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Abstract
In this paper, we discuss methods of measuring the performance of ontology-based information extraction systems. We focus particularly
on the Balanced Distance Metric (BDM), a new metric we have proposed which aims to take into account the more flexible nature of
ontologically-based applications. We first examine why traditional Precision and Recall metrics, as used for flat information extraction
tasks, are inadequate when dealing with ontologies. We then describe the Balanced Distance Metric (BDM) which takes ontological
similarity into account. Finally, we discuss a range of experiments designed to test the accuracy and usefulness of the BDM when
compared with traditional metrics and with a standard distance-based metric.

1. Introduction
Traditionally, applications such as information extraction
(IE) are evaluated using Precision, Recall and F-Measure.
These metrics give us a binary decision of correctness for
each entity in the text, i.e. by comparing the key (gold
standard) and system responses, they classify the result as
either right or wrong in each case. Ontology-based infor-
mation extraction systems attempt to classify entities in a
more scalar fashion, as there are many different categories
to which an entity can be assigned, and the distinction be-
tween these categories is much less clearcut. Traditional
entity classes do not subsume each other, whereas in an on-
tology, there are subclass and superclass categories to con-
sider, so the distinction between right and wrong is more
blurred. In traditional IE, an element identified as a Person
is either correct or incorrect (measured by Precision), and
elements which should be identified as Person are either
identified or not (measured by Recall). When making an
ontological classification, however, the distinction is more
fuzzy. For example if we misclassify an instance of a Re-
searcher as a Lecturer, we are clearly less wrong than miss-
ing the identification (and classification) altogether, and we
are also somehow less wrong than if we had misclassi-
fied the instance as a Location. Credit should therefore be
given for partial correctness. Traditionally, this is some-
times achieved by allocating a half weight to something
deemed partially correct, but this is still insufficient to give
a proper distinction between degrees of correctness. We
therefore adopt an approach based on similarity between
Key (the gold standard) and Response (the output of the
system), known as BDM (Maynard, 2005; Maynard et al.,
2006).
In this paper, we aim to evaluate how useful the BDM is as
a measure of the performance of an ontology-based Infor-
mation Extraction (OBIE) system. Of course, how to eval-
uate an evaluation metric is not obvious, but there are some
general guidelines proposed by (King, 2003) for evaluation
metrics that we try to follow. A metric should:

• reach its highest value for perfect quality;

• reach its lowest value for worst possible quality;

• be monotonic;

• be clear and intuitive;

• correlate well with human judgement;

• be reliable and exhibit as little variance as possible;

• be cheap to set up and apply;

• be automatic.

We aim in this paper to show how the BDM fulfils these
criteria, describing some experiments we have carried out
to investigate its validity.

2. A Distance-Based Metric for Evaluation
As discussed in Section 1., a metric which classifies the
correctness of an answer based on its semantic proximity
to the real answer should give us a fairer indication of the
performance of the system. Other existing cost-based or
distance-based metrics, such as Learning Accuracy (LA)
(Hahn and Schnattinger, 1998), have some flaws such as
not taking into account the density of the hierarchy, and
in the case of LA, being asymmetrical. By this we mean
that comparing two concepts in the ontology gives different
results depending on which one is the Key and which is
the Result. Given that we trying to compute the similarity
between two concepts, it seems rather odd and unintuitive
that this should be the case.
The BDM computes semantic similarity between two an-
notations of the same token in a document. The metric
has been designed to replace the traditional ”exact match
or fail” metrics with a method which yields a graded cor-
rectness score by taking into account the semantic distance
in the ontological hierarchy between the compared nodes
(Key and Response). The final version of the BDM is an
improved version of the original BDM described in (May-
nard, 2005), which did not take the branching factor into
account (as described below).
The BDM is computed on the basis of the following mea-
surements:

• CP = the shortest length from root to the most spe-
cific common parent, i.e. the most specific ontological
node subsuming both Key and Response)



• DPK = shortest length from the most specific common
parent to the Key concept

• DPR = shortest length from the most specific common
parent to the Response concept

• n1: average chain length of all ontological chains con-
taining Key and Response.

