
GATE: A Unicode-based Infrastructure Supporting Multilingual
Information Extraction

Kalina Bontcheva and Diana Maynard and Valentin Tablan and
Hamish Cunningham

Dept. of Computer Science, University of Sheffield
Regent Court, 211 Portobello St, Sheffield, S1 4DP, UK

[K.Bontcheva, D.Maynard, V.Tablan, H.Cunningham]@dcs.shef.ac.uk

Abstract

NLP infrastructures with comprehensive multi-
lingual support can substantially decrease the
overhead of developing Information Extraction
(IE) systems in new languages by offering sup-
port for different character encodings, language-
independent components, and clean separa-
tion between linguistic data and the algorithms
that use it. This paper will present GATE
– a Unicode-aware infrastructure that offers
extensive support for multilingual Information
Extraction with a special emphasis on low-
overhead portability between languages. GATE
has been used in many research and commer-
cial projects at Sheffield and elsewhere, includ-
ing Information Extraction in Bulgarian, Roma-
nian, Russian, and many other languages.

1 Introduction

GATE(Cunningham 02)1 is an architecture, de-
velopment environment and framework for build-
ing systems that process human language. It
has been in development at the University of
Sheffield since 1995, and has been used for many
R&D projects, including Information Extraction
in multiple languages and for multiple tasks and
clients.

The GATE architecture defines almost every-
thing in terms of components - reusable units of
code that are specialised for a specific task. There
are three main types of components:

• Language Resources (LRs) store some kind of
linguistic data such as documents, corpora,
ontologies and provide services for accessing
it. At the moment all the predefined LRs are
text based but the model doesn’t constrict
the data format so the framework could be
extended to handle multimedia documents as
well.

• Processing Resources (PRs) are resources
whose character is principally programatic or

1GATE is implemented in Java and is freely available
from http://gate.ac.uk as open-source free software under
the GNU library licence.

algorithmic such as a POS tagger or a parser.
In most cases PRs are used to process the
data provided by one or more LRs but that
is not a requirement.

• Visual Resources (VRs) are graphical com-
ponents that are displayed by the user inter-
face and allow the visualisation and editing
of other types of resources or the control of
the execution flow.

The GATE framework defines some basic lan-
guage resources such as documents and corpora,
provides resource discovery and loading facilities
and supports various kinds of input output oper-
ations such as format decoding, file or database
persistence.

GATE uses a single unified model of annotation
- a modified form of the TIPSTER format (Grish-
man 97) which has been made largely compatible
with the Atlas format (Bird & Liberman 99), and
uses the now standard mechanism of ‘stand-off
markup’ (Thompson & McKelvie 97). Annota-
tions are characterised by a type and a set of fea-
tures represented as attribute-value pairs. The
annotations are stored in structures called anno-
tation sets which constitute independent layers of
annotation over the text content.

The advantage of converting all formatting in-
formation and corpus markup into a unified rep-
resentation, i.e. the annotations, is that NLP ap-
plications do not need to be adapted for the dif-
ferent formats of each of the documents, which
are catered for by the GATE format filters (e.g.
some corpora such as BNC come as SGML/XML
files, while others come as email folders, HTML
pages, news wires, or Word documents).

The work for the second version of GATE
started in 1999 and led to a complete redesign of
the system and a 100% Java implementation. One
of the additions brought by version 2 is full sup-
port for Unicode data allowing the users to open,
visualise and process documents in languages dif-

http://gate.ac.uk


ferent from the default one for the underlying
platform.

2 Information Extraction in GATE

Provided with GATE is a set of reusable pro-
cessing resources for common NLP tasks. (None
of them are definitive, and the user can replace
and/or extend them as necessary.) These are
packaged together to form ANNIE, A Nearly-New
IE system, but can also be used individually or
coupled together with new modules in order to
create new applications. For example, many other
NLP tasks might require a sentence splitter and
POS tagger, but would not necessarily require re-
sources more specific to IE tasks such as a named
entity transducer. The system is in use for a vari-
ety of IE and other tasks, sometimes in combina-
tion with other sets of application-specific mod-
ules.

ANNIE consists of the following main process-
ing resources: tokeniser, sentence splitter, POS
tagger, gazetteer, finite state transducer (based
on GATE’s built-in regular expressions over an-
notations language (Cunningham et al. 02b)),
and orthomatcher. The resources communicate
via GATE’s annotation API, which is a directed
graph of arcs bearing arbitrary feature/value
data, and nodes rooting this data into document
content (in this case text).

