
Computational Language Systems,

Architectures

Hamish Cunningham and Kalina Bontcheva

Department of Computer Science, University of Sheffield, Regent Court, 211
Portobello Street, Sheffield S1 4DP, UK.

hamish@dcs.shef.ac.uk kalina@dcs.shef.ac.uk
Contents

1 Introduction: Software Architecture 2

2 Software Architectures for Language Engineering 4

3 Categories of Work on SALE 5

4 Processing Resources 6

4.1 Locating and Loading 7

4.2 Execution 9

4.3 Metadata 10

4.4 Commonalities 12

5 Language Resources 13

5.1 Programmatic Access 14

5.2 Documents, Formats and Corpora 16

5.3 Annotation 17

5.4 Data About Language 23

5.5 Indexing and Retrieval 24

6 Recent Trends and Future Directions 25

6.1 Towards multipurpose repositories 25

6.2 Resource Metadata and Annotation Standards 26

6.3 Open Archives 26

6.4 Component Reusability, Distributed Access and Execution 27

6.5 Measurement 28

7 Prognosis 28

Preprint submitted to Elsevier Science 30th November 2004

Abstract

This article introduces the field of architecture, or infrastructure, for language processing
scientific experimentation and language technology applications development. The article:
presents a critical review of the various approaches that have been taken in the field; analyses
eleven categories of previous work and uses these categories to organise the discussion; looks
in detail at algorithmic and data resource infrastructure; concludes with some thoughts on
the future of the area.

Keywords

Software Architecture for Language Engineering, Language Processing Infrastructure, In-
formation Extraction, Natural Language Analysis, Human Language Technology, Natural
Language Engineering.

ELL2 Cross-References

“Natural Language Analysis”. “Text Retrieval Conference and Message Understanding Con-
ference”. “Natural Language Processing, System Evaluation”. “Human Language Technol-
ogy”. “Language Processing, Statistical Methods”

Acknowledgements

Thanks to Valentin Tablan and Diana Maynard for important contributions to the area
covered in this article. The author was partly supported by EPSRC grant GR/N15764/01
(AKT) and by EU grants SEKT, PrestoSpace and KnowledgeWeb.

1 Introduction: Software Architecture

Every building, and every computer program, has an architecture: structural and organi-
sational principles that underpin its design and construction. The garden shed once built
by one of the authors had an ad hoc architecture, extracted (somewhat painfully) from the
imagination during a slow and non-deterministic process that, luckily, resulted in a structure
which keeps the rain on the outside and the mower on the inside (at least for the time being).
As well as being ad hoc (i.e. not informed by analysis of similar practice or relevant science

2

or engineering) this architecture is implicit: no explicit design was made, and no records or
documentation kept of the construction process.

The pyramid in the courtyard of the Louvre, by contrast, was constructed in a process in-
volving explicit design performed by qualified engineers with a wealth of theoretical and
practical knowledge of the properties of materials, the relative merits and strengths of dif-
ferent construction techniques, et cetera.

So it is with software: sometimes it is thrown together by enthusiastic amateurs; sometimes
it is architected, built to last, and intended to be ‘not something you finish, but something
you start’ (to paraphrase Brand (1994)).

A number of researchers argued in the early and middle 1990s that the field of computa-
tional infrastructure or architecture for human language computation merited an increase
in attention. The reasoning was that the increasingly large-scale and technologically signifi-
cant nature of language processing science was placing increasing burdens of an engineering
nature on research and development workers seeking robust and practical methods (as was
the increasingly collaborative nature of research in this field, which puts a large premium on
software integration and interoperation). 1). Over the intervening period a number of signif-
icant systems and practices have been developed in what we may call Software Architecture
for Language Engineering (SALE).

We may define Language Engineering (LE) as the production of software systems that in-
volve processing human language with quantifiable accuracy and predictable development
resources Cunningham (1999). LE is related to but distinct from the fields of Computational
Linguistics, Natural Language Processing and Artificial Intelligence, with its own priorities

1 Software lifecycle in collaborative research – how not to do it:

• Project Proposal: ‘We love each other. We can work so well together. We can hold workshops
on Greek Islands together. We will solve all the problems of the field that our predecessors were
too stupid to.’

• Analysis and Design: Stop work entirely, for a period of reflection and recuperation following
the stress of attending the kick-off meeting.

• Implementation: Each developer partner tries to convince the others that program X that they
just happen to have lying around on a dusty disk-drive meets the project objectives exactly and
should form the centrepiece of the demonstrator.

