
Learning Ontologies from Software Artifacts:
Exploring and Combining Multiple Sources

Kalina Bontcheva1 and Marta Sabou2

1 Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, UK

kalina@dcs.shef.ac.uk
2 Knowledge Media Institute (KMi), The Open University

Milton Keynes, UK
R.M.Sabou@open.ac.uk

Abstract. While early efforts on applying Semantic Web technologies
to solve software engineering related problems show promising results,
the very basic process of augmenting software artifacts with their se-
mantic representations is still an open issue. Indeed, exiting techniques
to learn ontologies that describe the domain of a certain software project
either 1) explore only one information source associated to this project
or 2) employ supervised and domain specific techniques. In this paper
we present an ontology learning approach that 1) exploits a range of
information sources associated with software projects and 2) relies on
techniques that are portable across application domains.

1 Introduction

Large software frameworks and applications tend to have a significant learning
curve both for new developers working on system extensions and for other soft-
ware engineers who wish to integrate relevant parts into their own applications.
This problem is made worse in the case of open-source projects, where developers
are distributed geographically and also tend to have limited time for answering
user support requests and generally helping novice users by writing extensive
tutorials and step-by-step guides. At the same time, such online communities
typically create a large amount of information about the project (e.g., forum
discussions, bug resolutions) which is weakly integrated and hard to explore [1].
In other words, there is a practical need for better tools to help “guide users
through the jungle of APIs, tools and platforms” [15].

Recent research has begun to demonstrate that Semantic technologies are
a promising way to address some of these problems [15]. For instance, search
and browse access to web service repositories can be improved by a combination
of ontology learning and semantic-based access (e.g., ontology-based browsing
and visualisation) [19]. Similarly, semantic-based wikis have been proposed as a
way of supporting software reuse across projects, where a domain ontology de-
scribing the different software artifacts emerges as a side effect of authoring wiki
pages [9]. Finally, the Dhruv system [1] relies on a semantic model obtained by



instantiating hand built domain ontologies with data from different information
sources associated with an open source project to support bug resolution.

Because ontologies are core to the Semantic Web, a prerequisite for all the
above approaches is the existence of a domain ontology that describes the given
software artifact. However, this is seldom the case and, as a result, the task of
automatically building such ontologies becomes very important.

The goal of Ontology Learning (OL) methods is to derive automatically
(parts of) an ontology from existing data (for state of the art overviews see
[4, 12]). In earlier work it has been demonstrated that textual sources attached
to software artifacts (e.g., software documentation) contain a wealth of domain
knowledge that can be automatically extracted to build a domain ontology [18].
It was observed however that existing generic ontology learning approaches need
to be adapted to handle the particularities of software specific textual sources
(i.e., low grammatical quality, using a sublanguage). The approach presented
in [18] explores the particularities of the sublanguage specific to software docu-
mentation to manually derive knowledge extraction rules. While the most generic
rules can be used across domains they only extract a limited amount of knowl-
edge. More specific rules need to be manually identified for new domains. Also,
this technique has been applied on a single type of software specific textual
sources, namely short functionality descriptions. This is a drawback because the
work of Ankolekar et al. [1] showed that knowledge about a software project is
often spread in several different information sources such as source code, discus-
sion messages, bug descriptions, documentation and manuals.

Taking into consideration the lessons learnt from previous approaches, in
this paper we present an approach to learning domain ontologies from multiple
sources associated with the software project, i.e., software code, user guide, and
discussion forums. Our technique does not simply deal with these different types
of sources, but it goes one step further and exploits the redundancy of infor-
mation to obtain better results. The strength of our technique is that it relies
on unsupervised learning methods that, unlike earlier work, are portable across
domains. These were successfully used to identify domain concepts. Because the
system is currently being developed we only report on this domain concept iden-
tification process which is a basic step in any ontology learning task.

In the next section we present the particularities of a case study in which we
apply our technique. In Section 3 we briefly describe the characteristics of three
major data sources that we use as basis for ontology learning. In Section 4 we
detail our the concept identification aspect of the ontology learning approach and
present experimental results in Section 5. We conclude with a final discussion
and future work description (Sections 6 and 7).

