
Benchmarking Textual Annotation Tools for the Semantic Web

Diana Maynard

Dept of Computer Science, University of Sheffield, Sheffield, UK {diana}@dcs.shef.ac.uk

Abstract
This paper investigates the state of the art in automatic textual annotation tools, and examines the extent to which they are ready for use
in the real world. We define some benchmarking criteria for measuring the usability of annotation tools, and examine those factors which
are particularly important for a real user to be able to determine which is the most suitable tool for their use. We discuss factors such as
usability, accessibility, interoperability and scalability, and evaluate a set of annotation tools according to these factors. Finally, we draw
some conclusions about the current state of research in annotation and make some suggestions for the future.

1. Introduction

This paper investigates methods and results for benchmark-
ing textual annotation tools. We define first some criteria
for benchmarking, and examine those factors which are par-
ticularly important for a user to be able to determine which
is the most suitable tool for their use. We then perform a
series of experiments on a set of annotation tools, and dis-
cuss the results, finally drawing some conclusions about the
future of annotation tools.

The term ”annotation” can be used to mean many differ-
ent things: for example, simply adding comments to a doc-
ument; adding information about document structure or
composition, author, document type etc; adding linguistic
information such as part-of-speech tagging, and so on. Here
we refer to textual annotation as the process (or result) gen-
erally performed by means of some kind of ontology-based
information extraction (OBIE). This consists of identifying
the key terms in the text (such as named entities and techni-
cal terms) and then relating them to concepts in the ontol-
ogy. In this paper we are concerned with tools that perform
automatic rather than manual annotation.

There has been some previous work aimed at comparing
and/or evaluating different annotation tools. However, this
largely examines only the performance of the information
extraction component and is based on a single set of task-
specific data (see for example (Sazedj and Pinto, 2005)).
Their aim is simply to examine the state of the art in an-
notation performance, paying little heed to the demands of
real users of semantic web technologies. What such pre-
vious work ignores is that there are many more aspects to
evaluating a tool than just measuring its performance in a
particular situation. In our view, a complementary com-
parative study is required to look into issues going beyond
performance as measured by precision and recall in quanti-
tative evaluations. In this paper we analyse issues relating
to usability, accessibility, scalability and interoperability,
and investigate the extent to which some current annota-
tion tools are ready for the demands of users. This aims to
enable users to draw some conclusions about which (if any)
tools are best suited to their needs. We make no claims that
any one tool is a priori better than any other, because it de-
pends on many factors such as who will be using it, what
they will be using it for, and which features they care about
most (e.g. speed vs. usability).

2. Requirements
According to (Reidsma et al., 2005), there are 3 groups of
annotation tool users: annotators, annotation consumers,
and developers (of which there are two types: corpus devel-
opers and system developers). In reality these groups may
not be so well defined, for example, corpus developers are
very often the same people as the annotators. However we
should be aware of the differing abilities of these groups
of users. We would not necessarily expect annotators to
have linguistic skills, let alone computer skills, although
they will probably have domain knowledge, whereas sys-
tem developers can be expected to have computer skills
but not necessarily domain knowledge or linguistic skills.
Corpus developers will generally have linguistic skills and
probably domain knowledge, while annotation consumers
will probably have domain knowledge but not necessarily
linguistic or computing skills.
Table 1 shows the extent to which each kind of requirement
is important for the different users. A requirement which is
not applicable (e.g. correctness of performance is not ap-
plicable when manually annotating) is denoted by ”-”. A
single ”+” indicates that a requirement may be important or
is slightly important; ”++” indicates a greater importance;
”+++” would indicate that a requirement is absolutely es-
sential.
One of the main problems with designing automatic anno-
tation tools (common to many other software tools) is the
tradeoff between generality and specificity. Even though
annotation may appear to be a quite straightforward task
with a clear objective, both the uses and users of annotation
tools may differ widely, and unless the tool is designed for a
specific clear purpose with a particular kind of user in mind,
there will almost always be dissatisfaction somewhere. One
of the most important criteria is therefore that the annota-
tion tool should be flexible and easily adaptable and/or ex-
tendable to the user’s needs. This could range from some-
thing as simple as being able to change the colour of the
annotation, through to enabling a whole new kind of visual
representation or even modality.