The tokeniser splits text into simple tokens,
such as numbers, punctuation, symbols, and
words of different types (e.g. with an initial cap-
ital, all upper case, etc.). The aim is to limit the
work of the tokeniser to maximise efficiency, and
enable greater flexibility by placing the burden of
analysis on the grammars. This means that the
tokeniser does not need to be modified for differ-
ent applications or text types and frequently does
not need to be modified for new languages, i.e.,
tends to be fairly language-independent.

The sentence splitter is a cascade of finite-
state transducers which segments the text into
sentences. This module is required for the tag-
ger. Both the splitter and tagger are domain- and
application-independent.

The POS tagger is a modified version of
the Brill tagger, which produces a part-of-speech
(POS) tag as an annotation on each word or sym-
bol. Neither the splitter nor the tagger are a
mandatory part of the NE system, but the anno-
tations they produce can be used by the grammar

(described below), in order to increase its power
and coverage. For languages where no POS tag-
ger is available it can be left out, often without
major implications on the system’s performance
on some IE tasks. Alternatively, the English POS
tagger can easily be adapted to a new language
using a bi-lingual lexicon (see Section 4.3).

The gazetteer consists of lists such as cities,
organisations, days of the week, etc. It not only
consists of entities, but also of names of useful
indicators, such as typical company designators
(e.g. ‘Ltd.’), titles, etc. The gazetteer lists are
compiled into finite state machines, which can
match text tokens.

The semantic tagger consists of hand-crafted
rules written in the JAPE (Java Annotations Pat-
tern Engine) language (Cunningham et al. 02b),
which describe patterns to match and annotations
to be created as a result. JAPE is a version
of CPSL (Common Pattern Specification Lan-
guage) (Appelt 96), which provides finite state
transduction over annotations based on regular
expressions. A JAPE grammar consists of a
set of phases, each of which consists of a set of
pattern/action rules, and which run sequentially.
Patterns can be specified by describing a specific
text string, or annotations previously created by
modules such as the tokeniser, gazetteer, or doc-
ument format analysis. Rule prioritisation (if ac-
tivated) prevents multiple assignment of annota-
tions to the same text string.

The orthomatcher is another optional mod-
ule for the IE system. Its primary objective is to
perform co-reference, or entity tracking, by recog-
nising relations between entities. It also has a
secondary role in improving named entity recog-
nition by assigning annotations to previously un-
classified names, based on relations with existing
entities.

3 Support for Multilingual
Documents and Corpora in GATE

The most important types of Language Resources
that are predefined in GATE are documents and
corpora. A corpus is defined in GATE as a list of
documents.

Documents in GATE are typically created
starting from an external resource such as a file
situated either on a local disk or at an arbitrary
location on the Internet. Text needs to be con-
verted to and from binary data, using an encod-



Figure 1: The GUK Unicode editor using a Ko-
rean virtual keyboard.

ing (or charset), in order to be saved into or read
from a file. There are many different encodings
used worldwide, some of them designed for a par-
ticular language, others covering the entire range
of characters defined by Unicode. GATE uses the
facilities provided by Java and so it has access to
over 100 different encodings including the most
popular local ones, such as ISO 8859-1 in West-
ern countries or ISO-8859-9 in Eastern Europe,
and some Unicode ones e.g. UTF-8 or UTF-16.
Once processed, the documents can also be saved
back to their original format and encoding.

Apart from being able to read several character
encodings, GATE supports a range of popular file
formats such as HTML, XML, email, some types
of SGML and RTF.

Another important aspect is displaying and
editing multilingual documents. GATE uses
largely the Java Unicode support for display-
ing multilingual documents. Editing multilingual
documents (and also language-specific grammars,
gazetteer lists, etc) is provided by GUK – GATE’s
Unicode Kit. GUK provides input methods for a
large number of languages (see Figure 1), allows
the definition of new ones, and also provides a
Unicode-based text editor.