2 GATE: A Case Study

GATE3 [8] is a world-leading open-source architecture and infrastructure for
the building and deployment of Human Language Technology applications, used
3 http://gate.ac.uk



by thousands of users at hundreds of sites. The development team consists at
present of over 15 people, but over the years more than 30 people have been
involved in the project. As such, this software product exhibits all the specific
problems that large software architectures encounter and has been chosen as a
case study in the context of the the TAO4 EU-funded project.

While GATE has increasingly facilitated the development of knowledge-based
applications with semantic features (e.g. [3, 14, 17, 7]), its own implementation
has continued to be based on compositions of functionalities justified on the
syntactic level, understood by informal human-readable documentation. By its
very nature as a successful and accepted ’general architecture’, a systematic un-
derstanding of its concepts and their relation is shared between its human users.
It is simply that this understanding has not been formalised into a description
that can be reasoned about by machines or made easier to access by new users.
Indeed, GATE users who want to learn about the system are finding it difficult
due to the large amount of heterogeneous information, which cannot be accessed
via a unified interface.

The advantage of transitioning GATE to ontologies (i.e., describing its re-
sources with ontology based annotations) will be two-fold. Firstly, GATE com-
ponents and services will be easier to discover and integrate within other appli-
cations (see [19, 20]). Secondly, users will be able to find easily all information
relevant to a given GATE concept, using concept-based search on the GATE
documentation, XML configuration files, video tutorials, screen shots, user dis-
cussion forum, etc.

A concrete example of the benefits of using semantic technologies to man-
age access to knowledge about GATE relates to facilitating access to discussion
forums. Indeed, discussion forums are continuously updated with new postings,
so the main challenge comes from implementing a process which indexes them
every day with respect to a domain ontology. For instance, GATE’s discussion
forum has on average about 120 posts per month, with up to 15 on some days.
Due to the volume of this information, it would be helpful if developers could
choose to read only postings related to their areas of interest. Therefore, what
is required is automatic classification of postings with respect to concepts in
the ontology and a suitable interface for semantic-based search and browse. A
similar problem is being currently addressed in the context of digital libraries
[21] and we will consider using some of these techniques as well.

Since users tend to post messages on the discussion forums when they have
failed to identify a solution to their problem in the user manuals and earlier forum
postings, by analysing also which topics are being discussed one can also identify
potential weaknesses in the current documentation, which can then be rectified.
Again this is an example, where classification with respect to an ontology can
help with the maintenance and update process of software documentation.

In order to verify this hypothesis, we carried out a limited manual analy-
sis of topics on the GATE forum postings between April and June 2006. All
threads were classified as belonging to one of four topics: questions about the

4 http://www.tao-project.eu



core system, existing plugins (i.e., optional components), problems with writing
new plugins, and problems with writing new applications. Table 1 shows the
results, which indicate that the majority of the users are having problems with
using the core system or some of its plugins. Some of the problems are clearly
due to shortcomings of the user guide, e.g., lack of information on which class
implements a certain plugin, which directories contain the corresponding config-
uration files, what are the parameters that a plugin takes. All of this information
changes over time with each release and maintaining the user guide is therefore
a time-consuming task. However, ontology-based search could provide the user
with this information, if the ontology concepts have been learned from the source
code and this provenance information has been kept in the ontology itself (e.g.,
via implementedInClass or referencedInClass properties).

Month core GATE Exist. plugins New plugins New apps

April’06 17 13 0 1

May’06 27 14 5 2

June’06 12 14 4 2

Table 1. Number of questions posted each month under the different categories.

3 Software Artifacts as Data Sources for Ontology
Learning

In general, present day software development practices lead to the creation of
multiple artifacts, which implicitly contain information from which domain on-
tologies can be learned automatically. These multiple data sources can be clas-
sified along two orthogonal dimensions:

Structured vs unstructured: Source code, WSDL files, XML configuration
files, and log files are all examples of structured artifacts. Web pages, man-
uals, papers, video tutorials, discussion forum postings, and source code
comments are all unstructured. Due to this diverse structure and content
the challenge here is how to choose and customise the ontology learning
methods, so that they can achieve the best possible results with minimum
human intervention. Another aspect that is worth considering here is whether
some knowledge is easier to acquire from only some of these sources (e.g.,
key terms from the source code comments), and then combine this newly ac-
quired knowledge with information from the other sources (for an application
of this approach in multimedia indexing see [11]).