3. Annotation Tools
The textual annotation tools we have chosen to investigate
are GATE (Cunningham et al., 2002), KIM (Popov et al.,
2004), OntoMat (Handschuh et al., 2002), MnM (Motta
et al., 2002) and Magpie (Domingue et al., 2004). These



User Manual Annotation Corpus System
Annotator Consumer Developer Developer

Usability ++ + ++ +
Flexibility + + ++ ++
Performance - ++ + +
Scalability - ++ + ++
Interoperability + + + ++

Table 1: User Requirements for annotation tools

have been chosen for a number of reasons, but mainly be-
cause they all perform in some way automatic annotation of
textual data with respect to an ontology (although they are
quite diverse); they are all XML-based, open source, read-
ily available and do not require extensive training to use.
These tools have all been previously evaluated to some ex-
tent regarding performance, but have not been directly com-
pared with respect to other criteria such as those we present.

4. Evaluation Criteria
In this section, we describe and discuss the evaluation of the
annotation tools previously described, in terms of criteria
such as usability, interoperability and accessibility issues.
We describe our own experiences with the tools, augmented
by comments and insights via a small survey of actual users
of the tools.

4.1. Interoperability issues
Interoperability is concerned with how well the tool inter-
acts with other tools and systems. Annotation is a task that
is often combined with other applications, such as brows-
ing, search and retrieval, indexing, etc., so it is important
that annotation tools can easily interact with other systems.
This is best achieved by conformance to existing standards.
Interoperability evaluation not only covers annotation for-
mat, but also issues such as:

• data format: what kinds of text format can be pro-
cessed, e.g. xml, html, sgml, txt, etc.;

• annotation schemes: whether annotation schemes can
be imported/exported from other tools;

• plugins: if it is possible to plug in other tools and ap-
plications;

• API: whether the tool provides some API to program-
matically access it.

Under the topic of interoperability, we investigate factors
such as which platforms and browsers the tool runs on, on-
tology formats possible and how easily the tool can be mod-
ified.

4.1.1. Platform
This factor considers which platforms the tool can be run
on, according to the documentation and/or discussion with
the providers. All tools worked with both Windows and
Linux apart from KIM which only worked with Windows.
GATE, OntoMat and MAGPIE also worked with Macs.

4.1.2. Browser
Here we consider which browsers the tool works with. Here
MAGPIE was the only tool which worked with both IE and
Firefox. KIM worked only with IE, while MnM and On-
toMat have their own proprietary browser and GATE does
not use a browser as such but imports the documents into
its own interface. GATE can, however, be run via its API
as a web service on any browser.

4.1.3. Browser variation
This question looked at if and how there are any differ-
ences when the tool is run with different browsers. This
only therefore applied to MAGPIE as the other tools only
work with a single browser. It was found that there are quite
a few differences with different browsers: when running on
Firefox the performance was slightly substandard and there
were some unexpected happenings; there were also con-
flicts between browser and plugin commands on Firefox.
It is expected that later versions of MAGPIE will not have
this problem, however.

4.1.4. Ontology format
This looks at which ontology formats are compatible with
the tool. All the tools are compatible with OWL except
for MnM (which is an older tool and no longer supported)
which uses DAML+OIL and RDF, GATE is also compati-
ble with RDF. At the time of testing, MAGPIE used its own
proprietary ontology format but its current version supports
OWL.
We also investigated specifically the OWL interoperability
of the tools, by testing the ability of the tools to import and
export OWL files without data loss. In fact, only GATE
and KIM (which use the same underlying ontology reposi-
tory, OWLIM (Kiryakov, 2006)) could be benchmarked in
this way, out of the annotation tools under investigation,
as the others either did not support OWL or could not be
tested for various reasons. Compared with other semantic
web tools, GATE (and KIM) actually performed very well
in this respect, only suffering from some minor data loss.
In particular, it interacted very well with Protege, KAON,
JENA and SWI-Prolog, which were also among the best
performing tools in the experiment. More details of this ex-
periment can be found in (Garcı́a-Castro et al., 2007). We
can conclude from this that there seems to be a benefit for a
semantic annotation tool to make use of a semantic repos-
itory such as OWLIM, which assists interoperability with
ontology editors, support for ontology formats, etc.



4.1.5. Data format
Here we look at what kinds of textual format can be pro-
cessed by the tool. GATE and KIM both score highly here
by being able to process many formats, including plain text,
SGML, XML, HTML, RTF, Word, and PDF (actually they
use the same functionalities for document format analysis).
The other tools only really process texts that can be dis-
played in a browser, i.e. HTML, plain text, XML etc.