• n2: average chain length of all ontological chains con-
taining Key.

• n3: average chain length of all ontological chains con-
taining Response.

• BR: the branching factor of each relevant concept, di-
vided by the average branching factor of all the nodes
from the ontology, excluding leaf nodes.

The complete BDM formula is as follows:

BDM =
BR(CP/n1)

BR(CP/n1) + (DPK/n2) + (DPR/n3)
(1)

The BDM itself is not sufficient to evaluate our populated
ontology, because we need to preserve the useful proper-
ties of the standard Precision and Recall scoring metric.
Our APR metric (Augmented Precision and Recall) com-
bines the traditional Precision and Recall with a cost-based
component (namely the BDM). We thus combine the BDM
scores for each instance in the corpus, to produce Aug-
mented Precision, Recall and F-measure scores for the an-
notated corpus, calculated as follows:

AP =
BDM

n + Spurious
and AR =

BDM

n + Missing
(2)

while F-measure is calculated from Augmented Precision
and Recall as:

F −measure =
AP ∗ AR

0.5 ∗ (AP + AR)
(3)

3. Evaluation of Ontology-Based
Information Extraction Metrics

We performed various experiments to test the validity of the
BDM metric. First, we compared it with two other metrics:
a flat metric and another similarity-based metric, the LA.
We also looked at how it performed on two different learn-
ing algorithms for IE: one which is based on a flat classifi-
cation (SVN) and one which is based on a hierarchical clas-
sification (Hieron). Our second experiment compared two
different IE systems (GATE and KIM) using Precision and
Recall, and the APR, in order to see how they two systems
compared using the two different metrics. The idea behind
this was to see if using BDM revealed any differences be-
tween the two systems that traditional metrics did not. The
third experiment looked specifically at the scalability of the
metric and how it performed on different densities and sizes
of ontology.
For the evaluations, we used the semantically annotated
OntoNews corpus (Peters et al., 2005) as a gold standard.

This consists of 292 news articles from three news agencies
(The Guardian, The Independent and The Financial Times),
and covers the period of August to October, 2001. The ar-
ticles belong to three general topics or domains of news
gathering: International politics, UK politics and Business.
The ontology used in the generation of the ontological an-
notation process was the PROTON ontology1, which has
been created and used in the scope of the KIM platform2

for semantic annotation, indexing, and retrieval (Kiryakov
et al., 2004). The ontology consists of around 250 classes
and 100 properties (such as partOf, locatedIn, hasMember
and so on). PROTON has a number of important proper-
ties: it is domain-independent, and therefore suitable for
the news domain, and it is modular (comprising both a top
ontology and a more specific ontology).

3.1. Experiments with OBIE
The aim of the first set of experiments was, on the one hand,
to evaluate a new learning algorithm for OBIE, and, on
the other hand, to compare the different evaluation metrics
(LA, flat traditional measure, and the BDM).
The OBIE algorithm learns a Perceptron classifier for each
concept in the ontology. Perceptron (Rosenblatt, 1958) is
a simple yet effective machine learning algorithm, which
forms the basis of most on-line learning algorithms. Mean-
while, the algorithm tries to keep the difference between
two classifiers proportional to the cost of their correspond-
ing concepts in the ontology. In other words, the learning
algorithm tries to classify an instance as correctly as it can.
If it cannot classify the instance correctly, it then tries to
classify it with another concept with the least cost associ-
ated with it relative to the correct concept. The algorithm
is based on the Hieron, a large margin algorithm for hier-
archical classification proposed in (Dekel et al., 2004). See
(Li et al., 2006) for details about the learning algorithm and
experiments.
We experimentally compared the Hieron algorithm with the
SVM learning algorithm (see e.g. (Cristianini and Shawe-
Taylor, 2000)) for OBIE. The SVM is a state of the art al-
gorithm for classification. (Li et al., 2005) applied SVM
with uneven margins, a variant of SVM, to the traditional
information extraction problem and achieved state of the
art results on several benchmarking corpora. In the appli-
cation of SVM to OBIE, we learned one SVM classifier for
each concept in the ontology separately and did not take
into account the structure of the ontology. In other words,
the SVM-based IE learning algorithm was a flat classifica-
tion in which the structure of concepts in the ontology was
ignored. In contrast, the Hieron algorithm for IE is based
on hierarchical classification that exploits the structure of
concepts.
As the OntoNews corpus consists of three parts (Interna-
tional politics, UK politics and Business), for each learning
algorithm two parts were used as training data and another
part as test data. Note that although the tripartition of the
corpus indicates three distinct and topically homogeneous
parts of the corpus, these parts are used as training and test-
ing data for the comparison of different algorithms, and not

