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The task: input
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The task: input

periodically (ideally monthly) analyse about 250 000 crawled
documents (WSDL, HTML, PDF) relating to 25 000 web services
from 8700 providers

fortunately the services and providers are already instantiated
and linked with each other and the relevant documents

many duplicate documents with different URLs
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The task: output

carry out information extraction

classify documents and services

categorize services according to the ontology (59 subclasses of
Category with multiple inheritance)

express output as RDF according to the project’s ontology
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Typical batch

Input from the SC
Number of .arc.gz files 5
Total size of compressed files 441 MB
Number of documents ∼250 000
Number of Providers ∼8 700
Number of Services ∼25 000

Output to the CIM
Number of RDF-XML files 30
Total size of compressed files 40 MB
Number of RDF triples ∼4 500 000
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Annotation tasks

analyse WSDLs to instantiate Endpoint, Interface, and Operation
and properties associating them with each other and with Service
instances—not an NLP task, but with borrowed code integrated

classify documents by type (e.g., documentation, pricing, contact
details) and rate them as low-, medium-, or high-interest

carry out IE to identify providers’ addresses, phone numbers,
e-mail addresses, etc.

carry out IE/classification over services to identify service level
agreements, free trials, etc.

categorize each service in one or more of the 59 subclasses of
ServiceCategory
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Basic principles

GATE Developer for rapid development of the IE components and
testing of most components; saving pipelines as files to be
reloaded in the batch system

GATE serial datastores for persistence; datastores and corpora
for breaking the 250 000 documents into independently
manageable chunks

ANNIE as a starting point for IE

JAPE for rapid development of PRs where appropriate

GATE Embedded framework and libraries for custom PRs;
persistence (serial datastores and pipelines);
document/service/provider management (by corpora); headless
batch jobs
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Implementation: preprocessing

Use serial datastores for persistence and manageable chunks.

Use MD5 to merge duplicate documents; suppress HTTP error
messages and empty documents: 31% reduction.

Put each provider in its own corpus.

30 datastores

8700 corpora (about 290 per datastore)

173 000 documents (average 20 per corpus, but quite variable;
5770 per datastore)

Carry out special WSDL analysis using seekda’s code and store
the RDF-XML (generated from templates)as a document feature
on each WSDL.
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Analysis of a datastore

Pipeline series to run over each corpus:

1 standard NLP components

2 ANNIE gazetteers and NER transducers

3 custom gazetteers

4 custom JAPE transducers for weighting keywords, marking
documents as more or less interesting, etc.

5 GATE Batch Learning PR for service categorization

6 custom “voting” PRs for documents (types), services (category,
free trials), and providers (e-mail and postal addresses); output to
RDF-XML snippets (generated from templates) on the corpora
and documents

Analyse all corpora then consolidate all the RDF-XML snippets into
one output file.
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Service categorization

The final version of service categorization used machine learning
(SVM document classification) as well as weighted keywords, run
through a voting system for each service. ML categories were
weighted to outvote keywords.

See our “Ontology-Based Categorization of Web Services with
Machine Learning” (also at LREC 2010) for full details and
evaluation.
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Approaches to ontology population

Ontology manipulation

Load the ontology in memory and manipulate it with the GATE
Ontology API

Allows the program to query the ontology (and validate the data)
and modify the class and property hierarchy

Output can be saved as RDF-XML, N-Triples, N3 or Turtle

Everything is in memory at the same time

Used in CLOnE (SEKT), RoundTrip Ontology Authoring
(NEPOMUK), SPRAT and SARDINE (NeOn) software
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Approaches to ontology population

XML generation

Write XML templates and fill them in using the values of specified
annotation features (when the annotations match a template’s
requirements) or a Map<String,String>

Suitable for generating instances and property values for a fixed
class and property hierarchy

No “live” data validation, but a good set of templates guarantees
consistent output

Generates XML snippets which can be saved in datastores as
document and corpus features—very little in memory

Used in semantic document annotation web services (MUSING
and CLARIN) and in Service-Finder
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Code re-use

from GATE GUI, libraries, ANNIE, ML, the JAPE system
from TAO source-code tokenizer

from MUSING XML generator
to NeOn headless batch control tools

to CLARIN improved XML generator
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