
Natural Language Interfaces to Ontologies:
Combining Syntactic Analysis and

Ontology-based Lookup through the User
Interaction

Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, UK

d.damljanovic, m.agatonovic, h.cunningham@dcs.shef.ac.uk

Abstract. With large datasets such as Linked Open Data available,
there is a need for more user-friendly interfaces which will bring the
advantages of these data closer to the casual users. Several recent stud-
ies have shown user preference to Natural Language Interfaces (NLIs)
in comparison to others. Although many NLIs to ontologies have been
developed, those that have reasonable performance are domain-specific
and tend to require customisation for each new domain which, from a
developer’s perspective, makes them expensive to maintain. We present
our system FREyA, which combines syntactic parsing with the knowl-
edge encoded in ontologies in order to reduce the customisation effort. If
the system fails to automatically derive an answer, it will generate clar-
ification dialogs for the user. The user’s selections are saved and used
for training the system in order to improve its performance over time.
FREyA is evaluated using Mooney Geoquery dataset with very high
precision and recall.

Key words: natural language interfaces, ontologies, question-answering,
learning, clarification dialogs

1 Introduction

With billions of triples being published in recent years, such as those from Linked
Open Data1, there is a need for more user-friendly interfaces which will bring the
advantages of these data closer to the casual users. Research has been very active
in developing various interfaces for accessing structured knowledge, from faceted
search, where knowledge is grouped and represented through taxonomies, to
menu-guided and form-based interfaces such as those offered by KIM [16]. While
hiding the complexity of underlying query languages such as SPARQL2, these
interfaces still require that the user is familiarised with the queried knowledge
1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData
2 http://www.w3.org/TR/rdf-sparql-query/

2

structure. However, casual users should be able to access the data despite their
queries not matching exactly the queried data structures [8]. Natural Language
Interfaces (NLIs), which are often referred as closed-domain Question Answering
(QA) systems, have a very important role as they are intuitive for the end users
and preferred to keyword-based, menu-based or graphical interfaces [9].

Most QA systems contain the classifier module which is used to detect the
question category or the type of the question. The successful parsing is based
on this identification. However, the syntactic patterns for this classification are
usually derived from the dataset which must be large in order to work efficiently
[7]. Moreover, as Ferret et al. point out: ”answers to [some] questions can hardly
be reduced to a pattern.” [7, p.7]. In addition, it is not trivial to translate
successfully parsed question into the relevant logical representation or a formal
query which will lead to the correct answer [14].

We present an approach where instead of encoding the specific rules into our
NLI system (which would increase the chance of being domain-specific), we use
the knowledge encoded in ontologies as the primary source for understanding the
user’s question, and only then try to use the output of the syntactic parsing in
order to provide the more precise answer. This allows more freedom and flexibil-
ity to the user, as questions do not need to fall within the predefined categories.
If the system is not able to automatically derive an answer, it will generate clari-
fication dialogs. The user’s choice is then saved and used for training the system
in order to improve its performance over time. While engaging the user in this
kind of interaction might be an overload at the beginning, our intention is to
see whether our learning mechanism can reduce this by the time. On the route
to achieving this, we have developed FREyA – a system which combines sev-
eral usability methods and is named after Feedback, Refinement and Extended
Vocabulary Aggregation. We evaluate our approach using Mooney Geoquery
dataset3.

This paper is structured as follows. In the next section we present related
work. In Section 3, we describe FREyA and demonstrate through examples how
it works. In Section 4 we present evaluation results with Mooney dataset. Finally,
we conclude and draw future directions in Section 5.

2 Related Work

While NLI systems which have a good performance require a customisation
(such as in the case of ORAKEL [1]), several systems have been developed
for which the customisation is not mandatory (e.g., PANTO [19], Querix [10],
AquaLog [13]), QuestIO [5], NLP-Reduce [10]). However, as is reported in [13]
the customisation usually improves the recall. On the other hand, some of these
systems rely on grammatically correct questions which fall within the boundaries
of system capabilities.

