differences between annotators; a visual an-
notation comparison tool to see quickly where the differ-
ences are per annotation type (Cunningham et al., 2002);
and an editor to edit and reconcile annotations manually
(i.e., adjudication) or by using external automatic services.

The key part of the manual adjudication UI is shown in Fig-
ure 4: the complete UI shows also the full document text
above the adjudication panel, as well as lists all annotation
types on the right, so the curator can select which one they
want to work on. In our example, the curator has chosen to
adjudicate Date annotations created by two annotators and
to store the results in a new consensus annotation set. The
adjudication panel has on top arrows that allow curators to
jump from one difference to the next, thus reducing the re-
quired effort. The relevant text snippet is shown and below
it are shown the annotations of the two annotators. The cu-
rator can easily see the differences and correct them, e.g.,
by dragging the correct annotation into the consensus set.



Figure 4: Part of the Adjudication UI

4.4.3 Project Manager Interface
The project manager web UI is the most powerful and
multi-functional one. It provides the front-end to the ex-
ecutive layer (see Section 4.3 and Figure 2). In a nutshell,
managers upload documents and corpora, define the anno-
tation schemas, choose and configure the workflows and ex-
ecute them on a chosen corpus. The management console
also provides project monitoring facilities, e.g., number of
annotated documents, number in progress, and yet to be
completed (see Figure 5). Per annotator statistics are also
available – time spent per document, overall time worked,
average IAA, etc. These requirements were discussed in
further detail in Section 3.1 above.

Figure 5: Project Progress Monitoring UI

5 Practical Applications
Teamware has already been used in practice in several cor-
pus annotation projects of varying complexity and size –
due to space limitations, here we focus on three representa-
tive ones. Firstly, we tested the robustness of the data layer
and the workflow manager in the face of simultaneous con-
current access. For this we annotated 100 documents, 2 an-
notators per document, with 60 active annotators requesting
documents to annotate and saving their results on the server.
There were no latency or concurrency issues reported.
Once the current version was considered stable, we ran sev-
eral corpus annotation projects to produce gold standards
for IE evaluation in three domains: business intelligence,
fisheries, and bio-informatics. The latter involved 10 bio-
informatics students which were first given a brief training
session and were then allowed to work from home. The

project had 2 annotators per document, working with 6 en-
tity types and their features. Overall, 109 Medline abstracts
of around 200-300 words each were annotated with aver-
age annotation speed of 9 minutes per abstract. This project
revealed several shortcomings of Teamware which will be
addressed in the forthcoming version 2:

• IAA is calculated per document, but there is no easy
way to see how it changes across the entire corpus.

• The datastore layer can sometimes leave the data in an
inconsistent state following an error, due to the under-
lying binary Java serialisation format. A move towards
XML file-based storage is being investigated.

• There needs to be a limit on the proportion of docu-
ments which any given annotator is allowed to work
on, since one over-zealous annotator ended up intro-
ducing a significant bias by annotating more than 80%
of all documents.

The most versatile and still ongoing practical use of
Teamware has been in a commercial context, where a com-
pany has two teams of 5 annotators each (one in China and
one in the Philippines). The annotation projects are being
defined and overseen by managers in the USA, who also
act occasionally as curators. They have found that the stan-
dard double-annotated agreement-based approach is a good
foundation for their commercial needs (e.g., in the early
stages of the project and continuously for gold standard
production), while they also use very simple workflows
where the results of automatic services are being corrected
by annotators, working only one per document to max-
imise volume and lower the costs. In the past few months
they have annotated over 1,400 documents, many of which
according to multiple schemas and annotation guidelines.
For instance, 400 patent documents were doubly annotated
both with measurements (IAA achieved 80-95%) and bio-
informatics entities, and then curated and adjudicated to
create a gold standard. They also annotated 1000 Medline
abstracts with species information where they measured av-
erage speed of 5-7 minutes per document. The initial an-
notator training in Teamware was between 30 minutes and
one hour, following which they ran several small-scale ex-
perimental projects to train the annotators in the particular



annotation guidelines (e.g., measurements in patents). An-
notation speed also improved over time, as the annotators
became more proficient with the guidelines – the Teamware
annotator statistics registered improvements of between 15
and 20%. Annotation quality (measured through inter-
annotator agreement) remained high, even when annotators
have worked on many documents over time.
From a Teamware implementational perspective, the di-
verse user needs and practical experience with remote an-
notator teams exposed several weaknesses in the current
implementation:

• Different sets of annotators need to be able to work
on the same corpus simultaneously, as part of separate
projects, so that each team can specialise in a small
number of annotation types. This requires support for
merging the results of the separate projects into one
consistent corpus, which is currently not achieved eas-
ily within the Teamware environment.

