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ABSTRACT
The evaluation of the quality of ontological classification is
an important part of semantic web technology. Because this
area is under constant development, it requires improvement
and standardisation. This paper discusses existing evalua-
tion metrics, and proposes a new method for evaluating the
ontology population task, which is general enough to be used
in a variety of situations, yet more precise than many cur-
rent metrics. The paper further describes our first efforts
in operationalising the evaluation procedure, including the
creation of a semantically annotated corpus that will func-
tion as a test bed for the proposed evaluation mechanism,
and comparison of different evaluation metrics. We conclude
that for ontology-based evaluation, a more complex mech-
anism than is traditionally used is preferable. This mecha-
nism aims to drive a benchmarking assessment tool for the
current state-of-the-art of ontology population, and to set
a standard for best practice for future evaluation of human
language technology for the semantic web.

1. INTRODUCTION
Natural language techniques involving the classification

of text by means of ontologies are a relatively new area of
research, and while they are mainly derived from applica-
tions (and their respective evaluation methods) with a long
history, methods for evaluation of such technologies are cur-
rently at the forefront of research. As yet, no widely ac-
cepted standards have emerged.

The automatic assignment of ontological classes to text el-
ements is an important aspect of semantic web applications
and services. It can be postulated that the more success-
ful this assignment is, the more feasible the ontology is for
semantic web applications in terms of reproducible seman-
tic indexing. The outcome of this process may, in a num-
ber of cases, give an indication of the actual structural and
conceptual quality of the ontology involved. For instance,
consistent automatic misclassification may flag a wrongly
positioned concept. Multiple classifications (i.e. where the
system consistently assigns more than one class to the same
text element) may point to a lack of distinguishability be-
tween concepts and may ultimately suggest either a merg-
ing of such concepts or further explicit specification to en-
hance their distinguishability. Overall, automatic classifica-
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tion may yield valuable clues for the evaluation of ontologies.
Because the development of semantic web tools and re-

sources is currently hampered by its very diversity, it is im-
portant to have some standardised metrics and evaluation
methods, in order to promote development of tools in a pro-
ductive rather than random way, and to enable end users to
make informed choices about the best tools for their needs.

In this paper we discuss the specifications for a proper
evaluation of ontology population, describe current tech-
niques, and examine to what extent existing methodologies
can be reused in the context of ontology population. We
then propose an evaluation method, which takes inspiration
from several existing methodologies. We describe the cre-
ation of a text corpus enriched with ontological information
from a freely available general purpose ontology, which can
be used as a gold standard for evaluating state-of-the-art
annotation systems. Finally we describe some experiments
with different evaluation metrics using this corpus and on-
tology.

2. DEFINING PERFORMANCE METRICS
In order to compare the quality of ontology-based anno-

tation tools and other HLT applications associated with the
semantic web, we need some evaluation metric which can
provide a simple mechanism for comparing different systems
and different versions of the same system in a consistent and
repeatable way. Ideally, the same metrics should be used by
everyone, so that comparisons can be made between differ-
ent evaluations. This requires a simple but powerful evalua-
tion metric that can be easily implemented by other people,
and/or a freely available tool that offers such functionality.

In this section, we shall examine the case of ontology-
based information extraction (OBIE), which is used as the
basis for automatic semantic annotation / metadata extrac-
tion. This is an important component of the semantic web,
since ontologies must be populated with information from
documents, and documents need to be semantically anno-
tated. Currently there is no standard for OBIE, because it
is a relatively new area of research, although as will be dis-
cussed in Section 3, there are several well-established metrics
for evaluation of traditional information extraction systems.
The needs of OBIE metrics are rather different, however,
because traditional methods are binary rather than scalar.
This means that they assess an answer as correct or incor-
rect (occasionally allowing for partial correctness which is
generally allocated a ”half-score”). Ontology-based systems



should, however, be evaluated in a scalar way, in order to
allow for different degrees of correctness. For example, a
scalar method allows the score to be based on the position
of the response in the ontology and its closeness to the cor-
rect position in the ontology.