• Integration and Testing: The lead partner gets desperate and decides to hard-code the results
for a small set of examples into the demonstrator, and have a fail-safe crash facility for unknown
input (‘well, you know, it’s still a prototype...’).

• Evaluation: Everyone says how nice it is, how it solves all sorts of terribly hard problems, and
how if we had another grant we could go on to transform information processing the world over
(or at least the business travel industry).

3

and concerns. Chief among these are: dealing with large-scale tasks of practical utility; mea-
suring progress quantitatively relative to performance on examples of such tasks; a growing
realisation of the importance of software engineering in general, and reusability, robustness,
efficiency and productivity in particular. As argued in Cunningham and Scott (2004); May-
nard et al. (2002) software architectures can contribute significantly towards achieving these
goals.

This article gives a critical review of the various approaches that have been taken to the
problem of Software Architecture for Language Engineering (SALE). The prime criterion for
consideration in this article is being infrastructural, i.e. we consider work that is intended to
support Language Engineering (LE) R&D in some way that extends beyond the boundaries
of a single time-limited project. Section 2 expands the definition of SALE.

We cover eleven categories of work, which ranges over a wide area. In order to provide an
organising principle for the discussion we begin in section 3 by extrapolating a set of archi-
tectural issues that represents the union of those addressed by the various researchers cited.
This has the advantage of making it easier to see how certain problems have been addressed
and the disadvantage that multipurpose infrastructures appear in several categories.

Section 4 discusses infrastructures aimed at algorithmic resources, including the issues of
component integration and execution. Section 5 turns to data resources infrastructure, in-
cluding the issues of access and the representation of information about text and speech.
Section 6 concludes by providing a discussion on future directions for work on SALE.

2 Software Architectures for Language Engineering

The problem addressed by the systems reviewed here is the construction of software in-
frastructure for language processing: software that is intended to apply to whole families
of problems within this field, and to be like a craftsman’s toolbox in service of construc-
tion and experimentation. We consider three types of infrastructural systems: frameworks;
architectures; development environments.

A framework typically means an object oriented class library that has been designed with a
certain domain in mind, and which can be tailored and extended to solve problems in that
domain. They may also be known as platforms, or component systems.

All software systems have an architecture. Sometimes the architecture is explicit, perhaps
conforming to certain standards or patterns, sometimes it is implicit. Where an architecture
is explicit and targeted on more than one system, it is known as a reference architecture,
or a domain-specific architecture. The former is “a software architecture for a family of
application systems” Tracz (1995). The term Domain Specific Software Architecture (DSSA
– subject of an eponymous ARPA research programme) “applies to architectures designed to
address the known architectural abstractions specific to given problem domains” Clements
and Northrop (1996).

4

An implementation of an architecture that includes some graphical tools for building and
testing systems is a development environment. One of the benefits of an explicit and repeat-
able architecture is that a symbiotic relationship with a dedicated development environment
can arise. In this relationship the development environment can help designers conform to
architectural principles and visualise the effect of various design choices and can provide code
libraries tailored to the architecture.

The most significant issues addressed by SALE systems include:

(1) Clean separation of low-level tasks such as data storage, data visualisation, location
and loading of components, and execution of processes from the data structures and
algorithms that actually process human language.

(2) Reducing integration overheads by providing standard mechanisms for components to
communicate data about language, and using open standards such as Java and XML
as the underlying platform.

(3) Providing a baseline set of language processing components that can be extended and/or
replaced by users as required.

(4) Providing a development environment or at least a set of tools to support users with
modification and implementation of language processing components and applications.

(5) Automating measurement of performance of language processing components.

Here we will focus on the first two sets of issues, since they are issues that arise in every
single NLP system or application, and are prime areas where SALE can contribute. For a
discussion of other requirements see Cunningham (2000).

3 Categories of Work on SALE

Like other software, Language Engineering (LE) programs consist of data and algorithms.
The current trend in software development is to model both data and algorithms together,
as objects. (Older development methods like Structured Analysis Yourdon (1989) kept them
largely separate.) Systems that adopt the new approach are referred to as Object-Oriented
(OO), and there are good reasons to believe that OO software is easier to build and maintain
(see e.g., Booch (1994)).

In the domain of human language processing R&D, however, the choice is not quite so clear
cut. Language data, in various forms, is of such significance in the field that it is frequently
worked on independently of the algorithms that process it. Such data has even come to have
its own term, Language Resources (LRs) LREC-1 (1998), covering many data sources, from
lexicons to corpora.

In recognition of this distinction, we will adopt the following terminology:

Language Resource (LR): refers to data-only resources such as lexicons, corpora, the-
sauri or ontologies. Some LRs come with software (e.g. Wordnet has both a user query

5

interface and C and Prolog APIs), but where this is only a means of accessing the under-
lying data we’ll still define such resources as LRs.

