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Abstract

This paper reports work aimed at develop-
ing an open, distributed learning environ-
ment, OLLIE, where researchers can ex-
periment with different Machine Learning
(ML) methods for Information Extraction.
Once the required level of performance is
reached, the ML algorithms can be used to
speed up the manual annotation process.
OLLIE uses a browser client while data
storage and ML training is performed on
servers. The different ML algorithms use
a unified programming interface; the inte-
gration of new ones is straightforward.

1 Introduction

OLLIE is an on-line application for corpus annota-
tion that harnesses the power of Machine Learning
(ML) and Information Extraction (IE) in order to
make the annotator’s task easier and more efficient.

A normal OLLIE working session starts with the
user uploading a set of documents, selecting which
ML method to use from the several supplied by the
system, choosing the parameters for the learning
module and starting to annotate the texts. During
the initial phase of the manual annotation process,
the system learns in the background (i.e. on the
server) from the user’s actions and, when a certain
degree of confidence is reached, it starts making sug-
gestions by pre-annotating the documents. Initially,
some of these suggestions may be erroneous but, as
the user makes the necessary corrections, the system

will learn from its mistakes and the performance will
increase leading to a reduction in the amount of hu-
man input required.

The implementation is based on a client-server ar-
chitecture where the client is any Java-enabled web
browser and the server is responsible for storing
data, training ML models and providing access ser-
vices for the users.

The client side of OLLIE is implemented as a set
of Java Server Pages (JSPs) and a small number of
Java applets are used for tasks where the user inter-
face capabilities provided by HTML are not enough.

The server side comprises a JSP/servlet server,
a relational database server and an instance of the
GATE architecture for language engineering which
is used for driving all the language-related process-
ing. The general architecture is presented in Figure
1.

The next section describes the client side of the
OLLIE system while Section 3 details the imple-
mentation of the server with a subsection on the inte-
gration of Machine Learning. Section 4 talks about
security; Section 6 about future improvements and
Section 7 concludes the paper.

2 The OLLIE client

The OLLIE client consists of several web pages,
each of them giving the user access to a particular
service provided by the server.

One such page provides facilities for uploading
documents in the system from a URL, a local file,
or created from text pasted in a form. A variety
of formats including XML, HTML, email and plain
text are supported. When a document is created, the



Figure 1: The general architecture of OLLIE

original markup –if present– is separated from tex-
tual content to prevent it from interfering with the
subsequent language processing.

Another page lets the user choose which machine
learning algorithm is to be used, the attributes that
characterise the instances (e.g., orthography, part-
of-speech), and parameters for the chosen learning
method (e.g., thresholds, smoothing values). The
classes to be learnt (e.g., Person, Organisation) are
provided as part of the user profile, which can be
edited on a dedicated page. All ML methods com-
patible with OLLIE have a uniform way of describ-
ing attributes and classes (see Section 3.1 for more
details on the ML integration); this makes possible
the use of a single user interface for all the ML al-
gorithms available. The fine-tuning parameters are
specific to each ML method and, although the ML
methods can be run with their default parameters, as
established by (Daelemans and Hoste, 2002), sub-
stantial variation in performance can be obtained by
changing algorithm options.

Since OLLIE needs to support the users with the
annotation process by learning in the background
and suggesting annotations, it offers control over
the accuracy threshold for these suggestions. This
avoids annoying the users with wrong suggestions
while assuring that suggestions the system is confi-
dent about are used to pre-annotate the data, reduc-
ing the workload of the user.

The document editor can then be used to annotate
the text (see Figure 2). The right-hand side shows
the classes of annotations (as specified in the user
profile) and the user selects the text to be annotated
(e.g., “McCarthy”) and clicks on the desired class
(e.g., Person). The new annotation is added to the
document and the server is updated immediately (so
the new data becomes available to the ML algorithm

too). The document editor also provides facilities
for deleting wrong annotations, which are then prop-
agated to the server, in a similar way.

The graphical interface facilities provided by a
web browser could be used to design an interface for
annotating documents but that would mean stretch-
ing them beyond their intended use and it is hard to
believe that such an interface would rate very high
on a usability scale. In order to provide a more er-
gonomic interface, OLLIE uses a Java applet that
integrates seamlessly with the page displayed by the
browser. Apart from better usability, this allows for
greater range of options for the user.