The evaluation task for ontology-based information ex-
traction aims to discover in the text all mentions of instances
related to the ontology. The gold standard is a set of texts
where instances are annotated with their related ontological
concepts. We aim to measure how good the IE system is at
discovering all the mentions of these instances, and whether
the correct class has been assigned to each mention.

When defining the metric, we suggest the following cri-
teria as proposed by [15]. The metrics should: reach their
highest value for perfect quality; reach their lowest value for
worst possible quality; be monotonic; be clear and intuitive;
correlate well with human judgment; be reliable and exhibit
as little variance as possible; be cheap to set up and apply;
be automatic.

3. EXISTING EVALUATION METRICS
In this section, we describe the main existing metrics for

evaluation of IE and related tasks, and discuss their suit-
ability for use or adaptation to ontology-based tasks.

3.1 Precision and Recall
Many human language technology (HLT) tasks such as In-

formation Extraction are traditionally evaluated using Pre-
cision, Recall and F-measure. These metrics have a very
long-standing tradition in the field of IR [26, 20, 10]). For
example, they have been used in large-scale IE evaluations
such as MUC (Message Understanding Conferences)[3] and
CONLL [25, 7]. Because much of the research in IE in
the last decade has been connected with these competitions,
and because of the availability of the gold standard corpora
used for them, it has become natural for people to compare
their systems on this data and with the same metrics, which
means that they have been the most widely used in this field,
albeit with slight variations from time to time.

Precision measures the number of correctly identified
items as a percentage of the number of items identified. In
other words, it measures how many of the items that the sys-
tem identified were actually correct, regardless of whether
it also failed to retrieve correct items. The higher the Pre-
cision, the better the system is at ensuring that what has
been identified is correct. It is formally defined as

Precision =
Correct + 1/2Partial

Correct + Spurious + Partial
(1)

Note that we consider annotations to be partially correct
if the entity type is correct and the spans are overlapping
but not identical. Partially correct responses are normally
allocated a half weight.

Recall measures the number of correctly identified items
as a percentage of the total number of correct items. In other
words, it measures how many of the items that should have
been identified actually were identified, regardless of how
many spurious identifications were made. The higher the
Recall rate, the better the system is at not missing correct
items. Recall is formally defined as:

Recall =
Correct + 1/2Partial

Correct + Missing + Partial
(2)

The F-measure [26] is often used in conjunction with
Precision and Recall, as a weighted average of the two. If the
weight is set to 0.5 (which is usually the case), Precision and
Recall are deemed equally important. F-measure is formally
defined as:

F −measure =
(β2 + 1)P ∗R

(β2R) + P
(3)

where β reflects the weighting of P vs. R. If P and R are
to be given equal weights, then we can use the equation:

F1 =
P ∗R

0.5 ∗ (P + R)
(4)

3.2 Cost-based Evaluation Metric
False positives are also a useful metric when dealing with

a wide variety of text types, because they are not depen-
dent on relative document richness. By this we mean the
relative number of entities or annotations of each type to
be found in a set of documents. When comparing differ-
ent systems on the same document set, relative document
richness is unimportant, because it is equal for all systems.
When comparing a single system’s performance on different
documents, however, it is much more crucial, because if a
particular document type has a significantly different num-
ber of any type of entity, the results for that entity type
can become skewed. This could be used to manipulate a
system’s reported results by testing on a particular corpus
(the results would be accurate, but misleading). Compare
the impact on Precision of one error where the total number
of correct entities = 1, and one error where the total = 100.
Assuming the document length is the same, then the false
positive score for each text, on the other hand, should be
identical. The False Positive metric is formally defined as:

FalsePositive =
Spurious

c
(5)

where c is some constant independent from document rich-
ness, e.g. the number of tokens or sentences in the docu-
ment.