In case of ORAKEL, customisation is performed through the user interaction,
using a software called FrameMapper, where the linguistic argument structures,
3 http://www.cs.utexas.edu/users/ml/nldata.html

3

such as verbs or nouns with their arguments, are mapped to the relations in
the ontology. While their intention is to involve application developers in this
customisation, our system is intended to be used by end-users from the start.
We are aware that initial system given to the end-users can be seen as overload
as the users will be heavily engaged into the dialogs, until the system learns
enough to be able to automatically suggests the correct answer.

AquaLog [13] is capable of learning the user’s jargon in order to improve his
experience by the time. Their learning mechanism is good in a way that it uses
ontology reasoning to learn more generic patterns, which could then be reused
for the questions with similar context. Our approach is different in that it shares
the input from all users and reuses it for the others, not favorising jargon of the
particular user.

Querix [11] is another ontology-based question answering system which relies
on clarification dialogs in case of ambiguities. Our system is similar to Querix
in many aspects, with the main difference that the primary goal of the dialog
in our system is not only to resolve ambiguities, but also to map question terms
to the relevant ontology concepts. Therefore, our system does not rely on the
vocabulary of the ontology, but tries to align it with that of the user.

Our intention with FREyA is to balance between heavy customisation which
is usually required by application developers, in order to port the system to a
different domain, and the end users who need to explore the available knowledge
without being constrained with the query language.

3 FREyA

In the previous work ([5], [18]), we have developed QuestIO (Question-based In-
terface to Ontologies), which translates a Natural Language (NL) or a keyword-
based question into SPARQL, and returns the answer to the user after executing
the formal query against an ontology. Although this approach uses very shallow
NLP, it is quite efficient for very small and domain-specific ontologies. Also, it
performs quite well for the set of ill-formed and grammatically incorrect ques-
tions [5]. However, the trade-off is that many grammatically correct questions
which do require more deep analysis would remain unanswered, or partially an-
swered. For example, if the question is What is the largest city in Nevada?,
QuestIO would be able to list cities in Nevada, but it would ignore the word
largest which is in this case crucial to deliver semantic meaning. In addition,
when ontologies are spanning diverse domains, automatically deriving an an-
swer becomes an issue due to ambiguities. Finally, QuestIO displays the result
of executing SPARQL queries as a table in which the user finds the answer.
Therefore, we have started to work on methods which would, in comparison to
our previous work:

– improve understanding of the question’s semantic meaning
– provide the concise answer to the user’s question
– communicate the system’s interpretation of the query to the user

4

– assist the user formulate the query which falls within the boundaries of the
system capabilities

These methods have been thoroughly discussed in [3]. Their combination is the
base of FREyA which is named after Feedback, Refinement and Extended Vo-
cabulary Aggregation. The implementation of FREyA can be broken down into
several steps:

– Identification and verification of ontology concepts
– Generating SPARQL
– Identification of the answer type and presenting the results to the user

3.1 Identification and Verification of Ontology Concepts

Our algorithm for translating a NL question into the set of Ontology Concepts
(OCs)4 combines the syntactic parsing with ontology reasoning in order to iden-
tify the user’s information need correctly. In cases when the algorithm does not
derive conclusions automatically, it generates suggestions for the user. By engag-
ing the user into the dialog, we have a better chance of identifying his information
need when it is expressed ambiguously through the question.

Figure 1 shows step-by-step process which starts with finding ontology-based
annotations in the query and ends with a set of ontology concepts, which are
then used in subsequent steps to generate a SPARQL query. Further we describe
each step in more details.

Identification of Ontology Concepts We use the knowledge available in the
ontology to identify the ontology-based annotations in the question, which we call
Ontology Concepts. Generated annotations contain links to ontology resources
(e.g. URIs). If there are ambiguous annotations in the query, we engage the
user into the dialog. For example, if someone is enquiring about Mississippi,
we might not be able to automatically derive whether OC refers to geo:River5,
or geo:State. To resolve this ambiguity, we generate a clarification dialog where
the user selects one of the two. Note that we apply disambiguation rules which
are based on the ontology reasoning before we model the clarification dialog.
For example, for the question which rivers flow through Mississippi?, modeling
a clarification dialog is not necessary, as due to the context of the question we
automatically derive that Mississippi refers to geo:State.