So far GATE has been used successfully to
create corpora and process documents in a wide
range of languages – Slavic (e.g., Bulgarian, Rus-
sian), Germanic (Maynard et al. 01; Gambäck &
Olsson 00), Romance (e.g., Romanian) (Pastra et
al. 02), Asian (e.g., Hindi, Bengali) (McEnery et
al. 00), Chinese, Arabic, and Cebuano (Maynard
et al. 03).

4 Adapting the GATE Components
to Multiple Languages

The use of the Java platform implies that all
processing resources that access textual data will
internally use Unicode to represent data, which
means that all PRs can virtually be used for text
in any Unicode supported language. Most PRs,
however, need some kind of linguistic data in or-
der to perform their tasks (e.g. a parser will need
a grammar) which in most cases is language spe-
cific. In order to make the algorithms provided
with GATE (in the form of PRs) as language-
independent as possible, and as a good design
principle, there is always a clear distinction be-
tween the algorithms - presented in the form of
machine executable code - and their linguistic
resources which are typically external files. All
PRs use the textual data decoding mechanisms
when loading the external resources so these re-
sources can be represented in any supported en-
coding which allows for instance a gazetteer list
to contain localised names. This design made it
possible to port our information extraction sys-
tem ANNIE from English to other languages by
simply creating the required linguistic resources.

4.1 The Unicode Tokeniser

One of the PRs provided with GATE is the to-
keniser which not only handles Unicode data but
is actually built around the Unicode standard,
hence its name of “GATE Unicode Tokeniser”.

Like many other GATE PRs, the tokeniser is
based on a finite state machine (FSM ) which is
an efficient way of processing text. In order to
provide a language independent solution, the to-
keniser doesn’t use the actual text characters as
input symbols, but rather their categories as de-
fined by the Unicode standard.

As part of our work on multilingual IE, the rule-
set of the tokeniser was improved, because origi-
nally it was intended for Indo-European languages
and therefore only handled a restricted range of
characters (essentially, the first 256 codes, which
follow the arrangement of ISO-8859-1 (Latin1).
We created a modified version of this which would
deal with a wider range of Unicode characters,
such as those used in Chinese, Arabic, Indic lan-
guages etc. There is some overlap between the
Unicode characters used for different languages.
Codes which represent letters, punctuation, sym-
bols, and diacritics that are generally shared by



multiple languages or scripts are grouped together
in several locations, and characters with common
characteristics are grouped together contiguously
(for example, right-to-left scripts are grouped to-
gether). Character code allocation is therefore
not correlated with language-dependent collation.

In order to enable the tokeniser to han-
dle other Unicode characters, we had to find
the relevant character types and their sym-
bolic equivalents (e.g. type 5 has the sym-
bolic equivalent “OTHER LETTER”; type 8
characters are usually at the beginning or end
of a word and have the symbolic equivalent
“COMBINING SPACING MARK” or “NON-
SPACING MARK”). Rules covering these types
were added to the tokeniser in order to discover
the tokens correctly in a variety of other lan-
guages. Even more importantly, having discov-
ered the technique for extending the tokeniser in
this way, it will be easy to add any further new
types as necessary, depending on the language
(since we have not covered all possibilities).

4.2 Localising the Gazetteer Lists

The GATE gazetteer processing resource enables
gazetteer lists to be described in 3 ways: ma-
jorType, minorType and language. The major
and minor types enable entries to be classified ac-
cording to two dimensions or at 2 levels of gran-
ularity – for example a list of cities might have
a majorType “location” and minorType “city”.
The language classification enables the creation
of parallel lists, one for each language.

For example, for our Cebuano2 IE experiment
(see Section 5.4) we had the same structure for the
Cebuano lists as for their English counterparts,
and simply altered the language label, to differen-
tiate between the two. This is useful for languages
where names of English entities can be found in
the texts in the other language (e.g. for Ce-
buano – “Cebu City Police Office”). To recognise
these successfully we required both the English
gazetteer (to recognise “Office”) and the Cebuano
gazetteer (to recognise “Cebu City”, which is not
in the English gazetteer). Using both gazetteers
improved recall and did not appear to affect preci-
sion, since English entities did not seem to be am-
biguous with Cebuano entities or proper nouns.
However, this might not be the case for other,
closer languages.

2A language spoken in the South Philippines.

4.3 Multilingual Adaptation of the POS
Tagger

The Hepple POS tagger, which is freely avail-
able in GATE as part of ANNIE, is similar to
the Brill’s transformation-based tagger (Brill 92),
but differs mainly in that it uses a decision list
variant of Brill’s algorithm. This means that in
classifying any instance, only one transformation
can apply. It is also written in Java.

