
Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Effective Development with GATE
and Reusable Code for Semantically Analysing Heterogeneous

Documents

Adam Funk, Kalina Bontcheva

University of Sheffield

22 May 2010

Adam Funk, Kalina Bontcheva Effective Development with GATE 1 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Outline

1 Introduction

2 Annotation tasks

3 Implementation

4 Ontology population

5 Conclusions

Adam Funk, Kalina Bontcheva Effective Development with GATE 2 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

The task: input

Adam Funk, Kalina Bontcheva Effective Development with GATE 3 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

The task: input

periodically (ideally monthly) analyse about 250 000 crawled
documents (WSDL, HTML, PDF) relating to 25 000 web services
from 8700 providers

fortunately the services and providers are already instantiated
and linked with each other and the relevant documents

many duplicate documents with different URLs

Adam Funk, Kalina Bontcheva Effective Development with GATE 4 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

The task: output

carry out information extraction

classify documents and services

categorize services according to the ontology (59 subclasses of
Category with multiple inheritance)

express output as RDF according to the project’s ontology

Adam Funk, Kalina Bontcheva Effective Development with GATE 5 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Typical batch

Input from the SC
Number of .arc.gz files 5
Total size of compressed files 441 MB
Number of documents ∼250 000
Number of Providers ∼8 700
Number of Services ∼25 000

Output to the CIM
Number of RDF-XML files 30
Total size of compressed files 40 MB
Number of RDF triples ∼4 500 000

Adam Funk, Kalina Bontcheva Effective Development with GATE 6 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Annotation tasks

analyse WSDLs to instantiate Endpoint, Interface, and Operation
and properties associating them with each other and with Service
instances—not an NLP task, but with borrowed code integrated

classify documents by type (e.g., documentation, pricing, contact
details) and rate them as low-, medium-, or high-interest

carry out IE to identify providers’ addresses, phone numbers,
e-mail addresses, etc.

carry out IE/classification over services to identify service level
agreements, free trials, etc.

categorize each service in one or more of the 59 subclasses of
ServiceCategory

Adam Funk, Kalina Bontcheva Effective Development with GATE 7 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Basic principles

GATE Developer for rapid development of the IE components and
testing of most components; saving pipelines as files to be
reloaded in the batch system

GATE serial datastores for persistence; datastores and corpora
for breaking the 250 000 documents into independently
manageable chunks

ANNIE as a starting point for IE

JAPE for rapid development of PRs where appropriate

GATE Embedded framework and libraries for custom PRs;
persistence (serial datastores and pipelines);
document/service/provider management (by corpora); headless
batch jobs

Adam Funk, Kalina Bontcheva Effective Development with GATE 8 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Implementation: preprocessing

Use serial datastores for persistence and manageable chunks.

Use MD5 to merge duplicate documents; suppress HTTP error
messages and empty documents: 31% reduction.

Put each provider in its own corpus.

30 datastores

8700 corpora (about 290 per datastore)

173 000 documents (average 20 per corpus, but quite variable;
5770 per datastore)

Carry out special WSDL analysis using seekda’s code and store
the RDF-XML (generated from templates)as a document feature
on each WSDL.

Adam Funk, Kalina Bontcheva Effective Development with GATE 9 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Analysis of a datastore

Pipeline series to run over each corpus:

1 standard NLP components

2 ANNIE gazetteers and NER transducers

3 custom gazetteers

4 custom JAPE transducers for weighting keywords, marking
documents as more or less interesting, etc.

5 GATE Batch Learning PR for service categorization

6 custom “voting” PRs for documents (types), services (category,
free trials), and providers (e-mail and postal addresses); output to
RDF-XML snippets (generated from templates) on the corpora
and documents

Analyse all corpora then consolidate all the RDF-XML snippets into
one output file.

Adam Funk, Kalina Bontcheva Effective Development with GATE 10 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Service categorization

The final version of service categorization used machine learning
(SVM document classification) as well as weighted keywords, run
through a voting system for each service. ML categories were
weighted to outvote keywords.

See our “Ontology-Based Categorization of Web Services with
Machine Learning” (also at LREC 2010) for full details and
evaluation.

Adam Funk, Kalina Bontcheva Effective Development with GATE 11 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Approaches to ontology population

Ontology manipulation

Load the ontology in memory and manipulate it with the GATE
Ontology API

Allows the program to query the ontology (and validate the data)
and modify the class and property hierarchy

Output can be saved as RDF-XML, N-Triples, N3 or Turtle

Everything is in memory at the same time

Used in CLOnE (SEKT), RoundTrip Ontology Authoring
(NEPOMUK), SPRAT and SARDINE (NeOn) software

Adam Funk, Kalina Bontcheva Effective Development with GATE 12 / 14



Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Approaches to ontology population

XML generation

Write XML templates and fill them in using the values of specified
annotation features (when the annotations match a template’s
requirements) or a Map<String,String>

Suitable for generating instances and property values for a fixed
class and property hierarchy

No “live” data validation, but a good set of templates guarantees
consistent output

Generates XML snippets which can be saved in datastores as
document and corpus features—very little in memory

Used in semantic document annotation web services (MUSING
and CLARIN) and in Service-Finder

Adam Funk, Kalina Bontcheva Effective Development with GATE 13 / 14

Map<String, String>


Introduction
Annotation tasks

Implementation
Ontology population

Conclusions

Code re-use

from GATE GUI, libraries, ANNIE, ML, the JAPE system
from TAO source-code tokenizer

from MUSING XML generator
to NeOn headless batch control tools

to CLARIN improved XML generator

Adam Funk, Kalina Bontcheva Effective Development with GATE 14 / 14


	Introduction
	Annotation tasks
	Implementation
	Ontology population
	Conclusions