We use GATE [2] application, and an ontology-based gazetteer called On-
toRoot Gazetteer [5] to perform this step. OntoRoot Gazetteer relies on the
human understandable lexicalisations of ontology resources and therefore, the
quality of produced annotations depends directly on them (see [5]). However, it

4 Note that we use the term Ontology Concept to refer to all types of ontology resources
such as classes, instances, properties and literals.

5 For clarity of presentation, we use prefix geo: instead of http://www.mooney.net/
geo# in all examples.

5

Fig. 1. Validation of potential ontology concepts through the user interaction

is not often the case that ontology resources are followed by human understand-
able lexicalisations (e.g., labels). This is especially the case for properties. In
addition, Natural Language is so complex that words like total, smallest, higher
than or how many cannot be automatically understood/encoded into the rel-
evant structure without additional processing. Some formal languages such as
SPARQL even do not support some of these structures (e.g., it is not possible
to do count queries in SPARQL). Therefore, NLIs to ontologies would have to
translate any additional semantic meanings into the relevant operations with
the ontology concepts (e.g. superlative means applying maximum or minimum
function to the datatype property value).

Identification of Potential Ontology Concepts Potential Ontology Con-
cepts (POCs) are derived from the syntactic parse tree, and refer to question
terms which could be linked to an ontology concept. Syntactic parse tree is gen-
erated by Stanford Parser [12]. We use several heuristic rules in order to identify
POCs. For example, each NP (noun phrase) or NN (noun) is identified as a POC.
Also, if a noun phrase contains adjectives, these are considered POCs as well.
Next, the algorithm iterates through the list of POCs, attempting to map them
to OCs.

Mapping POCs to OCs A Potential Ontology Concept is mapped to Ontology
Concept in two ways:

6

1. Automatically : if it overlaps with an Ontology Concept in a way that OC
spans over POC:

– both POC and OC refer to exactly the same text span in the question
(OC == POC); for example, in which rivers flow through Texas?, rivers
can be identified as OC, as referring to the class geo:River, while it can
also be identified as POC. In this case, POC is automatically mapped
to OC, as OC == POC (the starting and ending offsets are identical)

– POC refers to the text span which is contained within the span to which
OC refers (POC ⊂ OC);

2. By engaging the user : when the user verifies it by choosing it from the list
of the available suggestions

Generating Suggestions Suggestions are generated for each POC which does
not overlap with OC, or in cases when POC spans over OC (OC ⊂ POC||POC! =
OC). First, our algorithm identifies the closest OC to this POC by walking
through the syntax tree, and then uses ontology reasoning to generate sugges-
tions. Based on the type of the closest OC, rules for generating suggestions vary
(see Table 3.1).

Table 1. Generating suggestions based on the type of the closest OC

Type of the closest OC Generating suggestions

class or instance get all classes connected to OC by exactly one
property, and all properties defined for this OC

datatype property of type number maximum, minimum and sum function of OC
object property get all domain and range classes for OC

Option none is always added to the list of suggestions (see Table 2). This
allows the user to ignore suggestions, if they are irrelevant. That is, the system
would assume that the POC in the dialog should not be mapped to any suggested
OCs, and therefore the system would learn by the time that this POC is either:
1) incorrectly identified, or 2) cannot be mapped to any OC as the ontology does
not contain relevant knowledge. While this option will not be of a huge benefit
to the end-users, it is intended to identify flaws in the system and encourage
improvements.

The task of creating and ranking the suggestions before showing them to
the user is quite complex, and this complexity arises as the queried knowledge
source grows.

Ranking Suggestions Initial ranking is based on the string similarity between
POC and suggestions, and also based on synonym detection as identified by
Wordnet [6] and Cyc6. For string similarity we combine Monge Elkan7 metrics
6 http://sw.opencyc.org/
7 see http://www.dcs.shef.ac.uk/~sam/stringmetrics.html\#monge

7

Table 2. Sample queries and generated suggestions for relevant POCs

Query POC Closest OC Suggestions

population of cities in
california

population geo:City 1. city population
2. state
3. has city
4. is city of
5. none

population of california population geo:california 1. state population
2. state pop density
3. has low point
...
n. none

which city has the largest
population in california

largest population geo:City 1. max(city population)
2. min(city population)
3. sum(city population)
4. none

with Soundex8 algorithm. When comparing the two strings the former gives a
very high score to those which are exact parts of the other. For example, if
we compare population with city population, the similarity would be maximised
as the former is contained in the latter. The intuition behind this is the way
ontology concepts are usually named. Soundex algorithm compensates for any
spelling mistakes that the user makes - this algorithm gives a very high similarity
to the two words which are spelled differently but would be pronounced similarly.