Another solution is to use error rate, which is the inverse
of Precision, and measures the number of incorrectly iden-
tified items as a percentage of the items identified. It has
the advantage over False Positives that it does not require
some arbitrary constant, which can make the results hard
to interpret, and means that comparison on documents of
different length is also skewed.

Using error rate instead of Precision and Recall means,
however, that the F-measure can no longer be used. An
alternative method of getting a single bottom-line number
to measure performance is the cost-based evaluation (CBE)
metric. This has been used in some of the DARPA competi-
tions, such as TDT2 [9], and ACE [1]. The model stems from
the field of economics, where the standard model “Time
Saved x Salary” measures the use of the direct salary cost
to an organisation as a measure of the value.

One of the main advantages of this method is that it en-
ables the evaluation to be adapted depending on the user’s
requirements, and so is particularly suitable for use in in-
dustry where one wants to choose between different systems
for a particular task. A CBE model characterises the perfor-
mance in terms of the cost of the errors. For any application,



the relevant cost model is applied, and expected prior target
statistics are defined.

For a cost-based error model, a cost would typically be
associated with a miss and a false alarm (spurious answer),
and with each category of result (e.g. recognising Person
might be more important then recognising Date correctly).
Expected costs of error would typically be based on proba-
bility (using a test corpus). This makes the assumption that
a suitable test corpus is available, which has the same rate
of entity occurrence (or is similar in content) to the evalua-
tion corpus. If necessary, the final score can be normalised
to produce a figure between 0 and 1, where 1 is a perfect
score.

3.3 Learning Accuracy
Another solution consists of augmenting the traditional

Precision and Recall metrics by adding some kind of seman-
tic distance weights, such that the gravity of the error can
be taken into account.

Cimiano et al [4] use a method called Learning Accuracy
to evaluate how well an ontology has been populated. This
was originally used by Hahn et al [13] to measure how well
a concept had been added in the right level of the ontol-
ogy, but it can be equally applied to measure how well the
instance has been added in the right place. Learning Ac-
curacy (LA) essentially measures ”the degree to which the
system correctly predicts the concept class which subsumes
the target concept to be learned”.

LA uses the following measurements:

• SP (Shortest Path) = the shortest length from root to
the key concept

• FP = shortest length from root to the predicted con-
cept. If the predicted concept is correct, then FP = 0,
i.e. FP is only considered in the case that the answer
given by the system is wrong.

• CP (Common Path) = shortest length from root to the
MSCA (Most Specific Common Abstraction, i.e.the
lowest concept common to SP and FP paths)

• DP = shortest length from MSCA to predicted concept

If the predicted concept is correct, i.e. if FP =0,

LA =
CP

SP
= 1 (6)

If the predicted concept is incorrect,

LA =
CP

FP + DP
(7)

Essentially, this measure provides a score somewhere be-
tween 0 and 1 for any concepts identified in an incorrect
position in the ontology. If a concept is missing or spurious,
the score is 0, and if it is correct, the score is 1 (as with Pre-
cision and Recall). So this method provides an indication of
how serious the error is, and weights it accordingly.

3.4 Augmented Precision and Recall
Augmented Precision and Recall, the evaluation metric we

propose in this section, aims to preserve the useful properties
of the Precision and Recall scoring metrics, but combine
them with a cost-based component.

The Precision/Recall model is the most well known and
widely used evaluation metric in the IE community, though

this does not automatically make it the most suitable for all
tasks. It has a big advantage over metrics such as CBE in
that it is easily understood. It can be difficult to interpret
the CBE results in a meaningful way, partly because the
error costs can be changed for each application, making it
difficult to compare systems unless the same costs are used,
and partly because the single-figure score generated is not
as meaningful or easily understood as the percentage score
given by the F-measure.

Another problem with the CBE metric is that it contains
many different costs, which are assigned by the end-user,
and it is not easy to decide on appropriate weights or to find
a way to calculate these automatically. One method is to
initially make all weights the same, and include a distance-
based metric for ensuring that partially correct items, which
are assigned a tag at the wrong level of the ontology, are pe-
nalised appropriately according to the distance. The conse-
quence of this is that the weights become superfluous for the
task of automatically evaluating ontology population with-
out a preliminary stage of complicated and subjective weight
setting.