4.1.6. Source available
This question looks at whether the source code is freely
available so that developers can extend or modify the tool as
required, for example adding new annotation sets, new vi-
sualisation capabilities, new processing resources, etc. This
is a very important part of the flexibility and extensibility of
the tool, since as discussed in Section 2., if the type of user
and tasks for which the tool is to be used remain unknown
or unpredictable at the time of design, then the tool needs
to be able to cater for such flexibility if it is to fulfil inter-
operability requirements and be widespread in its use. The
only tools of those tested that, to our knowledge, have this
capability are OntoMat and GATE. However, there may be
extensibility advantages with tools such as KIM that have
open APIs.

4.2. Usability
Under the topic of usability, we categorise the quite broad
issues such as documentation, ease of setup and instal-
lation, aesthetics of design, and range of tasks possible.
Some more specific issues concerning accessibility are cat-
egorised separately in Section 4.3..

4.2.1. Installation ease
First we look at how easy the tool is to install. While this is
clearly related to the following question about the instal-
lation documentation, the two may be orthogonal as the
installation documentation could be very poor but instal-
lation may still be very easy. Indeed we can see this from
the results, for example MAGPIE was deemed very easy to
install but the installation documentation was deemed poor.
In fact, all tools were very easy to install except for MnM,
which was easy for Windows but not for Linux.

4.2.2. Installation documentation
The installation documentation was evaluated separately
from the general tool documentation or user guide. MAG-
PIE was the only tool to have a negative score for installa-
tion documentation, which correlates with the difficulty of
installation. In the case of KIM, GATE and OntoMat, the
quality of the installation documentation turned out not to
be that important since the tools were easy to install any-
way.

4.2.3. Documentation quality
We then turned our attention to the quality of the main doc-
umentation. MAGPIE and KIM had very good documen-
tation, which was clear, comprehensive and easy to fol-
low. MnM’s documentation was clear but very basic, while
KIM’s documentation was not very clear. GATE’s docu-
mentation was very comprehensive but quite confusing and
the users found it hard to locate the relevant information
because it was so detailed.

4.2.4. Documentation format
The documentation format is closely linked with the quality
of the documentation, showing that the more modalities in
the documentation, the higher the quality. We investigated
4 aspects of the document format: whether it had step-
by-step instructions, images/screenshots, movies/demos or
just simple textual instructions. MAGPIE was the only tool
which had clear step-by-step instructions, and also had both
images and movies. OntoMat and GATE both had textual
instructions, images and movies, while KIM had textual in-
structions and images, and MnM just had textual instruc-
tions. Clearly the combination of all text, movies and im-
ages was the clearest for users, although step-by-step in-
structions were not necessarily an improvement on sim-
ple basic instructions (both MAGPIE and Ontomat scored
highly on documentation quality although only MAGPIE
had the step-by-step instructions). As with the installa-
tion instructions, however, a tool might be easy to use even
though the instructions are poor.

4.2.5. Linked help
A final part of the instruction examination looked at
whether there was a help facility available directly from
the tool. This could be either just a link to the documen-
tation (as in the case of GATE) or a specific help function
similar to most proprietary programs. It is very useful to
have direct access to help without having to revert back to
the website or downloaded instructions somewhere in the
user’s file system. MAGPIE had a button linking back to
the website, from which the user guide could be found, but
no direct link to a help facility. KIM had no help facility,
while OntoMat and GATE both have linked help available:
GATE links directly to the user guide via a button on the
menu.

4.2.6. Configuration
The configuration criterion looked at how easy the tool was
to set up in the way that the user wanted. This does not
include installation, but rather things like changing the ap-
pearance of the GUI to suit the user’s needs, changing op-
tions such as whether the tool should save session on exit,
layout of menus, different skins or ”look and feel”, alter-
ing the fonts, etc. It does not consider the actual presence
or absence of such options, but is based on how easy it is
to set up the tool according to the options given, i.e. how
easy these options are to use. MAGPIE and OntoMat were
deemed very easy to set up (possibly because not so many
options were available), while KIM was deemed fairly easy.
MnM was considered quite hard to set up because of unnec-
essary and confusing dialogues, while GATE was deemed
quite hard simply because many options were available and
it was not always clear what they did. It is also not obvious
in GATE that some options (such as changing the colour
of annotations) are even possible, without reading the user
guide.