1http://proton.semanticweb.org
2http://www.ontotext.com/kim



their performance. For this purpose, semantic homogeneity
does not play a role.
For each experiment we computed three F1 values to mea-
sure the overall performance of the learning algorithm. One
was the conventional micro-averaged F1 in which a binary
reward was assigned to each prediction of instance — the
reward was 1 if the prediction was correct, and 0 otherwise.
We call this flat F1 since it does not consider the structure
of concepts in the ontology. The other two measures were
based on the BDM and LA values, respectively, which both
take into account the structure of the ontology.

flat F1 BDM F1 LA F1

SVM 73.5 74.5 74.5
Hieron 74.7 79.2 80.0

Table 1: Comparison of Hieron and SVM for OBIE

Table 1 presents the experimental results for comparing the
two learning algorithms SVM and Hieron. We used three
measures: conventional micro-averaged flat F1 (%), and
the two ontology-sensitive augmented F1 (%) based respec-
tively on the BDM and LA, BDM F1 and LA F1. In this
experiment, the International-Politics part of the OntoNews
corpus was used as the test set, and the other two parts as
the training set.
Both the BDM F1 and LA F1 are higher than the flat F1

for the two algorithms, reflecting the fact that the latter only
counts the correct classifications, while the former two not
only count the correct classifications but also the incorrect
ones. However, the difference for Hieron is more signifi-
cant than that for SVM, demonstrating an important differ-
ence between the two methods — the SVM based method
just tried to learn a classifier for one concept as well as
possible, while the Hieron based method not only learned
a good classifier for each individual concept but also took
into account the relations between the concepts in the on-
tology during the learning.
In terms of the conventional flat F1, the Hieron algorithm
performed slightly better than the SVM. However, if the re-
sults are measured by using the ontology-sensitive measure
BDM F1 or LA F1, we can see that Hieron performed sig-
nificantly better than SVM. Clearly, the ontology-sensitive
measures such as the BDM F1 and LA F1 are more suit-
able than the conventional flat F1 to measure the perfor-
mance of an ontology-dependent learning algorithm such
as Hieron.
In order to analyse the difference between the three mea-
sures, Table 2 presents some examples of entities predicted
incorrectly by the Hieron based learning system, their key
labels, and the similarity between the key label and pre-
dicted label measured respectively by the BDM and the LA.
Note that in all cases, the flat measure produces a score of
0, since it is not an exact match.
All the concepts and their relations involved in Table 2 are
illustrated in Figure 1, which presents a part of the PRO-
TON ontology. This ontology section starts with the root
node Thing, and has 10 levels of concepts with TVCom-
pany as the lowest level concept. Note that the graph does

