
A Unicode-based Environment for Creation and Use of Language Resources

Valentin Tablan∗, Cristian Ursu∗, Kalina Bontcheva∗, Hamish Cunningham∗,
Diana Maynard∗, Oana Hamza∗, Tony McEnery†, Paul Baker†, Mark Leisher ‡

∗Dept. of Computer Science
University of Sheffield

Regent Court, 211 Portobello St
Sheffield, S1 4DP, UK

[V.Tablan, C.Ursu, K.Bontcheva, H.Cunningham, D.Maynard, O.Hamza]@dcs.shef.ac.uk

†Department of Linguistics and Modern English Language
Bowland College, Lancaster University

Lancaster, LA1 4YT, UK
A.McEnery@lancs.ac.uk, bakerjp@exchange.lancs.ac.uk

‡Computing Research Laboratory
New Mexico State University

Box 30001/MSC 3CRL, Las Cruces, NM 88003-8001, USA
mleisher@crl.nmsu.edu

Abstract
GATE is a Unicode-aware architecture, development environment and framework for building systems that process human language. It
is often thought that the character sets problem has been solved by the arrival of the Unicode standard. This standard is an important
advance, but in practice the ability to process text in a large number of the World’s languages is still limited. This paper describes work
done in the context of the GATE project that makes use of Unicode and plugs some of the gaps for language processing R&D.
First we look at storing and decoding of Unicode compliant linguistic resources. The new capabilities for processing textual data and
taking advantage of the Unicode standard are detailed next. Finally, the solutions used to add Unicode displaying and editing capabilities
for the graphical interface are described.

1. Introduction
GATE(?)1 is an architecture, development environment

and framework for building systems that process human
language. It has been in development at the University
of Sheffield since 1995, and has been used for many R&D
projects, including Information Extraction in multiple lan-
guages and for multiple tasks and clients.

It is often thought that the character sets problem has
been solved by the arrival of the Unicode standard. This
standard is an important advance, but in practice the ability
to process text in a large number of the World’s languages
is still limited by

• incomplete support for Unicode in operating systems
and applications software

• languages missing from the standard

• difficulties in converting non-Unicode character en-
codings to Unicode

This paper describes work done in the context of the
GATE project2 that makes use of Unicode and plugs some
of the gaps for language processing R&D.

1GATE is implemented in Java and is freely available from
http://gate.ac.uk as open-source free software under the GNU li-
brary licence.

2Partly funded in this case by the EMILLE project (?).

The GATE architecture defines almost everything in
terms of components - reusable units of code that are spe-
cialised for a specific task. There are three main types of
components:

• Language Resources (LRs)store some kind of lin-
guistic data such as documents, corpora, ontologies
and provide services for accessing it. At the moment
all the predefined LRs are text based but the model
doesn’t constrict the data format so the framework
could be extended to handle multimedia documents as
well.

• Processing Resources (PRs)are resources whose char-
acter is principally programatic or algorithmic such as
a POS tagger or a parser. In most cases PRs are used
to process the data provided by one or more LRs but
that is not a requirement.

• Visual Resources (VRs)are graphical components that
are displayed by the user interface and allow the visu-
alisation and editing of other types of resources or the
control of the execution flow.

The GATE framework defines some basic language re-
sources such as documents and corpora, provides resource
discovery and loading facilities and supports various kinds
of input output operations such as format decoding, file or
database persistence.

GATE uses a single unified model ofannotation- a
modified form of the TIPSTER format (?) which has been

http://gate.ac.uk

made largely compatible with the Atlas format (?), and
uses the now standard mechanism of ‘stand-off markup’
(?). The TIPSTER format was always based on ‘stand-off’,
i.e. using pointers into texts instead of adding markup to
them; the SGML/XML community later adopted the same
style, perhaps in response to (?), or because no other op-
tion is possible in an environment where documents come
in many different formats. Annotations are characterised
by atypeand a set offeaturesrepresented as attribute-value
pairs. The annotations are stored in structures calledanno-
tation setswhich constitute independent layers of annota-
tion over the text content.

The advantage of converting all formatting information
and corpus markup into a unified representation, i.e. the
annotations, is that NLP applications do not need to be
adapted for the different formats of each of the documents,
which are catered for by the GATE format filters (e.g. some
corpora such as BNC come as SGML/XML files, while oth-
ers come as email folders, HTML pages, news wires, or
Word documents).

The work for the second version of GATE started in
1999 and led to a complete redesign of the system and a
100% Java implementation. One of the additions brought
by version 2 is full support for Unicode data allowing the
users to open, visualise and process documents in lan-
guages different from the default one for the underlying
platform.

2. Unicode Compliant Language Resources
The most important types of Language Resources that

are predefined in GATE are thedocumentsand thecorpora.
A corpus is defined in GATE as a list of documents which
makes the the representation problem only applicable with
regard to documents.