We do need to stress the superiority of the CBE model
over Precision and Recall in another respect: that it al-
lows multi-dimensional evaluation, where a single score is
not generated, but instead the evaluation is carried out si-
multaneously along several axes. This model is designed
specifically for different applications or different users, who
might have diverging requirements of a system. For exam-
ple, one user might be more concerned with Precision than
Recall, or one user might be more concerned about get-
ting particular types of entities right, and not so concerned
about other types, or one user might be more concerned with
the fact that getting something partially right is important.
Therefore a cost-based model is useful because it enables
the parameters to be modified according to the particular
evaluation or task.

Multi-dimensional evaluation has been applied in several
systems. For example, Olsson et al. [22] evaluate the per-
formance of protein name taggers in this way to overcome
the limitations of Precision and Recall being too inflexible,
proposing additional measures such as Sloppy, Left Bound-
ary and Right Boundary to cater for responses which overlap
the Key annotations. The GATE evaluation tools [6] pro-
vide something similar, where partially correct answers can
be given a half weight (Average), counted as correct (Le-
nient) or counted as incorrect (Strict).

However, if a fully-fledged CBE model were to be adopted
as a standard for ontology population evaluation, we would
have to devise some simple and heuristic method of weight
assignment, or in any case the creation of a generic set of
weights that could be used as a default. Also, we would
need some scoring tool, with the ability to be adapted eas-
ily by the user to reflect changes to the weights. Although
the CBE model guarantees the most flexible application of
various evaluation metrics, we have opted for a simpler ver-
sion where we only take two dimensions into account: the
Precision/Recall metric, and semantic distance between key
(gold standard) and response (system output) concepts in
terms of a given ontology (similar to TRUCKS[21] and LA).
This method measures how well a particular text item has
been classified.

One of the problems with LA is that it does not take into
account the depth of the key concept in the hierarchy, con-



sidering essentially only the height of the MSCA and the
distance from the response to the MSCA. This means that
however far away the key is from the MSCA, the metric
will give the same outcome. It could be argued that this
is not important for similarity. However, this means that
similarity ceases to be bi-directional, in that similarity be-
tween two concepts differs according to which is the key and
which is the response. We shall see examples of this later in
Section 4.2, which clearly look counter-intuitive to human
judgement.

We therefore propose a more balanced distance metric,
which we call BDM. This uses the following measurements:

• MSCA: most specific concept common to the key and
response paths

• CP: shortest path from root concept to MSCA

• DPR: shortest path from MSCA to response concept

• DPK: shortest path from MSCA to key concept

Note that we maintain the labelling system used by LA,
although some of the labels are not very intuitive, extending
DP to DPR (Response) and DPK (Key) to make it clearer.
Each of the paths has been normalized with two additional
measurements, of which the first is the average length of the
chains in which key and response concepts occur. The longer
a particular ontological chain is, the more difficult it is to
consistently pick out a particular class for annotation [2].
The second normalization is the introduction of the branch-
ing factor (i.e. number of descendants) of the relevant nodes
in the ontology. This is also an indication of the level of diffi-
culty associated with the selection of a particular ontlogical
class relative to the size of the set of candidates. These nor-
malizations will make the penalty that is computed in terms
of node traversal within our metric relative to the semantic
density of the chains.

The following concrete implementations are the result:

• n0: the average chain length of the whole ontology,
computed from the root concept.

• n2: the average length of all the chains containing the
key concept, computed from the root concept.

• n3: the average length of all the chains containing the
response concept, computed from the root concept.

• BR: the branching factor of each relevant concept, di-
vided by the average branching factor of all the nodes
from the ontology, excluding leaf nodes.