The communication between the editor applet and
the server is established using Java Remote Method
Invocation (a protocol similar to the C++ Remote
Procedure Call – RPC) which allows the instant no-
tification when updates are needed for the document
stored on the server. The continuous communication
between the client and the server adds the benefit of
data security in case of network failure. The data
on the server always reflects the latest version of the
document so no data loss can occur. The session
data stored by the server expires automatically after
an idle time of one hour. This releases the resources
used on the server in case of persistent network fail-
ures.

The data structures used to store documents on the
server are relatively large because of the numerous
indices stored to allow efficient access to the annota-
tions. The copy downloaded by the client when the
annotation process is initiated is greatly reduced by
filtering out all the unnecessary information. Most
of the data transferred during the client-server com-
munication is also compressed, which reduces the
level of network traffic – always a problem in client
server architectures that run over the Internet.



Figure 2: Annotating text in the OLLIE client

Another utility provided by the client is a page
that lets the user specify the access rights to the doc-
ument/corpus, which determine whether it can be
shared for viewing or collaborative annotation (see
Section 4 for details on security).

3 Implementation of the OLLIE server

While the client side of the OLLIE application is
presented as set of web pages, the server part is
based on the open source GATE architecture.

GATE is an infrastructure for developing and de-
ploying software components that process human
language (Cunningham et al., 2002). It is written
in Java and exploits component-based software de-
velopment, object orientation and mobile code. One
quality of GATE is that it uses Unicode through-
out (Tablan et al., 2002). Its Unicode capabilities
have been tested on a variety of Slavic, Germanic,
Romance, and Indic languages (Gambäck and Ols-
son, 2000; Baker et al., 2002). This allows OL-
LIE to handle documents in languages other than
English. The back-end of OLLIE uses the GATE
framework to provide language processing compo-
nents, services for persistent storage of user data,

security, and application management.
When a document is loaded in the OLLIE client

and subsequently uploaded to the server, its format
is analysed and converted into a GATE document
which consists of textual content and one or more
layers of annotation. The annotation format is a
modified form of the TIPSTER format (Grishman,
1997), is largely isomorphic with the Atlas format
(Bird and Liberman, 1999) and successfully sup-
ports I/O to/from XCES and TEI (Ide et al., 2000).1

An annotation has a type, a pair of nodes pointing
to positions inside the document content, and a set
of attribute-values, encoding further linguistic infor-
mation. Attributes are strings; values can be any
Java object. An annotation layer is organised as a
Directed Acyclic Graph on which the nodes are par-
ticular locations in the document content and the
arcs are made out of annotations. All the markup
contained in the original document is automatically
extracted into a special annotation layer and can be
used for processing or for exporting the document
back to its original format.

1The American National Corpus is using GATE for a large
TEI-based project.



Linguistic data (i.e., annotated documents and
corpora) is stored in a database on the server (see
Figure 1), in order to achieve optimal performance,
concurrent data access, and persistence between
working sessions.

One of the most important tasks for the OLLIE
server is the execution and control of ML algo-
rithms. In order to be able to use ML in OLLIE,
a new processing resource was designed that adds
ML support to GATE.

3.1 Machine Learning Support

Our implementation for ML uses classification al-
gorithms for which annotations of a given type are
instances while the attributes for them are collected
from the context in which the instances occur in the
documents.

Three types of attributes are defined: nominal,
boolean and numeric. The nominal attributes can
take a value from a specified set of possible values
while the boolean and numeric ones have the usual
definitions.

When collecting training data, all the annotations
of the type specified as instances are listed, and for
each of them, the set of attribute values is deter-
mined. All attribute values for an instance refer to
characteristics of a particular instance annotation,
which may be either the current instance or one sit-
uated at a specified relative position.

Booleanattributes refer to the presence (or ab-
sence) of a particular type of annotation overlapping
at least partially with the required instance.Nominal
andnumericattributes refer to features on a partic-
ular type of annotation that (partially) overlaps the
instance in scope.

One of the boolean or nominal attributes is
marked as the class attribute, and the values which
that attribute can take are the labels for the classes
to be learnt by the algorithm. Figure 3 depicts some
types of attributes and the values they would take
in a particular example. The boxes represent an-
notations,Tokenannotations are used as instances,
the one in the centre being thecurrent instance for
which attribute values are being collected.