Static vs dynamic: As software tends to go through versions or releases, i.e.,
evolve over time, the majority of software-related datasources tend to change
over time, albeit some more frequently than others. For example, API and
web service definitions, configuration files, manuals, and code comments



would be relatively stable between major releases, whereas discussion fo-
rum postings would change on a daily basis. In fact, it is the dynamic nature
of software data sources which poses a particular challenge, as the ontology
learning methods would need to be made sensitive to the changeable nature
of the domain which they are trying to capture. In particular, methods for
ontology versioning and evolution would be required [13].

In addition, each datasource has its own specific characteristics, which need
to be taken into account.

3.1 Source code

Learning domain ontologies from source code poses several challenges. Firstly,
each programming language and software project tends to have naming con-
ventions and these need to be considered. In a nutshell, the goal is to separate
variable and method names into their constituent words, i.e., getDocumentName
should be separated into get, document, and name, prior to being submitted as
input to the ontology learning algorithms.

The second problem is that the ontology learning methods need to distinguish
between terms specific for the programming language being used (e.g., hash maps
for Java) and the application-specific terms, i.e., the terms which are relevant
to the ontology (document names in the case of GATE). This problem has also
been recognized by Ankolekar et al. which distinguishes between code terms that
denote programming language specific elements and noun phrases that stand for
domain specific terms [1].

Finally, many of the extracted terms can refer to the same concept. A simple
example is considering lexical variants of a term as pointing to the same concept,
such as singular and plural forms of nouns (e.g., documents and document) and
different forms of a verb (e.g., return and returning). A more complex case is
that when syntactically different terms refer to the same concept or instance.
One example from the GATE system is the part-of-speech tagger, which is also
referred to as POS tagger and Hepple tagger.

3.2 Software Manuals

Software projects typically have at least a user manual, but bigger ones would
also have a programmers’ guide and an installation manual. These are all un-
structured data sources which can also come in different formats, e.g., PDF,
Word, HTML. Therefore, in the first instance, we need to be able to read these
formats and extract the text content from them.

Due to their size (some over hundreds of pages) and their lack of structure, it
is our view that manuals are more suitable for extracting hierarchical and other
relations between concepts, but not so suitable for learning the concepts in the
first instance. Previous work on ontology learning [6] has indeed demonstrated
that large amounts of unstructured text can be used successfully to learn sub-
sumption between two concepts A and B, using Hearst-like lexical patterns such
as <conceptA> isa a <conceptB>.



3.3 Discussion Forums

From a content analysis perspective, forums present a challenge as they are
unstructured but also they require special format analysis techniques, in order
to identify which thread a posting belongs to (or a new thread) and where in
the message body there is quoted text, if any.

The problem with identifying different terms which refer to the same concept
in the ontology arises even more strongly here, as some inexperienced users
might not be using the correct terminology. For instance, in GATE there is a
component called noun phrase or an NP chunker, but in some posts it is being
referred somewhat incorrectly as noun chunker.

4 Multi-Source Ontology Learning

As we stated in the introduction, learning ontologies from software artifacts is
an important task that has already been pioneered in the context of Web ser-
vices [18]. However, while this early work demonstrates the feasibility of the idea
that important knowledge can be extracted from software artifacts, it falls short
of taking into account the nature of such artifacts. Indeed, large scale software
projects produce large, distributed, heterogeneous and dynamically changing in-
formation sources. Our view is that a logical next step is to provide ontology
learning methods that can explore the wealth of knowledge provided by a range
of information sources typically associated with software projects. Based on our
analysis of some typical data sources (see Section 3) and lessons learned from
previous work [18], we identified the following requirements for ontology learning
methods that explore software artifacts:

– ability to deal with large and distributed document collections
– operate on a dynamically growing document base
– cover heterogeneous data sources
– benefit from redundancy of information from multiple sources
– deal with ontologies evolving over time, e.g., new concepts appearing
– maintenance of different versions of the ontology, corresponding to different

versions of the software

In this section we describe an ontology learning method that, for now, ad-
dresses the requirements raised by taking into account multiple data sources.
We describe the concept extraction process which benefits from combining in-
formation from different information sources. At present, we are in the process
of extending the system towards learning relations and the initial experiments
have proved promising (see Section 7).