Processing Resource (PR): refers to resources whose character is principally program-
matic or algorithmic, such as lemmatisers, generators, translators, parsers or speech recog-
nisers. For example a part-of-speech tagger is best characterised by reference to the process
it performs on text. PRs typically include LRs, e.g. a tagger often has a lexicon.

PRs can be viewed as algorithms that map between different types of LR, and which typically
use LRs in the mapping process. An MT engine, for example, maps a monolingual corpus
into a multilingual aligned corpus using lexicons, grammars, etc.

Adopting the PR/LR distinction is a matter of conforming to established domain practice
and terminology. It does not imply that we cannot model the domain (or build software to
support it) in an object-oriented manner.

We will use this distinction to categorise work on SALE. Section 4 will survey infrastructural
work on processing resources, while section 5 reviews the much more substantial body of work
on language resources. These sections are additionally segmented into categories as follows:

• Processing Resources
· Locating, loading and initialising components from local and non-local machines.
· Executing processing components, serially or in parallel.
· Representing information about components.
· Factoring out commonalities amongst components.

• Language Resources, corpora and annotation
· Accessing data components.
· Managing collections of documents (including recordings) and their formats.
· Representing information about text and speech.
· Representing information about language.
· Indexing and retrieving information.

4 Processing Resources

It is commonly the case that a language processing system is composed of a number of
discrete steps. For example, a translation application must first analyse the source text
in order to arrive at some representation of meaning before it can begin deciding upon
target language structures that parallel that meaning. A typical language analysis process
will implement stages such as text structure analysis, tokenisation, morphological analysis,
syntactic parsing, and semantic analysis 2 . Each of these stages is represented by components

2 The exact breakdown varies widely and is to some extend dependent on method; some statistical
work early in the second wave of the application of these types of method completely ignored the
conventional language analysis steps in favour of a technique based on a memory of parallel texts
Brown et al. (1990). Later work has tended to accept the advantages of some of these stages,

6

that perform processes on text (and use components containing data about language such as
lexicons and grammars). In other words, the analysis steps are realised as a set of Processing
Resources (PRs). Several architectural questions arise in this context:

(1) Is the execution of the PRs best done serially or in parallel?
(2) How should PRs be represented such that their discovery on a network and loading into

an executive process is transparent to the developer of their linguistic functions?
(3) How should distribution across different machines be handled?
(4) What information should be stored about components and how should this be repre-

sented?
(5) How can commonalities between component sets be exploited?
(6) How should the components communicate information between each other? (This ques-

tion can also be stated as: how should information about text and speech be repre-
sented?)

This section reviews work that addresses questions 1 – 5. The issue of representing informa-
tion about language is addressed in section 5.

4.1 Locating and Loading

There are several reasons why PR components should be separate from the controlling ap-
plication that executes them:

• There will often be a many-to-one relation between applications and PRs. Any application
using language analysis technology needs a tokeniser component, for example.

• A PR may have been developed for one computing platform, e.g. UNIX, but the application
wishing to use it may operate on another, e.g. Windows.

• The processing regime of the application may require linear or asynchronous execution;
this choice should be isolated from the component structures as far as possible in order to
promote generality and encourage reuse.

• PR developers should not be forced to deal with application-level software engineering
issues such as how to manage installation, distribution over networks, exception handling
and so on.

• Explicit modelling of components allows exploitation of modern component infrastructures
such as Java Beans or Active X.

Accordingly, many papers on infrastructural software for LE separate components from the
control executive, 3 e.g., Boitet and Seligman (1994); Edmondson and Iles (1994); Koning
et al. (1995); Wolinski et al. (1998); Poirier (1999); Zajac (1998b); Lavelli et al. (2002);

however, though they may be moved into an off-line corpus annotation process such as Marcus
et al. (1993).
3 The term ‘executive’ is used here in the sense of a software entity which executes, or runs, other
entities.

7

Cunningham et al. (2002a). The question then is how components become known to control
processes or applications, and how they are loaded and initialised. (A related question is
what data should be stored with components to facilitate their use by an executive – see
section 4.3 below.) Much work ignores this issue; the rest of this section covers those SALE
systems for which the data is available.

The TIPSTER architecture Grishman (1997) recognised the existence of the locating and
loading problems, but didn’t provide a full solution to the problem. The architecture docu-
ment includes a place-holder for such a solution (in the form of a ‘register annotator’ API 4

call, which an implementation could use to provide component loading), but the semantics
of the call were never specified.