Since linguistic information, such as part-of-
speech and gazetteer class, is often used as at-
tributes for ML, OLLIE provides support for iden-
tifying a wide range of linguistic information - part-

of-speech, sentence boundaries, gazetteer lists, and
named entity class. This information, together with
tokenisation information (kind, orthography, and to-
ken length) is obtained by using the language pro-
cessing components available with GATE, as part of
the ANNIE system (Cunningham et al., 2002). See
Section 5 for more details on the types of linguistic
features that can be used. The user chooses which of
this information is to be used as attributes.

An ML implementation has two modes of func-
tioning: training – when the model is being built,
and application – when the built model is used to
classify new instances. Our implementation consists
of a GATE processing resource that handles both the
training and application phases. It is responsible for
detecting all the instances in a document and col-
lecting the attribute values for them. The data thus
obtained can then be forwarded to various external
implementations of ML algorithms.

Depending on the type of the attribute that is
marked as class, different actions will be performed
when a classification occurs. For boolean attributes,
a new annotation of the type specified in the attribute
definition will be created. Nominal attributes trigger
the addition of the feature specified in the attribute
definition on an annotation of the required type sit-
uated at the position of the classified instance. If no
such annotation is present, it will be created.

Once an ML model is built it can be stored as part
of the user profile and reloaded for use at a later time.

The execution of the ML processing resource is
controlled through configuration data that selects the
type of annotation to be used as instances, defines all
the attributes and selects which ML algorithm will
be used and with what parameters.

One good source of implementations for many
well-known ML algorithms is the WEKA library
(Witten and Frank, 1999).2 It also provides a wealth
of tools for performance evaluation, testing, and at-
tribute selection, which were used during the devel-
opment process.

OLLIE uses the ML implementations provided by
WEKA which is accessed through a simple wrap-
per that translates the requests from GATE into API
calls “understood” by WEKA. The main types of re-
quests dealt with by the wrapper are the setting of

2WEKA homepage: http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/


Figure 3: Example of attributes and their values.

configuration data, the addition of a new training in-
stance and the classification of an application-time
instance.

4 Security

Because OLLIE is deployed as a web application
— accessible by anyone with Internet access, secu-
rity is an important issue. Users store documents on
the server and the system also keeps some personal
data about the users for practical reasons.3 All users
need to be provided with a mechanism to authen-
ticate themselves to the system and they need to be
able to select who else, apart from them, will be able
to see or modify the data they store on the server.

Every user has a username and a password, used
to retrieve their profiles and determine which doc-
uments they can access. The profiles also contain
information specifying the types of annotations that
they will be creating during the annotation process.
For example, in the case of a basic named entity

3Storing email addresses for instance is useful for sending
password reminders.

recognition task, the profile will specify Person, Or-
ganisation, and Location. These tags will then be
provided in the document annotation pages.

The access rights for the documents are handled
by GATE which implements a security model simi-
lar to that used in Unix file systems. Table 1 shows
the combination of rights that are possible. They
give a good granularity for access rights, ranging
from private to world readable.

The set of known users is shared between GATE
and OLLIE and, once a user is authenticated with
the system, the login details are kept in session data
which is stored on the OLLIE server. This allows for
automatic logins to the underlying GATE platform
and transparent management of GATE sessions.

5 ML Experiments and Evaluation

To the end of evaluating the suitability of the ML
algorithms provided by WEKA for use in OLLIE
we performed several experiments for named entity
recognition on the MUC-7 corpus (SAIC, 1998). We
concentrated on the recognition of ENAMEX enti-



User User’s Group Other Users
Mode Read Write Read Write Read Write

“World Read/Group Write” + + + + + -
“Group Read/Group Write” + + + + - -
“Group Read/Owner Write” + + + - - -
“Owner Read/Owner Write” + + - - - -

Table 1: Security model — the access rights

ties, i.e., Person, Organisation, and Location. The
MUC-7 corpus contains 1880 Organisation (46%),
1324 Location (32%), and 887 Person (22%) an-
notations in 100 documents. The task has two ele-
ments: recognition of the entity boundaries and clas-
sification of the entities in the three classes. The re-
sults are summarised below.