4.1 System Overview

Our multi-source ontology learning system uses the language processing facilities
provided by GATE itself [8, 3, 11] and we have modified or extended some of



them specifically for the problem of learning from software artifacts. Note that
GATE plays a dual role in our research – both as one of the software projects
used for experimenting with our technology and also as the language processing
software infrastructure, which we used for building the technology itself. Overall
the process consists of four main stages, shown on Figure 1:

Term extraction from source code. An important lesson from the ontology
learning research is that there are no generic (“one-size-fits-all”) methods
and therefore any OL method will need some degree of adaptation to a new
domain - or even to new data sets within the same domain. As a result, we
employ different learning methods to deal with different data sources. The
left hand side of the figure depicts the steps needed to process structured
sources such as source code, while the right hand side deals with unstructured
sources such as manuals and forum discussions. Relevant terms that are
extracted from source code (Section 4.2) are pruned (Section 4.3) to exclude
irrelevant hits.

Term extraction from documentation and forums. The key domain terms
identified in the source code are used as a starting point for exploring less
structured sources (Section 4.4). First, the location of these terms is iden-
tified in the textual sources (Term Annotation) and then new terms are
discovered taking into account these annotations.

Concept identification. The terms discovered both in the source code and in
other textual sources are merged and submitted to a concept identification
process (Term Matching) that identifies terms referring to the same concept
(Section 4.5). The identified concepts are passed on to a user for validation.

User validation. An important point to make is that the automated methods
are not intended to extract the perfect ontology, they only offer support to
domain experts in acquiring this knowledge. This help is especially useful in
situations like ours when the knowledge is distributed in several documents
(possibly of different types: text, diagrams, video, etc). In fact no existing
OL technique is completely unsupervised: a domain expert must be included
somewhere in the knowledge acquisition loop. Therefore, the automatically
acquired knowledge is post-edited, using an existing ontology editor, to re-
move irrelevant concepts and add missed ones. The link between parts of the
content where learned concepts occur and the concept itself are preserved in
the ontology, in order to enable the domain experts to examine the empirical
grounding of the ontology into the software artifacts.

In the remaining of this section we present the details of the first three of
these extraction stages.

4.2 Extracting Terms from Source Code

In order to identify the key terms, specific to the given software project. We
chose to analyze the source code and its accompanying comments, because of
their semi-structured nature. The term extraction process consists of three com-
ponents, all implemented within GATE.



Fig. 1. Multi-source Ontology Learning from Software Artifacts

The first step is to deal with code naming conventions (see Section 3.1), we
implemented a special source code tokeniser, which is based on the default GATE
English tokeniser but is capable of separating class and variable names into
their components, e.g., VisualResource into Visual and Resource. The example
is shown on Figure 2, where all tokens are marked in blue and the Token pop-up
window shows the information for a selected token (e.g., Resource).

Next in the pipeline is the English morphological analyser, which is being
used to annotate all words with their root forms (e.g., the root of the word
“resources” is “resource”). The goal is to derive the same term from the singular
and plural forms, instead of two different terms.

The third component is the GATE key phrase extractor [11], which is based
on TF.IDF (term frequency/inverted document frequency). This method looks
for phrases that occur more frequently in the text under consideration than
they do in language as a whole. In other words, TF.IDF finds phrases that are
characteristic of the given text, while ignoring phrases that occur frequently in
the text simply because they are common in the language as a whole. It requires
training data in order to determine how common each phrase is, but this training
data need not be marked up with any human-created annotations.