The TalLab architecture “is embedded in the operating system” Wolinski et al. (1998) which
allows them to “reuse directly a huge, efficient and reliable amount of code”. The precise
practicalities of this choice are unclear, but it seems that components are stored in particular
types of directory structure, which are presumably known to the application at startup time.

ICE, the Intarc Communication Environment Amtrup (1995), is an ‘environment for the
development of distributed AI systems’, and part of the Verbmobil real-time speech-to-
speech translation project Kay et al. (1994). ICE provides distribution based around PVM
(Parallel Virtual Machine) and a communication layer based on channels. ICE is not specific
to LE because the communication channels do not use data structures specific to NLP needs,
and because document handling issues are left to the individual modules. ICE’s answer to
the locating and loading problem is the Intarc License Server, which is a kind of naming
service, or registry, that stores addressing information for components. Components must
themselves register with the server by making an API call (Ice Attach). The components
must therefore a) link to the ICE libraries and b) know the location of the license server (as
must applications using ICE services).

Following from the ICE work Herzog et al. (2004) present the latest in three generations of
architecture to arise from the Verbmobil and Smartkom projects, in the shape of the Mul-
tiplatform system. This architecture supports multiple distributed components from diverse
platforms and implementation languages running asynchonously and communicating via a
message passing substrate.

Corelli Zajac (1997) and its successor Calypso Zajac (1998b) are also distributed systems
that cater for asynchronous execution. The initial Corelli system implemented much of the
CORBA standard The Object Management Group (1992), and component discovery used
a naming and directory service. All communication and distribution was mediated by an
Object Request Broker (ORB). Components ran as servers and implemented a small API
to allow their use by an executive or application process. In the later Calypso incarnation,
CORBA was replaced with simpler mechanisms due to efficiency problems (for a usage ex-
ample see Amtrup (1999)). In Calypso components are stored in a centralised repository,
sidestepping the discovery problem. Loading is catered for by requiring components to im-

4 Application Programmers’ Interface.
8

plement a common interface.

Another distributed architecture based on CORBA is SiSSA Lavelli et al. (2002). The archi-
tecture comprises processors (PRs in our terms), servers for their execution, data containers
(LRs) and a manager component (called SiSSA Manager) which establishes and removes
connections between the processors, according to a user-designed data flow. SiSSA uses a
Processor Repository to keep information about processors registered with the architecture.

Carreras and Padró (2002) report a distributed architecture specifically for language analy-
sers.

GATE version 1 Cunningham et al. (1997) was a single-process, serial execution system.
Components must reside in the same file system as the executive; location was performed by
searching a path stored in an environment variable. Loading was performed in three ways,
depending on the type of component and which of the GATE APIs it uses.

GATE version 2 Cunningham et al. (2002a,b) supports remote components; location is per-
formed by providing one or more component repositories (called CREOLE 5 repositories),
which contain XML definitions of each resource and the types of its parameters (e.g., whether
it works with documents or corpora). The user can then instantiate a component by select-
ing it from the list of available components and choosing its load time parameters. GATE
makes distinction between load time and runtime parameters – the former are essential for
the working of the module, e.g., a grammar, and need to be provided at load time, while
the latter can change from one execution to the next, e.g. a document to be analysed. Com-
ponents can also be re-initialised, which enables users to edit their load-time data (e.g.,
grammars) within the graphical environment and then re-load the component to reflect the
changes. GATE also supports editing of remote language resources and execution of remote
components using Remote Method Invocation (RMI), i.e., provides facilities for building
client-server applications.

4.2 Execution

It seems unlikely that people process language by means of a set of linear steps involving
morphology, syntax and so on. More probably we deploy our cognitive faculties in a parallel
fashion (hence, for example, the term ‘parallel distributed processing’ in neural modelling
work McClelland and Rumelhart (1986)). These kinds of ideas have motivated work on non-
linear component execution in NLP; von Hahn (1994) gives an overview of a number of
approaches; a significant early contribution was the Hearsay speech understanding system
Erman et al. (1980).

Examples of asynchronous infrastructural systems include Kasuga Boitet and Seligman
(1994), Pantome Edmondson and Iles (1994), Talisman Koning et al. (1995), Verbmobil

5 Collection of REusable Objects for Language Engineering.
9

Görz et al. (1996), TalLab Wolinski et al. (1998), Xelda Poirier (1999), Corelli Zajac (1997),
Calypso Zajac (1998b), SiSSA Lavelli et al. (2002), Distributed Inquery Cahoon and McKin-
ley (1996), and the Galaxy Communicator Software Infrastructure (GCSI) MITRE (2002).
Motivations include that mentioned in the previous paragraph, and also the desire for feed-
back loops in ambiguity resolution (see Koning et al. (1995)).