We first tested the ability of the learners to iden-
tify correctly the boundaries of named entities. Us-
ing 10-fold cross-validation on the MUC 7 corpus
described above, we experimented with different
machine learning algorithms and parameters (using
WEKA), and using different attributes for training.

5 different algorithms have been evaluated: Zero
R and OneR – as baselines, Naive Bayes, IBK (an
implementation of K Nearest Neighbour) and J48
(an implementation of a C4.5 decision tree).

As expected, the baseline algorithms performed
very poorly (at around 1%). For IBK small windows
gave low results, while large windows were very in-
efficient. The best results (f-measureof around 60%)
were achieved using the J48 algorithm.

The types of linguistic data used for the attribute
collection included part of speech information, or-
thography (upper case, lower case, initial upper case
letter, mixture of upper and lower case), token kind
(word, symbol, punctuation or number), sentence
boundary, the presence of certain known names and
keywords from the gazetteer lists provided by the
ANNIE system. Tokens were used as instance an-
notations and, for each token, the window used for
collecting the attributes was of size 5 (itself plus two
other tokens in each direction).

Additional information, such as features on a
wider window of tokens, tended to improve the re-
call marginally, but decreased the precision substan-
tially, resulting in a lower F-measure, and therefore
the trade off was not worthwhile.

We also tested the algorithms on a smaller news
corpus (which contained around 68,000 instances as
opposed to 300,000 for the MUC7 corpus). Again,
the J48 algorithm scored highest, with the decision
table and the K nearest neighbour algorithms both
scoring approximately 1 percentage point lower than
the J48.

The second set of experiments was to classify the
named entities identified into the three ENAMEX
categories: Organisations, Persons and Locations.
Using 10-fold cross-validation on the MUC 7 corpus
described above, we experimented with the WEKA
machine learning algorithms and parameters, and
using attributes for training similar to those used for
boundary detection. The best results were achieved
again with the J48 algorithm, and, for this easier
task, they were situated at around 90%. The at-
tributes were chosen on the basis of their informa-
tion gain, calculated using WEKA’s attribute selec-
tion facilities.

The named entity recognition experiments were
performed mainly to evaluate the WEKA ML algo-
rithms on datasets of different sizes, ranging from
small to fairly large ones (300,000 instances). The
different ML algorithms had different memory re-
quirements and execution speed, tested on a PIII
1.5GHz PC running Windows 2000 with 1GB RAM.
From all algorithms tested, the decision table and
decision tree were the slowest (325 and 122 seconds
respectively on 68,000 instances) and required most
memory - up to 800MB on the big datasets. Naive
Bayes was very fast (only 0.25 seconds) with 1R fol-
lowing closely (0.28 seconds).

6 Further Work

OLLIE is very much work-in-progress and there are
several possible improvements we are considering.

When dealing with a particular corpus, it is rea-



sonable to assume that the documents may be quite
similar in terms of subject, genre or style. Because
of that, it is possible that the quality of the user ex-
perience can be improved by simply using a list of
positive and negative examples. This would allow
the system not to make the same mistakes by always
missing a particular example or always annotating a
false positive – which can be very annoying for the
user.

The big difference in execution time for differ-
ent ML algorithms shows that there are practical
advantages that can be gained from having more
than one ML algorithm integrated in OLLIE, when
it comes to supporting the user with the annotation
task. Since the two experiments showed that Naive
Bayes performs only slightly worse than the best,
but slower algorithms, it may be feasible to train
both a fast Naive Bayes classifier and a slower, but
more precise one. In this way, while the slower ML
algorithm is being re-trained on the latest data, OL-
LIE can choose between using the older model of
this algorithm or the newly re-trained faster base-
line, depending on which ones gives better results,
and suggest annotations for the current document.
As with other such environments, this performance
is measured with respect to the latest annotated doc-
ument.

We hope to be able to integrate more learning
methods, e.g., TiMBL (Daelemans et al., 1998) and
we will also provide support for other people willing
to integrate theirs and make them available from our
OLLIE server or run their own server.

We plan to experiment with other NLP tasks, e.g,
relation extraction, coreference resolution and text
planning for language generation.

Finally, we are working on a Web service imple-
mentation of OLLIE for other distributed, Grid and
e-science applications.