• The annotator UI needs to be highly responsive to
maximise the time annotators spend actually working
on the documents. Consequently the data storage layer
and the workflow need to minimise further network
traffic, e.g., allow access to document-level metadata
without also loading the entire document content.

• Execution speed of the annotation workflows needs
to be optimised further, e.g., by avoiding unnecessary
network traffic generated by temporary results being
saved to the data store.

• Annotation of relations as well as manual annotation
with medium- to large-size ontologies are required in
many projects and the corresponding UIs need to be
improved to support faster annotation.

6 Conclusion and Future Work
In this paper we have described a multi-role web-based an-
notation environment, which supports customised annota-
tion workflows and provides methodological support to the
different actors involved in the process. Evaluation with
distributed annotator teams working on a wide range of
corpus annotation projects is still ongoing. We have al-
ready identified some minor issues, mostly requiring op-
timisations in the workflow and data layers, as well as us-
ability improvements in the user interfaces. All these will
be addressed in the forthcoming second version. We have
also planned controlled experiments that compare annota-
tion times with Teamware against other annotation tools,
although obtaining statistically significant results would be
difficult, expensive, and would require large teams of anno-
tators.
Acknowledgements: This work has been supported by a
Matrixware/IRF research grant. We also wish to thank
Matthew Petrillo, Jessica Baycroft, Angus Roberts, and
Danica Damljanovic for running the Teamware distributed
annotation experiments and allowing us to report the results
here. Many thanks also to Milan Agatonovic who worked
on the Teamware executive layer, while being a researcher
at Sheffield.

7 References
M. Agatonovic, N. Aswani, K. Bontcheva, H. Cunningham,

T. Heitz, Y. Li, I. Roberts, and V. Tablan. 2008. Large-
scale, parallel automatic patent annotation. In Proc. of
1st International CIKM Workshop on Patent Information
Retrieval - PaIR’08..

N. Aswani, V. Tablan, K. Bontcheva, and H. Cunning-
ham. 2005. Indexing and Querying Linguistic Metadata
and Document Content. In Proceedings of Fifth Interna-
tional Conference on Recent Advances in Natural Lan-
guage Processing (RANLP2005), Borovets, Bulgaria.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. GATE: A Framework and Graphical Development
Environment for Robust NLP Tools and Applications. In
Proceedings of the 40th Anniversary Meeting of the As-
sociation for Computational Linguistics (ACL’02).

D. Day, J. Aberdeen, L. Hirschman, R. Kozierok, P. Robin-
son, and M. Vilain. 1997. Mixed-Initiative Develop-
ment of Language Processing Systems. In Proceedings
of ANLP-97.

D. Day, C. McHenry, R. Kozierok, and L. Riek. 2004.
Callisto: A configurable annotation workbench. In Int.
Conf. on Language Resources and Evaluation.

NIST. 2001. Proceedings of the Document Understanding
Conference, September 13.

D. Ferrucci and A. Lally. 2004. UIMA: An Architec-
tural Approach to Unstructured Information Processing
in the Corporate Research Environment. Natural Lan-
guage Engineering.

N. Ide, P. Bonhomme, and L. Romary. 2000. XCES:
An XML-based Standard for Linguistic Corpora. In
Proceedings of the Second International Language Re-
sources and Evaluation Conference (LREC).

A. Kiryakov. 2006. OWLIM: balancing between scal-
able repository and light-weight reasoner. In Proc. of
WWW2006, Edinburgh, Scotland.

K. Maeda and S. Strassel. 2004. Annotation Tools for
Large-Scale Corpus Development: Using AGTK at the
Linguistic Data Consortium. In Proc. of 4th Language
Resources and Evaluation Conference.

K. Maeda, H. Lee, S. Medero, J. Medero, R. Parker, and
S. Strassel. 2008. Annotation Tool Development for
Large-Scale Corpus Creation Projects at the Linguistic
Data Consortium. In Proceedings of the Sixth Interna-
tional Language Resources and Evaluation (LREC’08).

E. Marsh and D. Perzanowski. 1998. Muc-7 evaluation of
ie technology: Overview of results. In Proceedings of
the Seventh Message Understanding Conference.

D. Maynard, A. Funk, and W. Peters. 2009. SPRAT: a tool
for automatic semantic pattern-based ontology popula-
tion. In International Conference for Digital Libraries
and the Semantic Web, Trento, Italy, September.

P. Ogren. 2006. Knowtator: A Protege Plug-In For Anno-
tated Corpus Construction . In HLT-NAACL - Demos.

R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. 2008.
Cheap and fast—but is it good?: Evaluating non-expert
annotations for natural language tasks. In EMNLP ’08.