When TF.IDF is applied to source code, we need a training corpus of source
code of another system, implemented in the same programming language. In
this way, high frequency terms specific to the programming language can be
eliminated and only terms specific to the given software project would be selected



as relevant to the ontology. For instance, terms such as while, hash map, and list
are Java terms and are thus not relevant. Therefore, we first trained the TF.IDF
extractor on the source code of the Sesame5 open source project, because it is
implemented in Java and is of a comparable size to the GATE code base. Then,
given the frequency statistics obtained from the Sesame code, we extract up to
ten key terms from each GATE java file. For example, Figure 2 shows the code of
VisualResource.java, with the extracted terms annotated in brown (e.g., visual
resource, GUI, GATE, resource).

The difference between this approach and the rule-based approach for concept
identification (e.g., [18]) is that this is an unsupervised learning method which
makes it porting across different data sources and application domains a lot more
straightforward. In effect, all that is required is a collection of unannotated texts,
which are similar in structure to the data sources which need to be analyzed.

Fig. 2. Example token, morphology, and key term annotations

4.3 Term Pruning

The next stage in the concept learning process is to prune the list of terms
in order to filter out irrelevant concepts. Previous work on learning web service
domain ontologies has used average term frequency as the threshold below which
concepts should be pruned [18].

In our case, the TF.IDF score associated to each term by the term extractor
can be used as a basis for pruning. In the current experiments we experimented
with several fixed thresholds and decided on retaining only the top three terms
per source file. Another possibility, to be explored in the future, is to identify
the average TF.IDF score across the entire corpus and then prune all terms with
lower score, regardless of which source file they come from.
5 http://www.openrdf.org/



At present, based on the top three key terms from each Java file, a list of
all terms from all documents is compiled and this list is considered to contain
some of the labels used to refer to concepts in the domain. In other words, our
approach assumes that the developers are most likely to use more than one term
for referring to the same concept and therefore we should not map directly the
linguistic expressions into concepts. Instead, a new processing stage needs to
be introduced into the concept learning process which attempts to discover all
equivalent terms which lexicalize the same concept. We call this process term
matching and it is discussed in Section 4.5.

4.4 Multi-Source Term Enrichment

Term extraction from source code in itself is not sufficient, because our analysis
of the results showed that the comments and class names tend to use consistently
only one term to refer to each of the domain concepts. In addition, the software
developers usually write the comments to be as short as possible and thus in-
troduce abbreviations, e.g., doc for document or splitter for sentence splitter.
The consequence is that the majority of terms extracted from the source code
are single word terms, whereas the user-oriented unstructured texts tend to use
more multi-word terms to refer to the same concepts.

Consequently, the goal of the multi-source term enrichment process (see right
side of Figure 1) is to use the unstructured software artifacts (e.g., forum postings
and manuals) in order to identify new frequently occurring multi-word terms,
which consist of two or more of the terms extracted from the source code.

The first step is term annotation, which is implemented using the GATE
gazetteer component (see [8]). The gazetteer takes as an input the term list
extracted from the source code and annotates (i.e., identifies and marks-up) all
mentions of these terms in the unstructured documents, i.e., forum postings and
manuals in our case. The annotation process is done on the root forms (i.e., the
morphological information), because the list of terms contains only basic forms
(e.g., document but not documents).

The second step is what we call discovery of multi-word terms and this is
implemented as a simple regular expression, which finds two or more consecutive
terms and joins them together in a multi-word term. For example, some terms
derived from the source code are ANNIE, sentence, splitter, and gazetteer. When
the term enrichment is run on the GATE forum postings, then several new
multi-word terms are identified based on the co-occurrence of the simple terms:
sentence splitter, ANNIE sentence splitter, and ANNIE gazetteer. The result is
a list of new multi-word terms which are then merged with those extracted from
the source code prior to term matching.

4.5 Term Matching

The term matching module uses a set of orthographic rules to determine terms
that refer to the same concept (e.g., POS tagger and part-of-speech tagger).
This component is based on the GATE Ortographic coreferrence module, which



identifies co-referring names in documents, e.g., George Bush and President Bush
[2]. The rules that we apply for matching the terms are generally applicable (i.e.,
not software or domain specific) rules such as:

– exact match: two identical occurrences of the same term corefer.
– equivalent, as defined in a synonym list: this rule is used to handle matching

of terms like Hepple tagger and POS tagger. This synonym list is created
manually by a domain expert and can be extended easily with new equivalent
names without recompiling the orthomatcher itself.