7 Conclusion

OLLIE is an advanced collaborative annotation en-
vironment, which allows users to share and annotate
distributed corpora, supported by adaptive informa-
tion extraction that trains in the background and pro-
vides suggestions.

The option of sharing access to documents with
other users gives several users the possibility to en-

gage in collaborative annotation of documents. For
example, one user can annotate a text with organi-
sations, then another annotate it with locations. Be-
cause the documents reside on the shared server one
user can see errors or questionable markup intro-
duced by another user and initiate a discussion. Such
collaborative annotation is useful in the wider con-
text of creating and sharing language resources (Ma
et al., 2002).

A number of Machine Learning approaches for
Information Extraction have been developed re-
cently, e.g., (Collins, 2002; Bikel et al., 1999), in-
cluding some that use active learning, e.g., (Thomp-
son et al., 1999) or offer automated support, e.g,
(Ciravegna et al., 2002), in order to lower the over-
head of annotating training data. While there ex-
ist corpora used for comparative evaluation, (e.g.,
MUC or the CMU seminar corpus), there is no easy
way to test those ML algorithms on other data, eval-
uate their portability to new domains, or experiment
with different parameters of the models. While some
of the algorithms are available for experimentation,
they are implemented in different languages, require
different data formats, and run on different plat-
forms. All of this makes it hard to ensure experimen-
tal repeatability and eliminate site-specific skew ef-
fects. Also, since not all systems are freely available,
we propose an open, distributed environment where
researchers can experiment with different learning
methods on their own data.

Another advantage of OLLIE is that it defines
a simple API (Application Programming Interface)
which is used by the different ML algorithms to ac-
cess the training data (see Section 3.1). Therefore,
the integration of a new machine learning algorithm
in OLLIE amounts to providing a wrapper that im-
plements this API (a straightforward process). We
have already provided a wrapper for the ML algo-
rithms provided by the WEKA toolkit which can be
used as an example.

Although OLLIE shares features with other adap-
tive IE environments (e.g., (Ciravegna et al., 2002))
and collaborative annotation tools (e.g., (Ma et al.,
2002)), it combines them in a unique fashion. In ad-
dition, OLLIE is the only adaptive IE system that al-
lows users to choose which ML approach they want
to use and to comparatively evaluate different ap-
proaches.
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2000. Experiences of Language Engineering Algo-
rithm Reuse. InSecond International Conference on
Language Resources and Evaluation (LREC), pages
155–160, Athens, Greece.

[Grishman1997] R. Grishman. 1997. TIPSTER Ar-
chitecture Design Document Version 2.3. Techni-
cal report, DARPA.http://www.itl.nist.gov/-
div894/894.02/related projects/tipster/ .

[Ide et al.2000] N. Ide, P. Bonhomme, and L. Romary.
2000. XCES: An XML-based Standard for Linguis-
tic Corpora. InProceedings of the Second Interna-
tional Language Resources and Evaluation Confer-
ence (LREC), pages 825–830, Athens, Greece.

[Ma et al.2002] X. Ma, H. Lee, S. Bird, and K. Maeda.
2002. Models and tools for collaborative annotation.
In Proceedings of 3rd Language Resources and Evalu-
ation Conference (LREC’2002), Gran Canaria, Spain.

[SAIC1998] SAIC. 1998. Proceedings of the Sev-
enth Message Understanding Conference (MUC-
7). http://www.itl.nist.gov/iaui/894.02/-
related projects/muc/index.html .

[Tablan et al.2002] V. Tablan, C. Ursu, K. Bontcheva,
H. Cunningham, D. Maynard, O. Hamza, Tony
McEnery, Paul Baker, and Mark Leisher. 2002. A
unicode-based environment for creation and use of
language resources. InProceedings of 3rd Language
Resources and Evaluation Conference.

[Thompson et al.1999] C. A. Thompson, M. E. Califf, and
R. J. Mooney. 1999. Active learning for natural lan-
guage parsing and information extraction. InPro-
ceedings of the International Conference on Machine
Learning, pages 406–414.

[Witten and Frank1999] I. H. Witten and E. Frank. 1999.
Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kauf-
mann.


	Introduction
	The OLLIE client
	Implementation of the OLLIE server
	Machine Learning Support

	Security
	ML Experiments and Evaluation
	Further Work
	Conclusion