In order to adapt the POS tagger to a new lan-
guage, one would typically need to re-train it on
a big part-of-speech annotated corpus. However,
there are no such corpora for many languages, so
we experimented with adapting the POS tagger to
a new language without such training data, only
using a bilingual lexicon.

As part of the ANNIE adaptation to Cebuano
(see Section 5.4), we tested whether we could
adapt the Hepple tagger to Cebuano using a bilin-
gual Cebuano-English lexicon with POS informa-
tion. On first appearances it seemed that Ce-
buano word order and morphology is similar to
English, and it also has similar orthography. The
rules for English (derived from training on the
Wall Street Journal) would clearly not be appli-
cable for Cebuano, so we used an empty ruleset,
but we decided that many of the default heuris-
tics might still be appropriate. The heuristics are
essentially as follows:

1. look up the word in the lexicon

2. if no lexicon entry found:

• if capitalised return NNP
• if word containes ”-” return JJ
• if word contains a digit return CD
• if word ends in ”ed”, ”us”, ”ic”, ”ble”,

”ive”, ”ish”, ”ary”, ”ful”, ”ical”, ”less”
return JJ

• if word ends in ”s” return NNS
• if word ends in ”ly” return RB
• if word ends in ”ing” return VBG
• if none of the above matched return NN

3. apply the trained rules to make changes to
the assigned categories based on the context

Some of these heuristics make little sense for Ce-
buano because it is unusual for Cebuano words to
have endings such as “ic”,“ly”, “ing” etc. This
means that in most cases, when a word is not in



the lexicon, the tag returned will be NNP (proper
noun) if capitalised, or NN (common noun) if not,
which is appropriate. However, these heuristics
cannot be changed without modifying the code of
the POS tagger itself, therefore we left them un-
changed even though most of them did not apply.

Adapting the tagger did have a number of prob-
lems, mostly associated with the fact that while
the English lexicon (used for the tagger) consists
only of single-word entries, the Cebuano lexicon
contained many multi-word entries (such as mahi-
tungod sa honi (musical)). The tagger expects
lexicon entries to have a single word entry per
line, followed by one or more POS tags, each sep-
arated by a single space.

We therefore modified the lexicon so that the
delimiter between the lexical entry and the POS
tag(s) was a “#” rather than a space, and adapted
the tagging mechanism to recognise this. As a re-
sult, the ANNIE POS tagger now has the option
of processing multi-word entries, which are very
important in a number of languages, e.g., the AN-
NIE adaptation to Hindi also required this.

In order to evaluate the portability and use-
fulness of such low-overhead adaptation of the
POS tagger, we repeated the same experiment for
Hindi, using a relatively small English-Hindi bilin-
gual lexicon. The results were 67% correctness as
evaluated by a native Hindi speaker. Whereas
such correctness may not be sufficient for deeper
linguistic processing (e.g., parsing), it is sufficient
for named entity recognition.

Next we discuss how these multilingual process-
ing resources were used to perform information
extraction in a variety of languages.

5 Information Extraction in Multiple
Languages

Robust tools for multilingual information extrac-
tion are becoming increasingly sought after now
that we have capabilities for processing texts
in different languages and scripts. While the
ANNIE IE system in GATE is English-specific,
some of the modules can be reused directly (e.g.
the Unicode-based tokeniser can handle Indo-
European languages), and/or easily customised
for new languages (Pastra et al. 02). So far, AN-
NIE has been adapted to do IE in Bulgarian, Ro-
manian, Bengali, Greek, Spanish, Swedish, Ger-
man, Italian, French, Hindi, and Cebuano, and
we are currently porting it to Arabic, Chinese and

Russian, as part of the MUSE project3.

5.1 NE in Slavonic languages

The Bulgarian NE recogniser (Paskaleva et al. 02)
was built using three main processing resources:
a tokeniser, a gazetteer and a semantic gram-
mar built using JAPE. There was no POS tag-
ger available in Bulgarian, and consequently we
had no need of a sentence splitter either. The
main changes to the system were in terms of the
gazetteer lists (e.g. lists of first names, days of the
week, locations etc. were tailored for Bulgarian),
and in terms of some of the pattern matching rules
in the grammar. For example, Bulgarian makes
far more use of morphology than English does,
e.g. 91% of Bulgarian surnames could be directly
recognised using morphological information. The
lack of a POS tagger meant that many rules had
to be specified in terms of orthographic features
rather than parts of speech. An example Bulgar-
ian text with highlighted named entities is shown
in Figure 2.