3.2 Generating SPARQL

After all POCs are resolved, the query is interpreted as a set of OCs. Firstly, we
insert any potential joker elements in between OCs, if necessary. For example,
if the first two OCs derived from a question are referring to a property and a
class respectively, one joker class would be added before them. For instance,
the query what is the highest point of the state bordering Mississippi? would be
translated into the list of the following OCs:

geo:isHighestPointOf geo:State geo:border geo:mississippi
PROPERTY CLASS PROPERTY INSTANCE

These elements are transformed into the following:

? geo:isHighestPointOf geo:State geo:border geo:mississippi
JOKER PROPERTY1 CLASS1 PROPERTY2 INSTANCE

8 http://en.wikipedia/wiki/Soundex

8

Next step is generating set of triples from OCs, taking into account the domain
and range of the properties. For example, from the previous list, two triples
would be generated9:

? - geo:isHighestPointOf - geo:State;
geo:State - geo:borders - geo:mississippi (geo:State);

Last step is generating SPARQL query. Set of triples are combined and based
on the OC type, relevant parts are added to SELECT and WHERE clauses.
Following the previous example, the SPARQL query would look like:

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix geo: <http://www.mooney.net/geo#>
select ?firstJoker ?p0 ?c1 ?p2 ?i3
where { { ?firstJoker ?p0 ?c1 .
filter (?p0=geo:isHighestPointOf) . }
?c1 rdf:type geo:State .
?c1 ?p2 ?i3 .
filter (?p2=geo:borders) .
?i3 rdf:type geo:State .
filter (?i3=geo:mississippi) . }

3.3 Answer Type Identification

The result of the SPARQL query is a graph, and an important decision to make
is how to display results to the user. In order to show the concise answer, we
must identify the answer type of the question. To achieve this, we combine the
output of the syntactic parsing with the ontology-based lookup coupled with
several heuristic rules (see [4] for detailed algorithm). Figure 2 shows how we
display the answer for the query Show lakes in Minnesota.

Fig. 2. List showing the answer of the query Show lakes in Minnesota

In addition, as feedback can help the user familiarise himself with the queried
knowledge structure, we also render the system’s interpretation of the query :
9 Note that if geo:isHighestPointOf would have geo:State as a domain, the triple would

look like:geo:State - geo:isHighestPointOf - ?;.

9

this is visualised as a graph, where we place the answer type in the center, and
the answer on the nearest circle, see Figure 3. We use JIT library10 for graph
visualisation.

Fig. 3. Graph showing the system interpretation of the query Show lakes in Minnesota

3.4 Learning

We use an approach inspired by Reinforcement Learning (RL) [17] to improve
ranking of suggestions shown to the user. While many question-answering sys-
tems apply supervised learning, we decide to use semi-supervised approach due
to several reasons. Firstly, supervised learning goes in-line with automatic clas-
sification of the question, where each question is identified as belonging to the
one predefined category. Our intention with FREyA is to avoid automatic clas-
sification and allow the user to enter queries of any form. Secondly, we want to
minimise customisation of the NLI system which would be required when using
supervised learning, as to map some question terms to the underlying structure.
For example, we want the system itself to suggest that where should be mapped
to the specific ontology concept such as Location, rather than the application
developer browsing the ontology structure in order to place this mapping.

The first important aspect of RL is the identification of the goal to be
achieved, which is in our case the correct ranking of suggestions. Each sug-
gestion has its initial ranking calculated based on synonym detection and string
similarity as explained previously. These are used in the untrained system. Each
time the suggestion is selected by the user, it receives a reward of +1 while all al-
ternative ones receive -1. The system then learns to place the correct suggestion
at the top for any similar questions. Similar is identified by a combination of a

10 www.thejit.org

10

POC and the closest OC. This increases robustness of our learning mechanism
as our learning model is not updated per question, but per each combination of
POC and the closest OC. In addition, we apply some generalisation rules derived
from the ontology. For example, if the closest OC is geo:Capital, we would save
its superclass geo:City in our learning model in order to reuse the same rule for
all cities, not only capitals.