In the Inquery and Verbmobil cases an additional motivation is efficiency. ICE, the Verbmobil
infrastructure, addressed two problems: distributed processing and incremental interpreta-
tion. Distribution is intended to contribute to processing speed in what is a very compute-
intensive application area (speech-to-speech translation). Incremental interpretation is both
for speed and to facilitate feedback of results from downstream modules to upstream ones
(e.g. to inform the selection of word interpretations from phone lattices using part-of-speech
information). ICE’s PVM-based architecture provides for distributed asynchronous execu-
tion.

GCSI is an open source architecture for constructing dialogue systems. This infrastructure
concentrates on distributed processing, hooking together sets of servers and clients that
collaborate to hold dialogues with human interlocutors. Data gets passed between these
components as attribute/value sets, or ‘frames’, the structuring and semantics of which
must be agreed upon on a case-by-case basis. Communication between modules is achieved
using a hub. This architectural style tends to treat components as black boxes which are
developed using other tool sets. To solve this problem, other support environments can be
used to produce a GCSI server components, using GCSI as a communication substrate to
integrate with other components.

The model currently adopted in GATE is that each PR may run in its own thread if asyn-
chronous processing is required (by default PRs will be executed serially in a single thread).
The set of LRs being manipulated by a group of multi-threaded PRs must be synchronised
(i.e. all their methods must have locks associated with whichever thread is calling them at
a particular point). Synchronisation of LRs is performed in a manner similar to the Java
collections framework. This arrangement allows the PRs to share data safely. Responsibility
for the semantics of the interleaving of data access (who has to write what in what sequence
in order for the system to succeed) is a matter for the user, however.

4.3 Metadata

A distinction may be made between the data that language processing components use (or
Language Resources) and data that is associated with components for descriptive and other
reasons. The latter is sometimes referred to as metadata to differentiate it from the former. In
a similar fashion, the content of the Web is largely expressed in HTML; data that describes
Web resources, e.g. ‘this HTML page is a library catalogue’, is also called metadata. Relevant
standards in this area include RDF, the Resource Description Framework Lassila and Swick
(1999); Berners-Lee et al. (1999).

10

There are several reasons why metadata should be part of a component infrastructure, in-
cluding:

• to facilitate the interfacing and configuration of components;
• to encode version, author and availability data;
• to encode purpose data and allow browsing of large component sets.

When components are reused across more than one application or research project it will
often be the case that their input/output (I/O) characteristics have not been designed along-
side the other components forming the language processing capability of the application. For
example, one part-of-speech tagger may require tokens as input in a one-per-line encoding.
Another may require SGML 6 input. In order to reuse the tagger with a tokeniser that pro-
duces some different flavour of output, that output must be transformed to suit the tagger’s
expectations. In cases where there is an isomorphism between the available output and the
required input a straightforward syntactic mapping of representations will be possible. In
cases where there is a semantic mismatch, additional processing will be necessary.

Busemann (1999) addresses component interfacing and describes a method for using feature
structure matrices to encode structural transformations on component I/O data structures.
These transformations are essentially re-ordering of the data structures around pre-existing
unit boundaries; therefore the technique assumes isomorphism between the representations
concerned. The technique also allows for type checking of the output data during restruc-
turing.

TIPSTER Grishman (1997), GATE Cunningham (2002) and Calypso Zajac (1998b) deal
with interfacing in two ways. First, component interfaces share a common data structure
(e.g. corpora of annotated documents), thus ensuring that the syntactic properties of the
interface are compatible. Component wrappers are used to interface to other representations
as necessary (so, for example, a Brill tagger Brill (1992) wrapper writes out token annotations
in the required one-per-line format, then reads in the tags and writes them back to the
document as annotations). Second, where there is semantic incompatibility between the
output of one component and the input of another a dedicated transduction component can
be written to act as an intermediary between the two.

In Verbmobil a component interface language is used Bos et al. (1998), which constrains
the I/O profiles of the various modules. This language is a Prolog term which encodes
logical semantic information in a flat list structure. The principle is similar to that used in
TIPSTER-based systems, but the applicability is somewhat restricted by the specific nature
of the data structure.