4.2.7. Aesthetics
This question looked at how pleasing the tool was gener-
ally for the user, in terms of appearance, attractiveness etc.
MAGPIE, KIM and GATE all scored highly here, and were



considered to be colourful and interesting. MnM and On-
toMat were rated quite poorly, and considered to be dull
and unappealing. The aesthetics of a tool seems to be quite
highly linked with the overall goals of the tool: MnM was
designed as a very simple tool for a fairly limited range of
tasks, and therefore it seems that not much consideration
was given to its attractiveness. GATE on the other hand is
designed for a very broad range of users and applications,
and since one of its objectives is to be used as widely as
possible, much consideration has gone into the look and
feel of the tool.

4.3. Accessibility
Software accessibility is essentially about making tools that
are usable, easy to use and attractive to use for everyone
(not just for people with disabilities) (Maynard et al., 2007).
Some of the most important examples of accessibility prob-
lems stem from inflexibility. A well designed tool will have
options to change the user’s preferences regarding colours,
layout, font sizes and styles, and so on, and the ability to
save and restore latest sessions, etc.
Even though a user should be able to choose such options,
the default options should also be well designed. For ex-
ample, text should be in a mixture of upper and lower case,
and colour schemes should incorporate contrasting colours
in the same range. Icons should be clearly understandable,
not just with alternative text on mouseover, but should also
use clear symbols and be large enough to click on eas-
ily. Mouse alternatives should also be widely available,
although in practice it is hard to annotate regions of text
manually without using a mouse.
In general, GATE performed the best on the accessibility
tasks, with KIM a close second. Again, this is largely be-
cause GATE is much more flexible than the other tools, al-
lowing the user to set it up how they want and to change the
look and feel according to their preference.

5. Scalability
One aspect of scaling up to the real world is to combat the
problems of accuracy when systems are deployed in indus-
trial applications, such as the enabling of public metadata-
on-demand services. However, even in a closed domain
with a tightly focused application, there are more mundane
issues concerning the sheer volume of data, with respect to
storage, processing speed and power. Scalability has been
identified as a critical issue for the processing of large vol-
umes of data, so that statistical IE algorithms can be de-
signed and trained (since these require large amounts of an-
notated training data in order to be accurate). In this sec-
tion, we discuss some research designed to investigate the
feasibility of scaling annotation tools up to the demands of
the real world, i.e. performing annotation on an industrial
level with massive volumes of data and/or huge ontologies.
SWAN 1 was a recent experiment in scaling up automated
metadata extraction for industrial strength Semantic Web
application development, involving 3 systems: GATE, KIM
and a focused crawler called SECO. Following on from
this, the KIM Cluster Architecture has been developed with

1http://old.deri.ie/projects/swan/

the specific aim of extensive scaling of the existing KIM
model (Manov and Popov, 2005). The system has been
demonstrated on a corpus of over 1.2 million news articles,
resulting in the recognition of over 1 million named entities.
These were all stored in the semantic repository based on
OWLIM, along with their semantic descriptions (attributes
and properties). The average speed of annotation in this
experiment was 10KB per annotator node/component.

The scalability of GATE has been demonstrated through
a number of experiments running various language pro-
cessing tasks over large textual collections (Maynard et al.,
2007). The machine learning API is capable of running on
huge amounts of data, e.g. very large ontologies (dependent
on the hard disk size) and thousands of documents for train-
ing (depending on memory size and – for some learning al-
gorithms – hard disk size). This is mainly due to the datas-
tore mechanism in GATE, which stores immediate data and
results on the hard disk rather than in memory, loading and
unloading documents as they are processed.

The other 3 annotation tools examined were not really de-
signed for large-scale applications, and this is their biggest
drawback when using such tools for industrial rather than
testbed research applications. The main aim of MnM was
to provide proof-of-concept rather than a serious industrial-
strength tool. MnM has serious problems when used with
even a medium-sized ontology, and since it relies on train-
ing, a user first has to manually annotate documents, which
is infeasible on a large scale and with an ontology of any
significant size.

One aspect of scalability that showed particularly strongly
in the case of Magpie was the relationship between the de-
sire to scale up as opposed to the real time responsiveness
of the application to the user’s interaction. Thus pragmati-
cally, scale is only an added value of a particular annotation
tool as far as the user is willing to wait for the outputs: for
GATE, this is easily in the extent of several hours or even
days, since the output is a marked-up collection of docu-
ments. For Magpie, the time limits are in the range of sec-
onds – otherwise, the user is less likely to achieve the main
objective of this tool: navigation on the Web using semantic
relationships and links.