The complete BDM formula is as follows:

BDM =
BR(CP/n0)

BR(CP/n0) + (DPK/n2) + (DPR/n3)
(8)

This measure takes the relative specificity of the taxo-
nomic positions of the key and response into account in the
score, but it does not distinguish between the specificity of
the key concept on the one hand, and the specificity of the
response concept on the other. For instance, the key can be
a specific concept (e.g. ’car’), whereas the response can be a
general concept (e.g. ’relation’), or vice versa. It is conceiv-
able that a system’s performance is evaluated differently in
either situation, although a score along the dimension of the

difference in relative key and response generality does not
seem intuitively straightforward. If we wanted to integrate
this aspect into the metric, we could add the specificity com-
parison of key and response concepts as a separate weight
to the formula.

Essentially, our measure provides a score somewhere be-
tween 0 and 1 for the comparison of key and response con-
cepts with respect to a given ontology. If a concept is missing
or spurious, BDM is not calculated since there is no MSCA.
If the key and response concepts are identical, the score is 1
(as with Precision and Recall). Overall, in case of an onto-
logical mismatch, this method provides an indication of how
serious the error is, and weights it accordingly.

We can now combine the BDM scores for each instance
in the corpus, to produce Augmented Precision, Recall and
F-measure scores for the annotated corpus. We differentiate
this from traditional Precision and Recall due to the fact
that it considers weighted semantic distance in addition to
a binary notion of correctness.

BDM =
X

i={1...n}

BDMi

BDMi =
BR(CPi/n0)

BR(CPi/n0) + (DPKi/n2i) + (DPRi/n3i)
(9)

Augmented Precision (AP) and Recall (AR) for the corpus
are then calculated as follows:

AP =
BDM

BDM + Spurious

AR =
BDM

BDM + Missing
(10)

while F-measure is calculated from Augmented Precision
and Recall as:

F1 =
AP ∗AR

0.5 ∗ (AP + AR)
(11)

Note that we could replace BDM by another metric such
as LA in Equation 10 if we wish. This is used in our exper-
iments in Section 4.2 in order to compare LA and BDM on
equal terms.

4. EVALUATION PROCEDURE
In order to enable the application and evaluation of the

evaluation algorithms proposed in the previous section, we
need an ontology and a text corpus that is semantically an-
notated with concepts from the ontology. In general, this
method works if both resources are available for a particu-
lar conceptualisation, expressed in the ontology, and corre-
sponding text annotations. A restriction on the nature of
the ontology is that it must include hierarchical chains. For
the evaluation matrix to be effective it cannot be just a set
of named entities with no taxonomic embedding. If named
entities are used as the only evaluation criterion, a binary
metric with standard Precision and Recall suffices, i.e. the
evaluation is in that case based on (partial) matching, miss-
ing annotations and false positives. To evaluate conceptual
matching with respect to an ontology, we require a more
complex evaluation mechanism such as LA or Augmented
Precision and Recall, as described above. These metrics



also fulfill important evaluation criteria such as ease of im-
plementation, simplicity, coverage, scalability, repeatability,
and ease of comprehension of the results [11].

4.1 The OntoNews Corpus
For our evaluation, we have created a corpus with seman-

tic annotation[23], which is to be used as a gold standard.
This is known as the OntoNews corpus. This semantically
annotated corpus consists of 292 news articles from three
news agencies: The Guardian, The Independent and The
Financial Times. The news articles cover the period of Au-
gust to October, 2001. The articles belong to three general
topics or domains of news gathering: International politics,
UK politics and Business.

The ontology used in the generation of the ontological
annotation process is the PROTON ontology1, which has
been created and used in the scope of the KIM platform2

for semantic annotation, indexing, and retrieval [16]. The
PROTON ontology forms part of an annotation tool for au-
tomatic ontology population and open-domain dynamic se-
mantic annotation of unstructured and semi-structured con-
tent for Semantic Web knowledge management applications.
The ontology consists of around 250 classes and 100 rela-
tions. PROTON has a number of important properties, e.g.
it is domain-independent, and therefore suitable for the news
domain, and it is modular (comprising both a top ontology
and a more specific ontology).