5.2 NE in Romanian

The Romanian NE recogniser (Hamza et al. 03)
was developed from ANNIE in a similar way to
the Bulgarian one, using tokeniser, gazetteer and
a JAPE semantic grammar (see Figure 3).

Romanian is more flexible language than En-
glish in terms of word order; also agglutinative
e.g. definite articles attach to nouns, making a
definite and indefinite form of both common and
proper nouns.

As with Bulgarian, the tokeniser did not need
to be modified, while the gazetteer lists and gram-
mar rules needed some changes, most of which
were fairly minor. For both Bulgarian and Roma-
nian, the modifications necessary were easily im-
plemented by a native speaker who did not require
any other specialist skills beyond a basic grasp of
the JAPE language and the GATE architecture.
No Java skills or other programming knowledge
was necessary. The Gate Unicode kit was invalu-
able in enabling the preservation of the diacritics
in Romanian, by saving them with UTF-8 encod-
ing.

In order to evaluate the language-independence
of ANNIE’s named entity recognition rules we ran
an experiment comparing the performance of the
English grammars with the Romanian gazetteer

3http://www.dcs.shef.ac.uk/nlp/muse/



Figure 2: Bulgarian named entities in GATE

Entity Type Precision Recall
Address 0.81 0.81
Date 0.67 0.77
Location 0.88 0.96
Money 0.82 0.47
Organisation 0.75 0.39
Percent 1 0.82
Person 0.68 0.78
Overall 0.82 0.67

Table 1: Average P + R per entity type, obtained
with English NER grammar set

Entity Type Precision Recall
Address 0.96 0.93
Date 0.95 0.94
Location 0.92 0.97
Money 0.98 0.92
Organisation 0.95 0.89
Percent 1 0.99
Person 0.88 0.92
Overall 0.95 0.94

Table 2: Average P + R per entity type, obtained
with Romanian NER grammar set

lists to the performance of the Romanian gram-
mars, which were an extended set containing some
rules specific to the language. The results are
shown in Tables 1 and 2 respectively and show
that without any adaptation of the grammars,
only by collecting gazetteer lists for Romanian,
ANNIE was able to achieve 82% precision and
67% recall. Once the system was customised to
Romanian the performance was in line with that
for English, i.e., 95% precision and 94% recall.

5.3 NE in other languages

ANNIE has also been adapted to perform NE
recognition on English, French and German di-
alogues in the AMITIES project4, a screenshot
of which is shown in Figure 4. Since French and
German are more similar to English in many ways
than e.g. Slavonic languages, it was very easy to
adapt the gazetteers and grammars accordingly.

Figure 4: AMITIES multilingual dialogue

5.4 Surprise languages

We carried out further experiments as part of
the TIDES-based “surprise language program”,
which requires various NLP tasks such as IE, IR,
summarisation and MT to be carried out in a
month on a surprise language, the nature of which
is not known in advance.

Here we will concentrate on the dry-run ex-
periment which ran for 10 days on the Cebuano
language, which is spoken by 24% of the popula-
tion in the Philippines, and is the lingua franca of
the South Philippines. As part of that effort, we
adapted ANNIE to the Cebuano language.

4http://www.dcs.shef.ac.uk/nlp/amities



Figure 3: Romanian news text annotated in GATE

Cebuano system P R F Baseline system P R F
Person 71 65 68 Person 36 36 36
Organization 75 71 73 Organization 31 47 38
Location 73 78 76 Location 65 7 12
Date 83 100 92 Date 42 58 49
Total 76 79 77.5 Total 45 41.7 43

Table 3: NE results on the news texts

We succeeded in our adaptation task, without
the help of a native speaker, because most of
the rules for NE recognition in English are based
on POS tags and gazetteer lookup of candidate
and context words (more detail is given in e.g.
(Cunningham et al. 02b)). Assuming similar
morphological structure and word order, the de-
fault grammars are therefore not highly language-
specific (as discussed in Section 5.2). We did
not have time to make a detailed linguistic study
of Cebuano, however it turned out that after we
adapted the ANNIE part-of-speech (POS) tagger
and gazetteer lists to Cebuano, the rules were per-
forming successfully without any adaptation.