In summary, GATE and KIM are designed to be scalable
and to be applicable in real world scenarios. Extensive ex-
periments - both on the tools themselves and with their use
in industrial settings - have shown that they can cope rea-
sonably well with large volumes of data and real-life on-
tologies without sacrificing performance. There are, how-
ever, some limitations: GATE applications may be quite
slow depending on both the approach used and the size and
content of the texts. MnM was never designed to be used in
a large-scale environment and therefore suffers from a num-
ber of problems (some of which are indeed insurmountable
without modifying the actual tool) when applied to large
ontologies. Similarly, OntoMat was never designed for
scalability and can suffer problems when used in such an
environment. In general, any system that relies on learning
will have problems when applied to a new ontology, as it
will require a large amount of manually annotated training
data which is time-consuming to produce.



6. Recommendations and Conclusions
In this paper, we have introduced a set of different anno-
tation tools and investigated various aspects such as their
aims, usability and scalability. Our aim is not to try to iden-
tify which tool is the best, but rather to examine the features
a user should look for when deciding on a tool to use, and to
highlight some issues which should be factors in that user’s
choice.
It is clear from our research that the most important thing
to consider is the task to which the tool will be put and the
situation in which it will be used. For this, we must first
examine two main factors: the type of user, and the scope
of tasks on which the tool will be put to use. Once these
have been identified, we can turn our attention to more de-
tails: for example, if the tool is to be used solely by anno-
tators, then a high degree of usability straight from the box
may be important; if the tool is to be used only for a sin-
gle, standalone kind of task, interoperability may be less of
an issue than if the tool is to be used within a larger suite
of tools, and so on. In Section 2. we established a set of
requirements and investigated the importance of each with
respect to the kind of user. In Table 2 we summarise the
extent to which the annotation tools we have analysed ful-
fil these requirements. As before, ”-” indicates the absence
or near absence of that requirement, while the number of +
signs indicate the level. While it appears from the table that
GATE is in general the best performing tool overall, it re-
ally depends what a user’s requirements are. For example,
if a simple or highly scalable tool is required, it may not be
the best choice.
In this paper, we have not approached the subject of per-
formance of the tools. This is for two reasons: (1) per-
formance evaluations of annotation tools have been docu-
mented elsewhere, e.g. (Maynard et al., 2007; Sazedj and
Pinto, 2005; Maynard et al., 2008), and in the Dot.Kom
and SEKT projects; (2) previous evaluations have shown
that it is difficult to compare different tools on the same
documents and with the same ontology, since they are all
designed for different purposes and work best on the kind
of data they were designed for, so any comparison may lead
to unfair prejudice. For example, in the case of Magpie, the
precision on annotating text that is within the domain of the
loaded lexicon is far superior to most other tools; however,
the recall tends to decline rapidly if the text moves beyond
the domain of the lexicon. This is a well-known feature
of ontology-driven annotation, often presented as ontology
brittleness (Dzbor and Motta, 2006). We refer the reader,
however, to (Maynard et al., 2007) for a look at the perfor-
mance of the tools in question in a number of experiments.
The problem of domain dependence is also related to the is-
sue of algorithmic reuse. The IE systems underlying the an-
notation tools are largely tailor-made for specific domains
and applications, with the result that not only are they hard
to adapt for new tasks, but that it is difficult to extricate
potentially reusable components or sub-components which
are buried deep in the architecture. For example, there
may not be a distinction between foreground information,
which is dependent on the domain and application, and
background information, which can be reused as it stands;
and consequently, between the tools needed to access and

manipulate these two types of information.
Annotation tools have already proved their success in a
number of real world applications, such as Del.ici.ous,
Flickr, digital libraries such as Perseus2, Garlik3 (which
mines data about consumers present in various sources in-
cluding the web), Fizzback4 (which provides real-time cus-
tomer feedback from SMS and email feeds) and so on.
However, there are several reasons why semantic annota-
tion is not more widespread. First, it is time-consuming and
complex to produce annotations in open domains. Second,
there are not enough DIY cases: Flickr and Del.ici.ous have
tapped into obvious needs, and Innovantage hopes to do the
same, but in many cases we do not have enough folk for a
folksononmy. For example, broadcast archives are a Catch-
22 situation: people are not aware that they need them until
they use them, and they cannot use them until widespread
need generates either human effort or funding. Automatic
methods for annotation, on the other hand, have made huge
advances in recent years to a usable level, but the out-
put still tends to be incomplete or innacurate, especially in
open domains. One solution is therefore to combine auto-
matic methods with human annotation at the lowest pos-
sible cost, and preferably done by non-experts. While we
have plenty of algorithms, data structures and evaluation
protocols emerging, we still currently lack a clear statement
of how to specify and implement new annotation tasks, es-
pecially those oriented towards non-HLT experts. What is
therefore needed is a methodology covering how to:

• decide if annotation is applicable to a problem;

• define the problem with reference to a set of examples;

• identify similarities with other problems and thus to
estimate likely performance levels;

• design the annotation workflow, including automatic
assistance;

• measure success.