Figure 1: Subset of the PROTON ontology

not show all the child concepts for most of the nodes pre-
sented.
The conventional flat measure assigned each case a zero
similarity because the examples were misclassified and the
measure does not consider the structure of labels. On the
other hand, both the LA and BDM take into account the
structure of labels and measure the degree of a misclassi-
fication based on its position in the ontology. Hence they
assign a non-zero value to a misclassification in most cases.
Note that zero would be assigned in the case where the
MSCA is the root node. In our experiments, all the con-
cepts used were below the node ”Entity” and so we used its
immediate upper node ”Thing” as root3. This meant that
CP (the depth of the MSCA) was always at least 1, and
hence there is no zero value for BDM or LA in our ex-
periments. This is because we consider that if an entity’s
instance is recognised but with the wrong type, the system
should have a non-zero reward because it at least recog-
nised the instance in the first place. However, this could be
changed according to the user’s preference.
However, BDM and LA adopt different mechanisms in con-
sideration of the ontology structure. In particular, the LA
assigns the maximal value 1 if the predicted label is an
ancestor concept of the key label, regardless of how far
apart the two labels are within the ontological chain. In
contrast, the BDM takes into account the similarity of two
concepts in the ontology and assigns a distance-dependent
value. The difference is demonstrated by the examples in
the table. For example, in the Proton ontology, the pre-
dicted label Organization is the parent concept of the key
label GovernmentOrganization in the second example, and
in the third example the same predicted label Organization
is 4 concepts away from the key label TVCompany. Hence,
the BDM value of the second example is higher than the

3”Thing” subsumes both ”Entity” and ”Property”



No. Entity Predicted label Key label BDM LA
1 Sochi Location City 0.724 1.000
2 Federal Bureau of Investigation Organization GovernmentOrganization 0.959 1.000
3 al-Jazeera Organization TVCompany 0.783 1.000
4 Islamic Jihad Company ReligiousOrganization 0.816 0.556
5 Brazil Object Country 0.587 1.000
6 Senate Company PoliticalEntity 0.826 0.556
7 Kelly Ripa Man Person 0.690 0.667

Table 2: Examples of entities misclassified by the Hieron based system

BDM value of the third example. In the first example, the
predicted label Location is 3 concepts away from the key
label City but its BDM value is lower than the correspond-
ing value in the third example, mainly because the concept
Location occupies a higher position in the Proton ontology
than the concept Organization. Similarity is thus lower be-
cause higher concepts are semantically more general, and
therefore less informative.
Another difference between the BDM and LA is that the
BDM considers the concept densities around the key con-
cept and the response concept, but the LA does not. The
difference can be shown by comparing the fourth and the
sixth examples. They have the same predicted label Com-
pany, and their key labels ReligiousOrganization and Po-
liticalEntity are two sub-concepts of Organization. There-
fore, the positions of the predicted and key labels in the
two examples are very similar and hence their LA values
are the same. However, their BDM values are different —
the BDM value of the fourth example is a bit lower than
the BDM value of the sixth example. This is because the
concept PoliticalEntity in the sixth example has two child
nodes but the concept ReligiousOrganization in the fourth
example has no child node, resulting in different averaged
lengths of chains coming through the two concepts.
The BDM value in the fifth example is the lowest among the
examples, mainly because the concept Object is in the high-
est position in the ontology among the examples. These
differences in BDM scores show the effects of the adoption
of chain density and branching factor as penalty weights in
the computation of the score. These reflect the level of diffi-
culty associated with the selection of a particular ontlogical
class relative to the size of the set of candidates.

3.2. Comparison of GATE and KIM using BDM
Another experiment performed was to compare these OBIE
learning algorithms in GATE with the KIM system (Popov
et al., 2004), using Precision and Recall versus BDM. We
used the same set of texts and ontology as for the previous
experiments; however, the articles in OntoNews were di-
vided into three subsets according to the article’s theme,
namely business, international politics and UK politics.
These sets contained 91, 99 and 100 articles, respectively.
The results for traditional F-measure and AF measure (us-
ing BDM) on each of these sets and using each system
are shown in Figure 2. We can see that with both met-
rics, GATE outperforms KIM. Interestingly, we found that
the difference in performance between the two systems is
much smaller with the BDM metric than with the tradi-

tional metric. This reflects very well the fact that due to
the algorithms used in the IE process, KIM finds many cor-
rect instances of entities but does not always classify them
absolutely correctly. GATE, on the other hand, tends to ei-
ther find and classify the instance completely correctly, or
not find it at all. Such minor misclassifications are heav-
ily penalised with traditional metrics but much less heavily
penalised with the BDM. This is a more accurate reflection
of the system’s performance because in many cases, such
minor misclassifications are not so important.