The performance was boosted further by us-
ing ANNIE’s orthographic coreference module
(orthomatcher) to boost recognition of unknown
words. This works by matching entities tagged
as Unknown (i.e., unclassified entity) with other
types of entities (Person, Location etc.) if they
match according to the coreference rules. For ex-
ample, “Smith” on its own might be tagged as
Unknown, but if “John Smith” is tagged as a
Person, the orthomatcher will match the two en-

tities and retag “Smith” as a Person. Our experi-
ment showed that the rules were not particularly
language-specific, given a language with similar
morphology and word order, so the orthomatcher
can be used directly, without modification in such
languages (we had a similar experience with Bul-
garian, Romanian and Chinese). Manual inspec-
tion of texts showed that the orthomatcher was
helpful in improving recall. For example, it recog-
nised “Pairat” as a Person due to coreference with
“Leo Pairat” which was correctly recognised as a
Person by the named entity grammars. Although
we were not focusing on coreference per se, we no-
ticed that many coreferences were correctly iden-
tified, which proves indeed that the rules used are
not particularly language-specific.

We evaluated the performance of the adapted
system on 21 news documents from two different
Cebuano web sites. These texts were annotated
by a local Cebuano speaker prior to our experi-
ment, and the automated scoring tools in GATE
(Cunningham et al. 02a) were used to evaluate
the results of the system. The results (in terms
of Precision, Recall and F-measure) are shown in



Table 3, together with with the results from our
baseline system, the default ANNIE system for
English, which we ran on the same test set. AN-
NIE typically scores for Precision and Recall in
the 90th percentile for English news texts.

6 Conclusion

In this paper we presented GATE – a Unicode-
based NLP infrastructure particularly suitable for
the creation and multilingual adaptation of In-
formation Extraction systems. The different pre-
processing components, i.e., tokeniser, gazetteer,
and POS tagger are designed to be easily adapt-
able to new languages. As demonstrated by our
experience with adapting ANNIE to a variety
of languages, the named entity recognition and
coreference algorithms are relatively language in-
dependent and also easy to adapt or extend to
new languages.

The advantages of our approach is that it
requires little involvement of native speakers
(mainly for evaluation purposes and possibly for
gazetteer creation) and a small amount of anno-
tated data. Therefore, fast adaptations from one
language to another are possible with relatively
low overhead, unlike many machine learning-
based IE systems (e.g., (Bikel et al. 99)) which
require big amounts of annotated data. However,
for languages where such big amounts of anno-
tated data does exist, we have now created an
automatic gazetteer acquisition method that can
be used to reduce further the overhead of porting
ANNIE to new languages.

Future work will continue in the direction
of improving multilingual support, among other
things. The most important issues to be ad-
dressed are integration of morphological tools for
improved support for inflected languages (e.g.,
(Declerck & Crispi 03)), automatic language and
encoding identification (e.g., (Ignat et al. 03)),
and further work on automatic acquisition of
gazetteer lists from annotated corpora.

Acknowledgements
Work on GATE has been funded by EPSRC grants GR/K25267
(GATE), GR/M31699 (GATE2), GR/N15764/01 (IRC AKT), and
GR/N19106 (EMILLE) and several smaller grants.

We would like to thank Markus Kramer from Max Planck Insti-
tute, Nijmegen, for providing us with the IPA and Chinese input
methods.

The work on adapting ANNIE to Bulgarian was carried out
in collaboration with Elena Paskaleva, Milena Yankova, and Galia
Angelova, as part of the EC-funded project BIS-21 BULGARIAN
INFORMATION SOCIETY, CENTER OF EXCELLENCE FOR
EDUCATION, SCIENCE AND TECHNOLOGY IN 21 CENTURY
(ICA1-2000-70016).

References
(Appelt 96) D.E. Appelt. The Common Pattern Specification Lan-

guage. Technical report, SRI International, Artificial Intelligence
Center, 1996.

(Bikel et al. 99) D. Bikel, R. Schwartz, and R.M. Weischedel. An
Algorithm that Learns What’s in a Name. Machine Learning,
Special Issue on Natural Language Learning, 34(1-3), Feb. 1999.