An example which demonstrate how the learning algorithm works, is shown
in Figure 4. For query What is the highest point of the state with the largest area?
there is only one token (state) annotated as referring to OC, whereas there are
three POCs. We start with the last POC largest area. Suggestions are gener-
ated based on the closest OC which is geo:State. As geo:stateArea is a datatype
property of type number, generated suggestions would, among others, contain
the following: max(geo:stateArea, min(geo:stateArea), sum(geo:stateArea). If the
user selects the first one, the system will learn that the largest area refers to the
maximum value of geo:stateArea.

Fig. 4. Mapping POCs to OCs

We then skip the next POC as it overlaps with the ontology concept state.
The last POC the lowest point is then used to generate suggestions. The closest
OC is again, geo:State. There will be several suggestions and the user is very
likely so select geo:isLowestPointOf, although this one will be ranked third11.
However, for the next user, the system will learn to rank geo:isLowestPointOf
first.

11 Note that although lowest is a superlative it will not be further used to generate sug-
gestions as geo:isLowestPointOf is an object property, while in case of largest area,
one of the options was max(geo:stateArea), as geo:stateArea is datatype property of
type number

11

Figure 5 shows the syntax tree for the query what is the population of New
York. As New York is identified as it could be referring to both geo:State and
geo:City, we first ask the user to disambiguate (see Figure 5 a.)). If he selects
for example geo:City, we start iterating through the list of POCs. The first POC
(New York as geo:City) overlaps with already identified OC, which causes its
immediate verification so we skip it. The next one (population) is used, together
with the closest OC geo:City, to generate suggestions. Among them there will
be geo:cityPopulation and after the user select this from the list of available
options, population is mapped to the datatype property geo:cityPopulation (see
Figure 5 b.)). Note that if the user selected that New York refers to geo:State,
suggestions would be different, and following his selection, population would
probably be mapped to refer to geo:statePopulation as the closest OC would be
geo:State.

Fig. 5. Validation of potential ontology concepts through the user interaction

4 Evaluation

We have evaluated our approach on the 250 questions from the Mooney Geoquery
dataset. Although the ontology contains rather small portion of knowledge about
the geography of the United States, the questions are quite complex and the
system must have a good understanding of the semantic meaning in order to
correctly answer them. We evaluate correctness, ranked suggestions, and learning
mechanism.

4.1 Correctness

We report correctness of FREyA in terms of precision and recall, which are
measures adapted from information retrieval (see [15],[14]). Recall is defined as
the number of questions correctly answered by an NLI system, divided by the
total number of questions in the dataset. Precision measures the number of

12

questions correctly answered divided by the number of questions for which the
answer is returned at all [1].

Table 3 shows the number of questions correctly answered automatically, as
opposed to those which have been answered correctly only after engaging the
user into at most 2 clarification dialogs. Finally, there is a system failure to
answer questions correctly in 7.6% of the time (e.g., questions with negation).
Recall and precision values are equal, reaching 92.4%. This is due to FREyA
always returning an answer, although partial or incorrect.

Table 3. Results of running FREyA with 250 questions from Mooney Geoquery dataset

Correct
Incorrect

no dialogs 1 dialog 2 dialogs

72 127 32 19

28.8% 50.8% 12.8% 7.6%

If we neglect the fact that it required quite an engagement of the user in
order to correctly answer questions, FREyA’s performance favorably compares
to other similar systems. PANTO [19] is a similar system which was evaluated
with the Mooney geography dataset of 877 questions (they removed duplicates
from the original set of 879). They reported precision and recall of 88.05% and
85.86% respectively. NLP-Reduce [10] was evaluated with the original dataset,
reporting 70.7% precision and 76.4% recall. Kaufmann et al.[11] selected 215
questions which syntactically represent the original set of 879 queries. They
reported the evaluation results over this subset for their system Querix with
86.08% precision and 87.11% recall. Our 250 questions are a superset of these
215. It should be noted that FREyA had quite poor performance in comparison
to others if we consider automatically answered questions only. However, the
intention with FREyA is to allow users full control over the querying process.