Provision of descriptive metadata has been addressed by the Natural Language Software
Registry (NLSR) DFKI (1999) and by the EUDICO distributed corpora project Brugman
et al. (1998a,b). In each case Web-compatible data (HTML and XML respectively) are
associated with components. The NLSR is purely a browsable description; the EUDICO

6 The Standard Generalised Markup Language Goldfarb (1990).
11

work links the metadata with the resources themselves, allowing the launching of appropriate
tools to examine them with 7 . GATE 2 Cunningham et al. (2002b) uses XML for describing
the metadata associated with processing resources in its CREOLE repositories (see section
4.1). This metadata is used for component loading and also for launching the corresponding
visualisation and editing tools.

In addition to the issue of I/O transformation, in certain cases it may be desirable to be able
to identify automatically which components are plug-compatible with which other ones, in
order to identify possible execution paths through the component set.

GATE 1 Cunningham et al. (1997) addresses automatic identification of execution paths by
associating a configuration file with each processing component that details the input (pre-
conditions) and output (post-conditions) in terms of TIPSTER annotation and attribute
types (see section 5.3.2 below). This information is then used to auto-generate an execution
graph for the component set.

4.4 Commonalities

To conclude our survey of infrastructural work related to processing, this section looks at the
exploitation of commonalities between components. For example, both parsers and taggers
have the characteristics of language analysers. One of the key motivating factors for SALE is
to break the ‘software waste cycle’ Veronis and Ide (1996) and promote reuse of components.
Various researchers have approached this issue by identifying typical component sets for
particular tasks, e.g., Hobbs (1993); TIPSTER (1995); Reiter and Dale (2000). Some work
goes on to provide implementations of common components Cheong et al. (1994); Ibrahim
and Cummins (1989). The rest of this section describes these approaches.

Reiter and Dale have reviewed and categorised Natural Language Generation (NLG) compo-
nents and systems in some detail. Reiter (1994) argues that a consensus component break-
down has emerged in NLG (and that there is some psychological plausibility for this archi-
tecture); the classification is extended in Reiter and Dale (2000). They also discuss common
data structures in NLG (as does the RAGS project – see section 5.4 below), and appropriate
methods for the design and development of NLG systems. Reiter (1999) argues that the use-
fulness of this kind of architectural description is to ‘make it easier to describe functionalities
and data structures’ and thus facilitate research by creating a common vocabulary amongst
researchers. He states that this is a more limited but more realistic goal than supporting
integration of diverse NLG components in an actual software system. The term he uses for
this kind of descriptive work is a ‘reference architecture’, which is also the subject of the
workshop at which the paper was presented Mellish and Scott (1999).

The TIPSTER research programme developed descriptive or reference architectures for In-
formation Extraction and for Information Retrieval. Hobbs (1993) describes a typical module

7 Note that EUDICO has only dealt with Language Resource components at the time of writing.
12

set for an IE system. The architecture comprises 10 components, dealing with tasks like pre-
processing, parsing, semantic interpretation, and lexical disambiguation; for a description of
the full set see Gaizauskas and Wilks (1998). For IR TIPSTER (1995) describes two func-
tions, search and routing, each with a typical component set (some of which are PRs and
some LRs.)

An architecture for spoken dialogue systems is presented in LuperFoy et al. (1998), which
divides the task into dialogue management, context tracking and pragmatic adaptation. This
in turn leads to an architecture in which various components (realised as agents) collaborate
in the dialogue. Some example components are: speech recognition, language interpreta-
tion, language generation, and speech synthesis. In addition a dialogue manager component
provides high-level control and routing of information between components.

The preceding discussion illustrates that there is considerable overlap between component
sets developed for various purposes. A SALE that facilitated multipurpose components would
cut down on the waste involved in continual re-implementation of similar components in
different contexts. The component model given in Cunningham (2000) is made available in
the GATE framework Cunningham et al. (2002b). This model is based on inheritance: a
parser is a type of language analyser which is a type of processing resource. The language
engineer can choose, therefore, between implementing a more specific interface and adhering
to the choices made by the GATE developers for that type, or implementing a more general
interface and making their own choices about the specifics of their particular resource.

In several cases, work on identifying component commonalities has led to the development
of toolkits that aim to implement common tasks in a reusable manner. For example: TARO
Ibrahim and Cummins (1989) is an OO syntactic analyser toolkit based on a specification
language. A toolkit for building IE systems and exemplified in the MFE IE system is pre-
sented in Cheong et al. (1994).

5 Language Resources

Recall from section 3 that Language Resources are data components such as lexicons, corpora
and language models. They are the raw materials of language engineering. This section covers
six issues relating to infrastructure for LRs:

(1) Computational access (local and non-local).
(2) Managing document formats and document collections (corpora), including multilingual

resources.
(3) Representing information about corpora (language data, or performance modelling).
(4) Representing information about language (data about language, or competence mod-

elling).
(5) Indexing and retrieval of language-related information.