(Bird & Liberman 99) S. Bird and M. Liberman. A Formal
Framework for Linguistic Annotation. Technical Report MS-
CIS-99-01, Department of Computer and Information Science,
University of Pennsylvania, 1999. http://xxx.lanl.gov/-
abs/cs.CL/9903003.

(Brill 92) E. Brill. A simple rule-based part-of-speech tagger. In
Proceedings of the Third Conference on Applied Natural Lan-
guage Processing, Trento, Italy, 1992.

(Cunningham 02) H. Cunningham. GATE, a General Architecture
for Text Engineering. Computers and the Humanities, 36:223–
254, 2002.

(Cunningham et al. 02a) H. Cunningham, D. Maynard,
K. Bontcheva, and V. Tablan. GATE: A Framework and Graph-
ical Development Environment for Robust NLP Tools and Ap-
plications. In Proceedings of the 40th Anniversary Meeting of
the Association for Computational Linguistics, 2002.

(Cunningham et al. 02b) H. Cunningham, D. Maynard,
K. Bontcheva, V. Tablan, and C. Ursu. The GATE User Guide.
http://gate.ac.uk/, 2002.

(Declerck & Crispi 03) T. Declerck and C. Crispi. Multilingual Lin-
guistic Modules for IE Systems. In Proceedings of Workshop
on Information Extraction for Slavonic and other Central and
Eastern European Languages (IESL’03), Borovets, Bulgaria,
2003.

(Gambäck & Olsson 00) B. Gambäck and F. Olsson. Experiences
of Language Engineering Algorithm Reuse. In Second Inter-
national Conference on Language Resources and Evaluation
(LREC), pages 155–160, Athens, Greece, 2000.

(Grishman 97) R. Grishman. TIPSTER Architecture De-
sign Document Version 2.3. Technical report, DARPA,
1997. http://www.itl.nist.gov/div894/894.02/-
related projects/tipster/.

(Hamza et al. 03) O. Hamza, K. Bontcheva, D. Maynard, V. Tablan,
and H. Cunningham. Named Entity Recognition in Romanian.
In Proceedings of Workshop on Information Extraction for
Slavonic and other Central and Eastern European Languages
(IESL’03), Borovets, Bulgaria, 2003.

(Ignat et al. 03) C. Ignat, B. Pouliquen, A. Ribeiro, and R. Stein-
berger. Extending and Information Extraction Tool Set to
Eastern-European Languages. In Proceedings of Workshop on
Information Extraction for Slavonic and other Central and
Eastern European Languages (IESL’03), Borovets, Bulgaria,
2003.

(Maynard et al. 01) D. Maynard, V. Tablan, C. Ursu, H. Cunning-
ham, and Y. Wilks. Named Entity Recognition from Diverse
Text Types. In Recent Advances in Natural Language Process-
ing 2001 Conference, pages 257–274, Tzigov Chark, Bulgaria,
2001.

(Maynard et al. 03) D. Maynard, V. Tablan, and H. Cunningham.
Ne recognition without training data on a language you don’t
speak. In ACL Workshop on Multilingual and Mixed-language
Named Entity Recognition: Combining Statistical and Sym-
bolic Models, Sapporo, Japan, 2003.

(McEnery et al. 00) A.M. McEnery, P. Baker, R. Gaizauskas,
and H. Cunningham. EMILLE: Building a Corpus of South
Asian Languages. Vivek, A Quarterly in Artificial Intelligence,
13(3):23–32, 2000.

(Paskaleva et al. 02) E. Paskaleva, G. Angelova, M.Yankova,
K. Bontcheva, H. Cunningham, and Y. Wilks. Slavonic named
entities in gate. Technical Report CS-02-01, University of
Sheffield, 2002.

(Pastra et al. 02) K. Pastra, D. Maynard, H. Cunningham,
O. Hamza, and Y. Wilks. How feasible is the reuse of grammars
for Named Entity Recognition? In Proceedings of 3rd Language
Resources and Evaluation Conference, 2002.

(Thompson & McKelvie 97) H. Thompson and D. McKelvie. Hy-
perlink semantics for standoff markup of read-only documents.
In Proceedings of SGML Europe’97, Barcelona, 1997.