4.2 Ranked Suggestions

We use Mean Reciprocal Rank (MRR) to report the performance of our ranking
algorithm. MRR is a statistic for evaluating any process that produces a list of
possible responses (suggestions in our case) to a query, ordered by probability of
correctness. The reciprocal rank of a suggestion is the multiplicative inverse of
the correct rank. The mean reciprocal rank is the average of the reciprocal ranks
of results for a sample of queries (see Equation 1).

MRR =
1
|Q|

Q∑
i=1

1
ranki

(1)

We have manually labeled the correct ranking for suggestions which have be
generated when running FREyA with 250 questions. This was the gold standard

13

against which our ranking mechanism achieved MRR of 0.81. However, for some
cases it is very hard to judge automatically which suggestion to place as number
one. It is very likely that different users would select different suggestions for the
questions phrased the same way. This emphasises the importance of the dialogs
when modeling NLI systems.

4.3 Learning

From the above set of 250 questions, we have randomly selected 103 which
required one clarification dialog with the user in order to get the correct answer.
Then, we have ran our initial ranking algorithm and compared results with
manually labeled gold standard. MRR was 0.72. Table 4 shows the distribution
of the rankings.

Table 4. Evaluation with 103 questions from Mooney geography dataset

Correct rank Number of questions

1 64 (62.13%)

2 or 3 22 (21.36%)

4 or more 17 (16.5%)

We then grouped 103 questions by OC, and then randomly chose training
and evaluation sets from each group. We repeated this two times. Table 5 shows
the structure of the dataset grouped by OC for both iterations. Note that these
two iterations are independent - they have both been performed starting with
an untrained system.

Table 5. Distribution of the training and evaluation datasets for 103 questions

Iteration 1 Iteration 2
OC Training Evaluation Training Evaluation

geo:State 26 19 19 26

geo:City/Capital 20 19 19 20

geo:River 12 6 9 9

geo:Mountain 1 0 0 1

total 59 44 47 56

After learning the model with 59 questions from the iteration 1, MRR for
the evaluation questions (44 of them) has reached 0.98. Overall MRR (for all
103 questions) increased from 0.72 to 0.77. After training the model with 47
questions during the iteration 2, overall MRR increased to 0.79. Average MRR
after running these two experiments was 0.78, which shows the increase of 0.06

14

in comparison to MRR of the initial rankings. Therefore, we conclude that for
the selection of 103 questions from the Mooney Geoquery dataset, our learning
algorithm improved our initial ranking by 6%.

5 Conclusion and future work

We presented FREyA, a NLI to ontologies which balances between heavy cus-
tomisation (which is usually required by application developers, in order to port
the NLI system to a different domain), and the end users who need to explore
the available knowledge without being constrained with the query language.
FREyA combines the output of the syntactic parser with the ontology-based
lookup in order to approve the user’s information need and, if necessary, engage
the user into the dialog. Our evaluation with Mooney Geoquery dataset, shows
that FREyA compares favorably to other similar systems. Moreover, this system
is learning from the user’s clicks in order to improve its performance over time.
Our evaluation with 103 questions from the Mooney dataset revealed that the
learning algorithm improved the initial rankings of suggestions by 6%.

At present, we are experimenting with large datasets such as LDSR12, which
have been developed as a part of LarKC project13. LDSR includes several sub-
graphs of Linked Open Data. We are preparing a user-centric evaluation in order
to measure the user’s experience with FREyA.

6 Acknowledgments

We would like to thank Abraham Bernstein and Esther Kaufmann from the
University of Zurich, for sharing with us Mooney dataset in OWL format, and
J. Mooney from University of Texas for making this dataset publicly available.

This research has been partially supported by the EU-funded MUSING (FP6-
027097) and LarKC (FP7-215535) projects.