The overall objective of annotation was to manually create
a gold standard with a high level of annotated knowledge
contained within the PROTON ontology. The result is an
annotation set that should be able to cover a variety of levels
and types of semantic annotation, and is decomposable into
subsets that constitute three different types of concepts:

1. Named entities: a small set of semantic classes which
can be readily chosen from the PROTON ontology.
Typically, this set includes people, organizations, loca-
tions, facilities, geo-political entities and time expres-
sions. They are mostly referred to by proper names.
The most well known named entity competitions in
which annotations have been produced together with
evaluation procedures of automatic annotations are
MUC[12] and ACE3.

2. Top ontology: a subset of PROTON with 20 high
level concepts. This set contains the three unique be-
ginners (top level concepts) from PROTON, together
with a number of their high level hyponyms:

• Abstract with hyponyms such as BusinessAbstrac-
tion and SocialAbstraction;

• Object with direct hyponyms such as Informa-
tionResource, Agent and Organization;

• Happening with direct hyponyms such as Situa-
tion, Event and TimeInterval.

3. Concepts denotated by common nouns. This
type of annotation takes semantic coverage beyond
that of proper names, and concentrates on the anno-
tation of common nouns as they appear in the text.

1http://proton.semanticweb.org
2http://www.ontotext.com/kim
3http://www.nist.gov/speech/tests/ace/index.htm

The advantage of extending the scope of semantic an-
notation to common nouns is that the result is a much
more detailed and varied semantic characterisation of
the domain involved and the entities that play a sig-
nificant role in it. This extra information is necessary
for more fine-grained semantic processing tasks.

Overall, the use of PROTON as a more or less fully-
fledged ontology in our annotation significantly extends the
semantic coverage of our annotation compared with previous
and ongoing initiatives. The semantics of the annotation is
more complex than initiatives such as MUC and ACE be-
cause of the relative fine-grainedness of the PROTON ontol-
ogy, with hierarchical chains containing up to eight nodes.

Figure 1 shows a sample document from the OntoNews
corpus annotated in GATE with instances from the PRO-
TON ontology. In the main window is shown the text anno-
tated by means of colour coding. On the right is a section
of the ontology. Details of the instances and their relation
to the ontology are also included, but are not shown in this
screenshot.

4.2 Experiments
The aim of the experiments carried out on the OntoNews

corpus was, on the one hand, to evaluate a new learning
algorithm for OBIE, and, on the other hand, to compare
the different evaluation metrics.

The OBIE algorithm learns a Perceptron classifier for each
concept in the ontology; meanwhile it tries to keep the differ-
ence between two classifiers proportional to the cost of their
corresponding concepts in the ontology. In other words, the
learning algorithm tries to classify an instance as correctly
as it can. If it cannot classify the instance correctly, it then
tries to classify it with another concept with the least cost
associated with it relative to the correct concept. The algo-
rithm is based on the Hieron, a large margin algorithm for
hierarchical classification proposed in [8]. See [19] for details
about the learning algorithm and experiments.

We experimentally compared the Hieron algorithm with
the learning algorithm SVM (see e.g. [5]) for OBIE. The
SVM is a state of the art algorithm for classification. [17]
applied the SVM with uneven margins, a variant of the
SVM, to the traditional information extraction problem and
achieved state of the art results on several benchmarking
corpora. In the application of the SVM to OBIE, we learned
one SVM classifier for each concept in the ontology sepa-
rately and did not take into account the structure of the
ontology. In other words, the SVM based IE learning al-
gorithm was a flat classification in which the structure of
concepts in the ontology was ignored. In contrast, the Hi-
eron algorithm for IE was based on hierarchical classification
that exploits the structure of concepts.

As the OntoNews corpus consists of three parts (Interna-
tional politics, UK politics and Business), for each learning
algorithm two parts were used as training data and another
part as test data. Note that although the tripartition of the
corpus indicates three distinct and topically homogeneous
parts of the corpus, these parts are used as training and
testing data for the comparison of different algorithms, and
not their performance. For this purpose, semantic homo-
geneity does not play a role.