Documents in GATE are typically created starting from
an external resource such as a file situated either on a local
disk or at an arbitrary location on the Internet. Text needs
to be converted to and from binary data, using anencoding
(or charset), in order to be saved into or read from a file.
There are many different encodings used worldwide, some
of them designed for a particular language, others covering
the entire range of characters defined by Unicode. GATE
uses the facilities provided by Java and so it has access
to over 100 different encodings including the most popu-
lar local ones, such as ISO 8859-1 in Western countries or
ISO-8859-9 in Eastern Europe, and some Unicode ones e.g.
UTF-8 or UTF-16.

Apart from being able to read several character encod-
ings, GATE supports a range of popular file formats such
as HTML, XML, email, some types of SGML and RTF.

After being processed in GATE, the documents can be
stored for later use (or madepersistent) by using one of
three options: as a text file, a binary file or as entries in a
database. A document saved as text becomes an XML file
using the UTF-8 character encoding which is an 8-bit Uni-
code Transformation Format. Another option is to save the
documents as the binary serialisation of the memory im-
age of the document which also preserves the internal Uni-
code representation. If database storage is preferred, GATE
makes use of the support for Unicode documents provided

by the database engine which in the case of most modern
databases is available (ORACLE for instance provides full
support for Unicode data).

3. Processing Resources and Unicode
The use of the Java platform implies that all process-

ing resources that access textual data will internally use
Unicode to represent data, which means that all PRs can
virtually be used for text in any Unicode supported lan-
guage. Most PRs, however, need some kind of linguistic
data in order to perform their tasks (e.g. a parser will need
a grammar) which in most cases is language specific. In
order to make the algorithms provided with GATE (in the
form of PRs) as language-independent as possible, and as
a good design principle, there is always a clear distinction
between the algorithms - presented in the form of machine
executable code - and their linguistic resources which are
typically external files. All PRs use the textual data de-
coding mechanisms when loading the external resources so
these resources can be represented in any supported en-
coding which allows for instance a gazetteer list to con-
tain localised names. This design made it possible to port
our information extraction system ANNIE from English to
other languages by simply creating the required linguistic
resources: GATE has been used on a variety of Slavic, Ger-
manic, Romance, and Indic languages (?; ?; ?; ?).

One of the PRs provided with GATE is the tokeniser
which not only handles Unicode data but is actually built
around the Unicode standard, hence its name of “GATE
Unicode Tokeniser”. The role of the tokeniser is to split
the text into simple tokens and to provide some basic infor-
mation about the type of the generated tokens. It classifies
tokens into numbers, punctuation, symbols or words and,
in the case of words, provides some information about their
orthography (e.g. with an initial capital, all upper case, all
lower case, etc.).

Running the tokeniser over a document will generate a
group of annotations of typeTokenor SpaceTokenwhich
will never overlap and will cover the entire content of the
document (see table??).

Like many other GATE PRs, the tokeniser is based on
a finite state machine (FSM) which is an efficient way of
processing text. In order to provide a language independent
solution, the tokeniser doesn’t use the actual text characters
as input symbols, but rather their categories as defined by
the Unicode standard.

The underlying FSM of a tokeniser is defined starting
from a set of rules, each of them being composed from a
regular expression on the left hand side and an annotation
template on the right hand side. The regular expression de-
fines a pattern of characters, named by their respective Uni-
code categories, while the annotation template is used to
generate new annotations when the pattern described on the
left hand side matches the input. See figure?? for an exam-
ple of a tokeniser rule which detects words containing only
letters and dashes and that start with a capital letter. Each
such rule is converted into a FSM designed to recognise the
regular expression pattern, and then the full FSM for the to-
keniser is constructed as a disjunction of all the FSMs de-
fined by the rules. We are currently using a tokeniser of 23

Text
On March the 3rd 2002...
|0. |3..... |9... |13. |17...

Annotations
Type SpanStart Span End Features
Token 0 2 kind=word, orth=upperInitial, string="On"
SpaceToken 2 3 kind=space, length=1 string=" "
Token 3 8 kind=word, orth=upperInitial, string="March"
SpaceToken 8 9 kind=space, length=1 string=" "
Token 9 12 kind=word, orth=lowercase, string="the"
SpaceToken 12 13 kind=space, length=1 string=" "
Token 13 14 kind=number, string="3"
Token 14 16 kind=word, orth=lowercase, string="rd"
SpaceToken 16 17 kind=space, length=1 string=" "
Token 17 21 kind=number, string="2002"
Token 21 22 kind=puctuation, string="."
Token 22 23 kind=puctuation, string="."
Token 23 24 kind=puctuation, string="."

Table 1: A tokenisation example

rules that recognises many types of words, whitespace pat-
terns, numbers, symbols and punctuation and which should
handle any language from the Indo-European group with-
out any modifications.