– possessives: handles terms in possessive form, e.g., document and docu-
ments’s.

– spurious, as defined in a list of spurious names. This is a list, similar in
structure to the list of equivalence terms, where the user can add pairs of
terms which should never be matched. At present this list is empty, but the
functionality is provided for flexibility, if required in the future.

– acronyms: handles acronyms like part-of-speech tagger and POS tagger or
noun phrase chunker and NP chunker.

– abbreviations: identifies whether one term is an abbreviation of another, e.g.,
doc and document. However, this rule would not match multi-token terms
such as tokeniser and Unicode tokeniser as they are considered different.

– prepositional phrases: matches terms which are inverted around a preposi-
tion, e.g., annotation of documents and document annotation. This at present
is an experimental rule, which might be removed if evaluation discovers that
it is introducing more errors than useful mathces.

The results of the term matching is considered to be the set of learned con-
cepts. We generate an OWL class with name starting with GATE followed by
the term (e.g., GATE DOCUMENT) and assign the term as the alias of that con-
cept. Where several terms are matched as equivalent, the first one is used to
derive the class name (again, using the GATE prefix) and all terms are assigned
as aliases (e.g., concept GATE POS TAGGER with aliases “POS tagger” and
“part-of-speech” tagger).

5 Experimental Results

We experimented with performing term extraction from the 536 java source files,
which constitute GATE version 3.1. The resulting term list contained 576 terms,
but only 218 of them had frequency of more than 1.

Table 2 shows the top frequency terms, extracted from the GATE code. As
can be seen there are only a few spurious ones. “1.1” is a version number and its
inclusion can easily be avoided in future by preventing the inclusion of numbers
and full stops in the terms. “Test” features so prominently because of the unit
testing code in GATE, but again, this is easily rectified by allowing the user to
exclude some source files from processing. “Licence” is included because we did
not exclude the copyright notices from the analysis.



Term Freq. Term Freq. Term Freq. Term Freq.

GATE 218 test 20 licence 12 annotation set 9

annotation 63 word 18 persistence 12 creole 9

feature 41 synset 18 gazetteer 12 node 9

corpus 29 annot 18 sense 12 transducer 8

1.1 26 box 14 document 10 data store 7

doc 25 controller 13 PR 10 LR 7
Table 2. Top frequency terms extracted from the GATE source code

Term Freq. Term Freq. Term Freq. Term Freq.

pos tagger 44 jape rule 33 property name 27 token annotation 23

jape file 34 sentence splitter 30 jape transducer 24 jar file 19

jape grammar 34 gazetteer list 27 xml file 24 creole plugin 15

Table 3. Top frequency terms extracted from GATE forum postings

More interestingly, in the case of two important concepts - documents and
annotations - we extracted two representative terms one of which is an abbrevi-
ation (i.e., “doc” and “annot”). As already discussed above, such abbreviations
are frequently used in source code when the concept names are too long.

The 576 terms were then given as input to the term enrichment process,
which (due to time contraints with the paper deadline) we ran on only 2000 of
the GATE forum postings, posted between January 2005 and June 2006. The
term enrichment produced 153 multi-word terms, with only 12 terms overlap
with the source code term list. Table 3 shows the top frequency multi-word
terms. They all denote important concepts in GATE. Only two of them have
more general software relevance (“xml file” and “jar file”), whereas all others are
GATE-specific (e.g., JAPE is the name of the most popular GATE component –
its pattern-matching engine, hence the files, which contains grammars consisting
of rules).

Overall, when the two lists were combined, we obtained 719 terms in total,
286 of which had frequency more than 1. These 286 terms were then used for a
limited evaluation, carried out by an expert GATE developer who counted all
errors. They identified 76 spurious terms, which gives precision of 73.4%. An
evaluation of the method’s recall is forthcoming (see Section 7).