13

Note also that the advantages of a component-based model presented (in relation to PRs)
in section 4.1 also apply to LRs.

5.1 Programmatic Access

LRs are of worth only inasmuch as they contribute to the development and operation of
PRs and the language processing research prototypes, experiments and applications that are
built from them. A key issue in the use of LRs for language processing purposes is that of
computational access. Suppose that a developer is writing a program to generate descriptions
of museum catalogue items; they may have a requirement for synonyms, for example, in order
to lessen repetition. A number of sources for synonyms are available, e.g. WordNet Miller
(Ed.), or Roget’s Thesaurus. In order to reuse these sources the developer needs to access
the data in these LRs from their program.

Although the reuse of LRs has exceeded that of PRs Cunningham et al. (1994) in general,
there are still two barriers to LR access and hence LR reuse:

(1) each resource has its own representation syntax and corresponding programmatic access
mode (e.g. SQL for Celex, C or Prolog for WordNet);

(2) resources must generally be installed locally to be usable, and how this is done depends
on what operating systems are available, what support software is required, etc., which
varies from site to site.

A consequence of (1) is that although resources of the same type usually have some struc-
ture in common (for example, at one of the most general levels of description, lexicons are
organised around words), this commonality cannot be exploited when it comes to using a
new resource. In each case the user has to adapt to a new data structure; this adaptation
is a significant overhead. Work which seeks to investigate or exploit commonalities between
resources has first to build a layer of access routines on top of each resource. So, for example,
if we wished to do task-based evaluation of lexicons by measuring the relative performance
of an IE system with different instantiations of lexical resource, we would typically have to
write code to translate several different resources into SQL or some other common format.
Similarly, work such as Jing and McKeown (1998) on merging large scale lexical resources
(including WordNet and Comlex) for NLG has to deal with this problem.

A consequence of (2) is that users may have to adjust their compute environments to suit
resources tailored to particular platforms. Also, there is no way to ‘try before you buy’: no way
to examine an LR for its suitability for one’s needs before licensing it in toto. Correspondingly
there is no way for a resource provider to give limited access to their products for advertising
purposes, or gain revenue through piecemeal supply of sections of a resource.

There have been two principal responses to problem (1): standardisation and abstraction.

The standardisation solution seeks to impose uniformity by specifying formats and structures
for LRs. So, for example, the EAGLES working groups have defined a number of standards

14

for lexicons, corpora and so on EAGLES (1999). More recently Ide and Romary (2004)
report the creation of a framework for linguistic annotations as part of the work of ISO
standardisation Technical Committee 37, Sub-Committee 4, whose objective

. . . is to prepare various standards by specifying principles and methods for creating, cod-
ing, processing and managing language resources, such as written corpora, lexical corpora,
speech corpora, dictionary compiling and classification schemes. These standards will also
cover the information produced by natural language processing components in these vari-
ous domains. 8

The work reported here is from Working Group 1 of the committee, which has developed a
linguistic annotation framework based on the XML, RDF(S), and OWL.

While standardisation would undoubtedly solve the representation problem, there remains
the question of existing LRs (and of competing standards). Peters et al. (1998); Cunningham
et al. (1998) describe experiments with an abstraction approach based on a common Object-
Oriented model for LRs that encapsulates the union of the linguistic information contained
in a range of resources, and encompasses as many object hierarchies as there are resources. At
the top of the resource hierarchies are very general abstractions; at the leaves are data items
specific to individual resources. Programmatic access is available at all levels, allowing the
developer to select an appropriate level of commonality for each application. Generalisations
are made over different object types in the resources, and the object hierarchies are linked at
whatever levels of description are appropriate. No single view of the data is imposed on the
user, who may choose to stay with the ‘original’ representation of a particular resource, or
to access a model of the commonalities between several resources, or a combination of both.

Problem (2), non-local access, has also attracted two types of response, which can be broadly
categorised as: Web browsing; distributed databases.

A number of sites now provide querying facilities from HTML pages, including:

• the Linguistic Data Consortium at http://www.ldc.upenn.edu/;
• the British National Corpus server at http://info.ox.ac.uk/bnc/.

So, for example, all occurrences of a particular word in a particular corpus may be found via
a Web browser. This is a convenient way to access LRs for manual investigative purposes,
but is not suited to (or intended for) use by programs for their access purposes.