These tasks are beyond the scope of the current work; how-
ever, they are currently being pursued in projects such as
NeOn5 and MUSING6, by researchers at Harvard Medical
School, and by some commercial users.

Acknowledgements
The research for this paper was conducted as part of the EU
Network of Excellence Knowledge Web.

7. References
H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.

2002. GATE: A Framework and Graphical Development
Environment for Robust NLP Tools and Applications. In
Proceedings of the 40th Anniversary Meeting of the As-
sociation for Computational Linguistics (ACL’02).

2http://www.perseus.tufts.edu/
3http://www.garlik.com
4http://www.fizzback.com
5http://www.neon-project.org
6http://www.musing-project.eu



Tool GATE KIM MnM Magpie OntoMat
Usability ++ ++ - ++ +
Flexibility ++ + - + +
Performance +++ ++ + ++ ++
Scalability ++ +++ - ++ +
Interoperability ++ ++ - + ++

Table 2: Requirements fulfilled by annotation tools

J. Domingue, M. Dzbor, and E. Motta. 2004. Magpie: Sup-
porting Browsing and Navigation on the Semantic Web.
In N. Nunes and C. Rich, editors, Proceedings ACM
Conference on Intelligent User Interfaces (IUI), pages
191–197.

M. Dzbor and E. Motta. 2006. Study on Integrating Se-
mantic Applications with Magpie. In 15th Intl. Confer-
ence on Artificial Intelligence: Methods, Systems & Ap-
plications (AIMSA), Bulgaria.

R. Garcı́a-Castro, S. David, and J. Prieto-González. 2007.
D1.2.2.1.2 benchmarking the interoperability of ontol-
ogy development tools using owl as interchange lan-
guage. Technical report, Knowledge Web, September.

S. Handschuh, S. Staab, and F. Ciravegna. 2002. S-
CREAM — Semi-automatic CREAtion of Metadata. In
13th International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW02), pages 358–
372, Siguenza, Spain.

Atanas Kiryakov. 2006. OWLIM: balancing between scal-
able repository and light-weight reasoner. In Proc. of
WWW2006, Edinburgh, Scotland.

D. Manov and B. Popov. 2005. D2.6.1 Massive Automatic
Annotation. Technical report, SEKT EU Project Deliv-
erable.

D. Maynard, S. Dasiopolou, S. Costache, K. Eckert,
H. Stuckenschmidt, M. Dzbor, and S Handschuh. 2007.
Benchmarking of annotation tools. Technical Report
D1.2.2.1.3, KnowledgeWeb Deliverable.

Diana Maynard, Yaoyong Li, and Wim Peters. 2008. Nlp
techniques for term extraction and ontology population.
In P. Buitelaar and P. Cimiano, editors, Bridging the Gap
between Text and Knowledge - Selected Contributions to
Ontology Learning and Population from Text. IOS Press.

E. Motta, M. Vargas-Vera, J. Domingue, M. Lanzoni,
A. Stutt, and F. Ciravegna. 2002. MnM: Ontology
Driven Semi-Automatic and Automatic Support for Se-
mantic Markup. In 13th International Conference on
Knowledge Engineering and Knowledge Management
(EKAW02), pages 379–391, Siguenza, Spain.

B. Popov, A. Kiryakov, A. Kirilov, D. Manov,
D. Ognyanoff, and M. Goranov. 2004. KIM – A
semantic platform for information extraction and
retrieval. Natural Language Engineering, 10:375–392.

D. Reidsma, N. Jovanovic, and D. Hofs. 2005. Designing
annotation tools based on properties of annotation prob-
lems. In Measuring Behavior 2005, 5th International
Conference on Methods and Techniques in Behavioral
Research, Wageningen, The Netherlands.

P. Sazedj and H. Sofia Pinto. 2005. Time to evaluate: Tar-

geting annotation tools. In Proceedings of ISWC 2005
SemAnnot Workshop, Galway, Ireland.