3.3. Scalability of BDM
It is also important to measure how scalable a new evalua-
tion metric is. Specifically, we investigated how the BDM
measures up to other metrics when the ontology is col-
lapsed or expanded in various ways, and what happens with
smaller or larger ontologies. We therefore performed some
experiments to measure this, by comparing annotation sys-
tems using different metrics on 3 different versions of the
Proton ontology, which we created specifically for the ex-
periment. PTop was based on the concept levels of the on-
tology, and was created by just keeping the concepts with
the ”ptop” tag in the original Proton ontology, i.e. the up-
permost concepts. Other concepts in Proton were mapped
to the nearest ancestor concept, i.e. ”ptop”. This reduced
the number of concepts from 272 to 25. Link-1 was based
on the link characteristics. For each node in the ontology,
if it was the only child concept of its parent, then the node
was collapsed with its nearest ancestor concept with more
than one child node. This reduced the ontology size from
272 to 244 concepts. We then compared 4 different metrics
on the annotations: flat (traditional Precision and Recall),
distance (a measure based on very simple hierarchical dis-
tance), Learning Accuracy, and the BDM.
Space constraints mean we cannot give full details here, but
the experiments enabled us to draw various conclusions.
Unsurprisingly, all three hierarchical measures are better
than conventional measures for evaluating ontology-based
annotation. The BDM is less sensitive to ontology size than
LA, because it considers normalisation with respect to on-
tology size, which is important as the ontology gets bigger.
BDM is also the only one which reflects ontology density;
the others only reflect size. We propose to do some further
experiments to highlight this. With a very shallow ontol-
ogy, it actually makes little difference which of these three
measures is used. The larger (and deeper) the ontology, the
more difference it makes which method we use. We would
expect that as the ontology increases in size and complex-



(a) F-measures (b) AF-measures

Figure 2: Comparison of GATE and KIM

ity, the more important the choice of metric is. Of course,
shallowness of the ontology is not the only factor related
to its size: properties, labels, or other ontology components
also play a part. However, since they are not used for the
ontology-based information extraction component, we are
not interested here in evaluating these factors separately.

4. Discussion and Future work
The initial observation from our experiments is that bi-
nary decisions are not good enough for ontology evalua-
tion, when hierarchies are involved. Both the BDM and
LA metrics are more useful than a distance-based or flat
metric when evaluating information extraction based on a
hierarchical rather than a flat structure. From a human per-
spective, the BDM appears to perform better than the LA
in that it reflects a better error analysis in certain situations.
In terms of scalability, we see that the BDM appears robust
when dealing with different sizes and densities of ontology,
although we have only conducted a small-scale experiment
so far. In contrast to other metrics, it reflects ontology den-
sity as well as size.
We also found an interesting feature of the BDM over a
traditional flat metric, in that it enabled better distinction
of some kinds of IE system. By penalising minor mis-
classifications less heavily than than completely undiscov-
ered or unclassified entities, it reflects better the distinction
between systems which find many entities but make mi-
nor mistakes in their classification, and systems which fail
to actually find many entities or make major classification
mistakes.
This paper has shown the usefulness of evaluation metrics
like the BDM in ontology population. The BDM is solely
based on the structure of the ontology to measure the simi-
larity of concepts in the ontology. However, since the ontol-
ogy can have semantic interpretation based on description
logic, we could also measure concept similarity in the on-
tology using the underlying description logic. This kind
of semantic similarity would make more sense than the
structure-based measure, for a complex ontology contain-
ing different type-of relations. Future work will investigate

this approach.
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