This also brings us to the more general problem of user validation in the
ontology learning process. On one hand it should be kept to a minimum by
making our methods as accurate as possible, but on the other, this should not
come at the expense of recall. Therefore, as discussed in Section 4.1, ultimately
the set of learned concepts will be verified by a domain expert, who would use
an ontology editor in order to delete wrongly identified concepts or add ones
missed by the automatic learning process.



6 Discussion

This paper presented our initial prototype of an ontology learning system, cre-
ated in the wider context of using semantic technology to facilitate access, main-
tenance and re-use of software artifacts, produced by large open source projects.

The first characteristic and strength of our technique is that it deals with mul-
tiple information sources. Indeed, the system contains different steps for dealing
with structured data sources on one hand (i.e., source code) and unstructured
sources on the other (i.e., documentation). Note that the separate extraction
steps do not simply run in parallel but instead are integrated in such a way that
the performance of the method is optimized: simple terms are extracted from the
source code and then used as a starting point for identifying compound terms
in the user documentation.

It should also be noted that our approach addresses most of the particulari-
ties of the used data sources described in Section 3. We use an English tokenizer
to deal with naming conventions and a reference corpus consisting of the source
code of Sesame to filter out code terms. By using GATE and its built in document
management functionalities we can easily process and read the various different
formats. Finally, we rely on an a morphological analyzer and a coreference mod-
ule to identify multiple lexicalizations of the same concept and therefore obtain
a list of concepts from a much larger set of identified relevant terms.

The second strength of our approach with respect to what has been done in
the field of learning ontologies from software artifacts is that it relies on an un-
supervised method to identify domain terms by comparing the processed corpus
with a reference corpus. While similar techniques have been employed in previ-
ous, generic ontology learning approaches such as [5] and [16], our experiments
suggest that they can be successfully applied also in the software engineering
context. In particular, the challenge we address here is not so much the develop-
ment of novel ontology learning methods, but rather the improvement of their
robustness and scalability in order to deal with, explore and combine a wide
range of knowledge sources.

Finally, as part of the process of designing the semantic-based search and
browse facilities, we carried out a small experiment with using the learnt domain
concepts to discover automatically who is the most suitable GATE developer to
address for a given problem. A subset of the GATE forum postings were analysed
to identify all responses by GATE developers, whose names were supplied as an
input to the system. The result was an association of domain concepts, devel-
oper names (as initials), and frequency of answers. Some examples are: POS
tagger (DM (43 postings), IR (12)), Jena ontologies (VT (45), KB (6), IR (2)).
As already discussed in Section 2, this information can help new developers to
identify who they should consult when working on a given topic. Conversely,
the assingment of GATE concepts to forum postings will enable our system to
provide developers with the facility to be notified only of postings related to
their area of expertise.



7 Future Work

The next step in the development of our system is to implement relation learning.
In the first instance, we’ll focus on learning the class hierarchy, i.e., isa relations
between concepts. We will experiment with several methods:

– exploiting term compositionality [18], where if the lexical term of one concept
appears as the ending of the lexical term of another concept, then the first
concept is more generic than the second one. For example, JAPE rule is a
sub-class of the concept rule.

– lexical patterns, such as these used in Text2Onto [7].
– exploiting the class inheritance hierarchy of the source code, which would

for example indicate that a POS tagger is a sub-class of language analysis
component.

The main outstanding challenge yet to be addressed will be in adapting
the ontology learning techniques to deal with the dynamic nature of software
artifacts and in implementing the corresponding semantic-based access search
and browse methods.

Finally, we plan to perform a more thorough evaluation of our concept and
relation learning methods. The first step will be to build a gold standard domain
ontology, starting from the automatically learned concepts and relations. Then
the automatically created ontology will be evaluated against the gold standard
by using metrics such as lexical and taxonomic precision and recall [10].

Acknowledgements

This work is partially supported by the EU-funded TAO project (IST-2004-
026460).

References

1. A. Ankolekar, K. Sycara, J. Herbsleb, and R. Kraut. Supporting Online Problem
Solving Communities with the Semantic Web. In Proc. of WWW, 2006.