UPPERCASELETTER
(LOWERCASELETTER|DASHPUNCTUATION)*
>
Token;orth=upperInitial;kind=word;

Figure 1: A tokeniser rule.

For situations not handled by the current tokeniser new
rules can easily be added extending it for new languages.

The modular architecture of GATE allows for the local-
isation of the tokeniser when a particular language requires
additional processing, by simply adding another PR after
the tokeniser in the execution chain. For instance, in the
case of English text, we are using a JAPE transducer (?)
which adapts the output of the tokeniser for the needs of
the part-of-speech tagger provided with GATE.

4. The GATE Unicode Kit
The third type of resource provided with GATE are the

Visual resources which are used in constructing user inter-
faces for the visualisation and editing of data as well as for
the control of the execution flow. A Unicode enabled graph-
ical user interface (GUI) needs to address two main issues:
the capability to display text and the ability to enter text in
other languages than the default one.

4.1. Displaying Unicode Data

The support for displaying text using different lan-
guages and scripts in Java is quite comprehensive and cov-
ers many languages supported by the Unicode standard.
Sun Microsystems, the authors of the Java programming
language, are actively working on extending the support to

new languages and we can expect the coverage to get bet-
ter with every new released version. One problem is the
provision of fonts that cover character blocks that are less
mainstream, which are hard to find and expensive to cre-
ate. However the situation is improving and for example
Microsoft provides a comprehensive font that covers all the
character blocks defined by Unicode for the Windows plat-
form with new versions of theirMicrosoft Officeproduct.
The support for localisation is improving for other operat-
ing systems as well, and the new versions of the Java virtual
machine are able to make use of the fonts provided by the
underlying platform which means that if a particular lan-
guage can be used on a given platform it is more than prob-
able that it will be available in GATE as well. Figure??
shows a Chinese document loaded and annotated in GATE
on an operating system localised for United Kingdom using
the Arial Microsoft Unicode font without having installed
any support for Asian languages.

4.2. Unicode Input Methods

While the support for displaying Unicode text is pro-
vided to a large extent by the underlying platform, the same
is not true with respect to editing Unicode text. Many plat-
forms provide some support for localisation but that is not
always very comprehensive and is often not Unicode com-
pliant, which makes it difficult for Java to make use of it.
Also the level of support provided varies largely between
platforms and in order to address this problem we have pro-
vided our own dedicated solution in the form of theGATE
Unicode Kit (GUK).

The recommended way of adding new text input facili-
ties to a Java application is to define so calledinput methods
(IM). An IM allows users to enter text in other languages
than the default one by intercepting the events generated by
the input hardware such as the system keyboard or mouse
and mapping them to a different output from the one nor-
mally obtained.

Figure 2: A Chinese document annotated in GATE.

GUK consists of two main components: a set of IM def-
initions and the Java code that handles the communication
with the system, the decoding of the IM definitions and that
does the actual input mapping. At present GUK provides
input methods for 17 different languages some of them with
more than one version, amounting to a total of 30 different
input methods (see appendix?? for a full list).

Although distributed with GATE, GUK is effectively a
separate entity that can be used outside of GATE as well.
To this end, GUK is packaged as a separate library that
can either be registered with the Java virtual machine at
startup time or can be added to a Java installation as anin-
stalled extensionthus making it available to all applications
that run within that particular virtual machine. GUK inte-
grates seamlessly with the platform and there are no spe-
cial requirements an application needs to fulfill to be able
to use its facilities. The GATE distribution contains GUK
and makes use of it as a runtime library.

The IMs defined by GUK provide support for text input
by means of virtual keyboards. Because of restrictions im-
posed by the platform independent manner in which Java
treats the input hardware, there is no reliable way to de-
termine the actual layout of the physical system keyboard:
only the characters generated by a key stroke (e.g “E”) can
be obtained but not the actual position of the pressed key
(e.g. third from the left in the top row of keys). The vir-
tual keyboards defined in GUK are based on the assumption
that the system keyboard uses a British layout which could
cause some keys to be misplaced when the system keyboard
has a different layout. However, the layout of the currently
active virtual keyboard can be displayed on the screen in or-
der to assist the user in finding the right key (see figure??).
As long as the virtual keyboard map is visible on screen it
can also be used for entering text directly by clicking with
the mouse on the virtual keys, which might be more effi-

Figure 3: The GUK Unicode editor using a Korean virtual
keyboard.

cient, particularly when using a keyboard type the user is
not accustomed to.