For each experiment we computed three F1 values to mea-
sure the overall performance of the learning algorithm. One
was the conventional micro-averaged F1 in which a binary



Figure 1: Document annotated with instances from the PROTON ontology

reward was assigned to each prediction of instance — the
reward was 1 if the prediction was correct, and 0 otherwise.
We call this flat F1 since it does not consider the structure
of concepts in the ontology. The other two measures were
based on the BDM and LA values, respectively. As dis-
cussed in Section 3, these take into account the structure of
the ontology.

flat F1 BDM F1 LA F1

SVMUM 73.5 74.5 74.5
Hieron 74.7 79.2 80.0

Table 1: Comparison of the two learning algorithms
Hieron and SVM with uneven margins for OBIE
using three overall performance measures

Table 1 presents the experimental results for comparing
the two learning algorithms SVM and Hieron. We used three
measures: conventional micro-averaged flat F1 (%), and the
two ontology-sensitive augmented F1 (%) based respectively
on the BDM and LA, BDM F1 and LA F1, which were dis-
cussed in Section 3.4. In this experiment, the International-
Politics part of the OntoNews corpus was used as the test
set and other two parts as the training set.

Both the BDM F1 and LA F1 are higher than the flat F1

for the two algorithms, reflecting the fact that the latter
only counts the correct classifications, while the former two
not only count the correct classifications but also the incor-
rect ones. However, the difference for the Hieron is more
significant than that for the SVM, demonstrating an impor-
tant difference between the two methods — the SVM based
method just tried to learn a classifier for one concept as
well as possible, while the Hieron based method not only
learned a good classifier for each individual concept but also
took into account the relations between the concepts in the

ontology during the learning.
In terms of the conventional flat F1, the Hieron was slightly

better than the SVM. However, if the results are measured
by using the ontology-sensitive measure BDM F1 or LA F1,
we can see that the Hieron performed significantly better
than the SVM. Clearly, the ontology-sensitive measures such
as the BDM F1 and LA F1 are more suitable than the con-
ventional flat F1 to measure the performance of an ontology-
dependent learning algorithm such as Hieron.

In order to analyse the difference between the three mea-
sures, Table 2 presents some examples of entities predicted
incorrectly by the Hieron based learning system, their key
labels, and the similarity between the key label and pre-
dicted label measured respectively by the flat measure, the
BDM and the LA.

All the concepts and their relations involved in Table 2 are
illustrated in Figure 2, which presents a part of the Proton
ontology. This ontology section starts with the root node
Thing, and has 10 levels of concepts with TVCompany as
the lowest level concept. Note that the graph does not show
all the child concepts for most of the nodes presented.

The conventional flat measure assigned each case a zero
similarity because the examples were misclassified and the
measure does not consider the structure of labels. On the
other hand, both the LA and BDM take into account the
structure of labels and measure the degree of a misclassifica-
tion based on its position in the ontology. Hence they assign
a non-zero value to a misclassification in most cases. Note
that zero would be assigned in the case where the MSCA
is the root node. In our experiments, all the concepts used
were below the node ”Entity” and so we used its imme-
diate upper node ”Thing” as root4. This meant that CP
was always at least 1, and hence there is no zero value for
BDM or LA in our experiments. This is because we consider

4”Thing” subsumes both ”Entity” and ”Property”



No. Entity Predicted label Key label Flat BDM LA
1 Sochi Location City 0.000 0.724 1.000
2 Federal Bureau of Investigation Organization GovernmentOrganization 0.000 0.959 1.000
3 al-Jazeera Organization TVCompany 0.000 0.783 1.000
4 Islamic Jihad Company ReligiousOrganization 0.000 0.816 0.556
5 Brazil Object Country 0.000 0.587 1.000
6 Senate Company PoliticalEntity 0.000 0.826 0.556

Table 2: Examples of entities misclassified by the Hieron based system

that if an entity’s instance is recognized but with the wrong
type, the system should have a non-zero reward because it
at least recognized the instance in the first place. However,
this could be changed according to the user’s preference.