References

1. Cimiano, P., Haase, P., Heizmann, J.: Porting natural language interfaces between
domains: an experimental user study with the orakel system. In: IUI ’07: Proceed-
ings of the 12th international conference on Intelligent user interfaces. pp. 180–189.
ACM, New York, NY, USA (2007)

2. Cunningham, H.: Information Extraction, Automatic. Encyclopedia of Language
and Linguistics, 2nd Edition pp. 665–677 (2005)

3. Damljanovic, D., Bontcheva, K.: Towards enhanced usability of natural language
interfaces to knowledge bases. In: Devedzic, V., Gasevic, D. (eds.) Special issue on
Semantic Web and Web 2.0, vol. 6, pp. 105–133. Springer-Verlag, Berlin, Germany
(2009)

12 http://ldsr.ontotext.com
13 http://www.larkc.eu

15

4. Damljanovic, D., Agatonovic, M., Cunningham, H.: Identification of the Question
Focus: Combining Syntactic Analysis and Ontology-based Lookup through the
User Interaction. In: 7th Language Resources and Evaluation Conference (LREC).
ELRA, La Valletta, Malta (May 2010)

5. Damljanovic, D., Tablan, V., Bontcheva, K.: A text-based query interface to owl on-
tologies. In: 6th Language Resources and Evaluation Conference (LREC). ELRA,
Marrakech, Morocco (May 2008)

6. Fellbaum, C. (ed.): WordNet - An Electronic Lexical Database. MIT Press (1998)
7. Ferret, O., Grau, B., Hurault-plantet, M., Illouz, G., Monceaux, L., Robba, I.,

Vilnat, A.: Finding an answer based on the recognition of the question focus (2001)
8. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Ranking approximate answers to se-

mantic web queries. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath,
T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E.P.B. (eds.) ESWC.
Lecture Notes in Computer Science, vol. 5554, pp. 263–277. Springer (2009)

9. Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the
semantic web for casual end-users? In: Proceedings of the Forth European Semantic
Web Conference (ESWC 2007). Innsbruck, Austria (June 2007)

10. Kaufmann, E., Bernstein, A., Fischer, L.: NLP-Reduce: A naive but domain-
independent natural language interface for querying ontologies. In: Proceedings of
the European Semantic Web Conference ESWC 2007, Innsbruck, Austria. Springer
(June 4-5 2007)

11. Kaufmann, E., Bernstein, A., Zumstein, R.: Querix: A natural language interface
to query ontologies based on clarification dialogs. In: 5th International Semantic
Web Conference (ISWC 2006). pp. 980–981. Springer (November 2006)

12. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural
language parsing. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neu-
ral Information Processing Systems 15 - Neural Information Processing Systems,
NIPS 2002. pp. 3–10. MIT Press (2002), http://books.nips.cc/papers/files/
nips15/CS01.pdf

13. Lopez, V., Uren, V., Motta, E., Pasin, M.: Aqualog: An ontology-driven question
answering system for organizational semantic intranets. Web Semantics: Science,
Services and Agents on the World Wide Web 5(2), 72–105 (June 2007)

14. Mooney, R.J.: Using multiple clause constructors in inductive logic programming
for semantic parsing. In: In Proceedings of the 12th European Conference on Ma-
chine Learning. pp. 466–477 (2001)

15. Popescu, A.M., Etzioni, O., Kautz, H.: Towards a theory of natural language in-
terfaces to databases. In: IUI ’03: Proceedings of the 8th international conference
on Intelligent user interfaces. pp. 149—157. ACM, New York, NY, USA (2003)

16. Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D., Goranov, M.: KIM
– Semantic Annotation Platform. In: 2nd International Semantic Web Conference
(ISWC2003). pp. 484–499. Springer, Berlin (2003)

17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduction. MIT Press,
Cambridge, Mass. (1998)

18. Tablan, V., Damljanovic, D., Bontcheva, K.: A natural language query interface to
structured information. In: Proceedings of the 5h European Semantic Web Con-
ference (ESWC 2008). Lecture Notes in Computer Science, vol. 5021, pp. 361–375.
Springer-Verlag New York Inc, Tenerife, Spain (June 2008)

19. Wang, C., Xiong, M., Zhou, Q., Yu, Y.: Panto: A portable natural language inter-
face to ontologies. In: The Semantic Web: Research and Applications. pp. 473—487.
Springer (2007)