Each input method maps an input consisting of
keystrokes onto an output consisting of characters in the
target language according to the IM definition file. When a
GUK input method is activated, its definition file is read and
used to construct a finite state transducer that starts to “lis-
ten” for events from the keyboard. When the user presses a
key the character normally generated by it will be passed on
to the transducer and as soon as the transducer starts gener-
ating output it will be sent to the Java virtual machine as if it
came directly from the keyboard. Because GUK intercepts
the keyboard events at a very low level in the input hier-
archy, it is unlikely that its actions will cause any conflicts
with the actual application that receives the translated in-
put. The client application will probably not even be aware
of the presence of an intermediate step in the handling of

the user input.
A transducer was required rather than a simple mapping

table because there is no direct correspondence between
the number of keystrokes read and the amount of generated
text, in some cases (e.g. for the TCode Japanese keyboard)
more keystrokes are required in order to generate one out-
put character while in other cases (e.g. the Bengali key-
board) a single keystroke can generate up to three different
characters.

There are also situations, particularly for some modifier
characters, when the output character (or group of charac-
ters) is different from the symbol that needs to be displayed
on the key of the virtual keyboard.

The IM definition file is a plain ASCII text file which
lists all the mappings, one for each line (see figure?? for
an example).

A line from an IM definition file contains up to three
values labelledbind, sendandkeycap:

• thebind value is a list of one or more ASCII charac-
ters which represent the input coming from the system
keyboard.

• the sendvalue is a list of Unicode characters written
as 16 bit hexadecimal values which will form the Uni-
code output of the input method when thebind value
has been keyed.

• thekeycapvalue is also a list of Unicode characters in
hexadecimal and represents the text to be displayed on
the virtual key. Thekeycapis only required when the
bind value contains a single character as it wouldn’t
make sense otherwise.

From the “Standard Hangul Korean” IM:
bind "r" send 0x3131 keycap 0x3131
bind "rk" send 0xAC00
bind "rkr" send 0xAC01

From the “Inscript Bengali” IM:
bind "=" send 0x09CD0x098B
keycap 0x25CC0x200D0x09CD0x098B

Figure 4: Input Method Mappings.

For input methods that require for instance double
keystrokes to generate characters, not all pairs of keystrokes
are valid combinations. In such cases the keyboard map (if
displayed) will highlight the keys that will lead to a valid
input (see keys “Q”, “R”, “T”, “A”, “S”, “D” and “F” in
figure??).

Using plain text definition files for input methods allows
users without prior knowledge of Java or the inner workings
of GUK to extend it by adding new input methods simply
by creating the appropriate files and placing them where
GUK can find them.

Apart from the input methods GUK also provides a sim-
ple Unicode-aware text editor which is important because
not all platforms provide one by default or the users may not

know which one of the already installed editors is Unicode-
aware. Besides providing text visualisation and editing fa-
cilities, the GUK editor also performs encoding conversion
operations. The editor has proved a useful tool during the
development and testing of GATE in a crossplatform envi-
ronment.

5. Conclusion and Future Work
GATE has proven its worth as a development tool for

language processing R&D in a number of languages. The
new facilities for Unicode support have extended the range
of the system to many more languages, and this support
will improve as the Java environment continues to develop,
and as GATE users contribute new input methods and char-
acter encoding conversions. Work in progress includes the
provision of a number of converters for Indic languages.

Other planned developments include the localisation of
the GATE graphical interface and the ability to adapt the
GUK virtual keyboards according to the actual layout of
the system keyboard.

We also plan to extend GATE to support multimedia
language resources (e.g. audio/video corpora). Experience
from an early prototype has shown that this is a feasible
step (?).

6. Acknowledgements
Work on GATE has been funded by EPSRC grants

GR/K25267 and GR/M31699 (GATE, GATE 2). Sup-
port for non-indigenous minority language writing sys-
tems within GATE is also funded by the EPSRC on grant
GR/N19106 (EMILLE). Several smaller grants supported
prototyping work in 1998 and 1999, including two from the
US TIPSTER programme and one from the Max Planck In-
stitute in Nijmegen, Holland.

We would like to thank Markus Kramer from Max
Planck Institute, Nijmegen, for providing us with the IPA
and Chinese input methods.

A Appendix: GUK Input Methods

Target Language Keyboard Layout

Arabic ATeX
MLT Arabic
Windows

Armenian Standard
Bengali Inscript
Chinese China∗

Taiwan∗

English ASCII
Georgian Heinecke

Imnaishvili Arrangement
MLT

German Windows
Greek XTerm

Windows
Hebrew Standard
Hindi Inscript

VOA
Japanese TCode
Korean Standard Hangul
Persian ISIRI 2901-94

CRL Phonetic
Russian YAWERTY (Phonetic)

CRL YAWERTY (Phonetic)
Serbo-Croatian Cyrillic MLT

Latin MLT
Urdu CRL Urdu
Vietnamese VIQR Implicit

VIQR Implicit (Decomposed)
Telex
IPA-96∗

∗ Provided by Markus Kramer, Max Planck Institute,
Nijmegen, Holland.

Table 2: Languages currently supported by GUK