However, BDM and LA adopt different mechanisms in
consideration of the ontology structure. In particular, the
LA assigns the maximal value 1 if the predicted label is
an ancestor concept of the key label, regardless of how far
apart the two labels are within the ontological chain. In
contrast, the BDM takes into account the similarity of two
concepts in the ontology and assigns a distance-dependent
value. The difference is demonstrated by the examples in
the table. For example, in the Proton ontology, the pre-
dicted label Organization is the parent concept of the key
label GovernmentOrganization in the second example, and
in the third example the same predicted label Organization
is 4 concepts away from the key label TVCompany, see Fig-
ure 2. Hence, the BDM value of the second example is higher
than the BDM value of the third example. In the first ex-
ample the predicted label Location is 3 concepts away from
the key label City but its BDM value is lower than the cor-
responding value in the third example, mainly because the
concept Location occupies a higher position in the Proton
ontology than the concept Organization. Similarity is thus
lower because higher concepts are semantically more gen-
eral, and therefore less informative.

Another difference between the BDM and LA is that the
BDM considers the concept densities around the key concept
and the response concept, but the LA does not. The differ-
ence can be shown by comparing the fourth and the sixth
examples. They have the same predicted label Company,
and their key labels ReligiousOrganization and PoliticalEn-
tity are two sub-concepts of Organization. Therefore, the
positions of the predicted and key labels in the two exam-
ples are very similar and hence their LA values are the same.
However, their BDM values are different — the BDM value
of the fourth example is a bit lower than the BDM value
of the sixth example. This is because the concept Politi-
calEntity in the sixth example has two child nodes but the
concept ReligiousOrganization in the fourth example has no
child node, resulting in different averaged lengths of chains
coming through the two concepts.

The BDM value in the fifth example is the lowest among
the examples, mainly because the concept Object is in the
highest position in the ontology among the examples. These
differences in BDM scores show the effects of the adoption of
chain density and branching factor as penalty weights in the
computation of the score. These reflect the level of difficulty
associated with the selection of a particular ontlogical class
relative to the size of the set of candidates.

Figure 2: Subset of the Proton ontology

5. CONCLUSIONS AND FUTURE WORK
The initial observation in this paper is that binary de-

cisions are not good enough for ontology evaluation, when
hierarchies are involved. We propose an Augmented Preci-
sion and Recall measure that takes into account the ontolog-
ical distance of the response to the position of the key con-
cepts in the hierarchy. For this purpose we have developed
an extended variant of Hahn’s Learning Accuracy measure,
called Balanced Distance Metric, and integrated this with a
standard Precision and Recall metric. We have performed
evaluations of these three metrics based on a gold standard
corpus of news texts annotated according to the PROTON
ontology, and conclude that both the BDM and LA met-
rics are more useful when evaluating information extraction
based on a hierarchical rather than a flat structure. Further-
more, the BDM appears to perform better than the LA in
that it reflects a better error analysis in certain situations.

If we compare the BDM metric with the criteria in Section
2, we observe that it conforms to the majority of these pre-
requisites. Although it gives an intuitively plausible score for
semantic similarity on many occasions, it can be argued that
in some cases it does not correlate well with human judge-
ment. Examples 4 and 6 in Table 2 show counter-intuitively
high similarity values for combinations of key and wrongly



predicted labels, particularly in comparison with example
7. From a human perspective, they seem much more wrong
than the erroneous classification in Example 7, and slightly
more wrong than those in examples 1 and 3. This indicates a
need for further tuning the BDM score with additional cost-
based metrics, in order to meet human judgement criteria.
In such cases, this could entail the integration of a rule which
boosts similarity scores for concepts within the same onto-
logical chain (in a more subtle way than LA), and which
lowers the score for concept pairs that occur in different
chains. In the future we will work on the (semi-)automatic
identification of such rules.
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