2. K. Bontcheva, M. Dimitrov, D. Maynard, V. Tablan, and H. Cunningham.
Shallow Methods for Named Entity Coreference Resolution. In Châınes de
références et résolveurs d’anaphores, workshop TALN 2002, Nancy, France, 2002.
http://gate.ac.uk/sale/taln02/taln-ws-coref.pdf.

3. K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham.
Evolving GATE to Meet New Challenges in Language Engi-
neering. Natural Language Engineering, 10(3/4):349—373, 2004.
http://www.gate.ac.uk/sale/jnle-sale/subs/BONTCHEVA--jnle-final.pdf.

4. P. Buitelaar, P. Cimiano, and B. Magnini. Ontology learning from text: Methods,
applications and evaluation. IOS Press, 2005.

5. P. Buitelaar, D. Olejnik, and M. Sintek. A Protege Plug-in for Ontology Extrac-
tion from Text Based on Linguistic Analysis. In Proceedings of the 1st European
Semantic Web Symposium, 2004.



6. P. Cimiano, S. Handschuh, and S. Staab. Towards the Self-Annotating Web. In
Proc. of the 13th International Conference on World Wide Web (WWW’04), 2004.

7. P. Cimiano and J. Voelker. Text2Onto - A Framework for Ontology Learning and
Data-driven Change Discovery. In Proceedings of the 10th International Conference
on Applications of Natural Language to Information Systems (NLDB), Alicante,
Spain, 2005.

8. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL’02), 2002.

9. B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht. Self-Organized Reuse of
Software Engineering Knowledge Supported by Semantic Wikis. In Workshop on
Semantic Web Enabled Software Engineering (SWESE), Galway, Ireland, 2005.

10. K. Dellschaft and S. Staab. On How to Perform a Gold Standard Based Evalua-
tion of Ontology Learning. In Proceedings of the 5th International Semantic Web
Conference (ISWC’06), Athens, GA, USA, to appear.

11. M. Dowman, V. Tablan, H. Cunningham, and B. Popov. Web-assisted anno-
tation, semantic indexing and search of television and radio news. In Proceed-
ings of the 14th International World Wide Web Conference, Chiba, Japan, 2005.
http://gate.ac.uk/sale/www05/web-assisted-annotation.pdf.

12. M. Grobelnik and D. Mladenic. Knowledge Discovery for Ontology Construction.
In J. Davies, R. Studer, and P. Warren, editors, Semantic Web Technologies. John
Wiley and Sons, 2006.

13. P. Haase, Y. Sure, and D. Vrandecic. D3.1.1 Ontology Management and Evolution
Survey, Methods and Prototypes. Technical report, SEKT EU Project Deliverable,
2004.

14. A. Kiryakov, B. Popov, D. Ognyanoff, D. Manov, A. Kirilov, and M. Goranov.
Semantic annotation, indexing and retrieval. Journal of Web Semantics, ISWC
2003 Special Issue, 1(2):671–680, 2004.

15. H. Knublauch. Ramblings on Agile Methodologies and Ontology-Driven Soft-
ware Development. In Workshop on Semantic Web Enabled Software Engineering
(SWESE), Galway, Ireland, 2005.

16. A. Maedche. Ontology Learning fot the Semantic Web. Kluwer Academic Publish-
ers, Amsterdam, 2002.

17. M. Sabou. From Software APIs to Web Service Ontologies: a Semi-Automatic Ex-
traction Method. In Proceedings of the 3rd International Semantic Web Conference
(ISWC’04), 2004.

18. M. Sabou. Building Web Service Ontologies. PhD thesis, Vrije Universiteit, 2006.
19. M. Sabou and J. Pan. Towards Improving Web Service Repositories through Se-

mantic Web Techniques. In Workshop on Semantic Web Enabled Software Engi-
neering (SWESE), Galway, Ireland, 2005.

20. B. Sapcota. Web Service Discovery in Distributed and Heterogeneous Environ-
ments. In International Conference on Web Intelligence (WI’05), Compiegne,
France, 2005.

21. P. Warren, I. Thurlow, and D. Alsmeyer. Applying Semantic Technology to a
Digital Library. In J. Davies, R. Studer, and P. Warren, editors, Semantic Web
Technologies. John Wiley and Sons, 2006.