Moving beyond browsing, several papers report work on programmatic access using dis-
tributed databases. Fikes and Farquhar (1999) show how ontologies may be distributed;
Brugman et al. (1998a,b) describe the EUDICO distributed corpus access system; Peters
et al. (1998); Cunningham et al. (1998) propose a system similar to EUDICO, generalised
to other types of LR. Some new directions in sharing language resources are discussed in
section 6.

8 http://www.tc37sc4.org/

15

Other issues in the area of access to LRs include that of efficient indexing and search of cor-
pora (see section 5.5), and that of annotation of corpora (see section 5.3). The issue of how
to access SGML documents in an efficient manner is discussed in Olson and Lee (1997), who
investigated the use of Object-Oriented databases for storing and retrieving SGML docu-
ments. Their conclusions were essentially negative due to the slowness of the databases used.
Hendler and Stoffel (1999) discuss how ontologies may be stored and processed efficiently
using relational databases, and here the results are more positive.

5.2 Documents, Formats and Corpora

Documents play a central role in LE. They are the subject of analysis for technologies such
as IE; they are both analysed and generated in technologies such as MT. In addition a
large amount of work uses annotated documents as training data for machine learning of
numerical models. Previous work on LE infrastructure has developed models for documents
and corpora, provided abstraction layers for document formats, and investigated efficient
storage of documents in particular formats.

Documents may contain text, audio, video or a mixture of these (the latter are referred to as
multimedia documents). The underlying data will frequently be accompanied by formating
information (delineating titles, paragraphs, areas of bold text, etc.) and, in the LE context,
annotation (storing linguistic data such as gesture tags, part-of-speech tags or syntax trees).
Both formatting and annotation come in a wide variety of flavours. Formats include propri-
etary binary data such as MS Word’s .doc or Excel’s .xls, semi-open semi-readable formats
such as Rich Text Format (Word’s exchange format), and non-proprietary standardised for-
mats such as HTML, XML, or GIF (Graphics Interchange Format).

The Text Encoding Initiative (TEI) Sperberg-McQueen and Burnard (1994, 2002) and the
Corpus Encoding Standard (CES Ide (1998) and XCES Ide et al. (2000)) are models of
documents and corpora that aim to standardise the representation of structural and linguistic
data for textual documents. The general approach is to represent all information about
document structure, formatting and linguistic annotation using SGML/XML.

The issue of document formats has been addressed by several TIPSTER-based systems,
including GATE and Calypso, and by the HTK speech recognition toolkit Young et al.
(1999). In the latter case the approach is to provide API calls that deal with documents in
various known formats (e.g. WAV 9 , MPEG) independent of those formats. So, for example, a
speech recogniser can access the raw audio from these documents without knowing anything
about the representation format.

The TIPSTER systems deal with formats by means of input filters that contain knowledge
about the format encoding and use that knowledge to unpack format information into an-
notations. TIPSTER also supplies a model of corpora and data associated with both corpus

9 Windows Audio format.
16

and documents Grishman (1997). Note that the two approaches are not mutually exclusive:
Ogden (1999) has defined a mapping between TEI/CES and TIPSTER annotations.

Another important issue that needs to be dealt with in infrastructures supporting language
resources in multiple languages is the problem of editing and displaying multilingual infor-
mation. It is often thought that the character sets problem is solved by use of the Unicode
standard. This standard is an important advance, but in practice the ability to process text
in a large number of the world’s languages is still limited by:

• incomplete support for Unicode in operating systems and applications software;
• languages missing from the standard;
• difficulties in converting non-Unicode character encodings to Unicode.

In order to deal with all these issues, including displaying and editing of Unicode documents,
GATE provides a Unicode Kit and a specialised editor Tablan et al. (2002). In addition, all
processing resources and visualisation components are Unicode-compliant.

5.3 Annotation

One of the key issues for much work in this area is how to represent information about text
and speech. (This kind of information is sometimes called language data, distinguishing it
from data about language in the form of lexicons, grammars, etc.)

Two broad approaches to annotation have been taken: to use markup (e.g., SGML/XML);
to use annotation data structures with references or pointers to the original (e.g., TIPSTER,
ATLAS).

Interestingly, the differences between the two kinds of approaches have become less pro-
nounced in recent work. SGML used to generally involve embedding markup in the text;
TIPSTER (and related systems) use a referential scheme where the text remains unchanged
and annotation refers back to it by character offsets. The embedding approach has a number
of problems Nelson (1997); Cunningham et al. (1997), including the difficulty of extending
the model to cope with multimedia data Bird and Liberman (1999a). Partly in response
to these difficulties, and as part of the rebirth of SGML as XML Goldfarb and Prescod
(1998), the ‘ML’ community has adopted a referential scheme itself, which is now known as
‘standoff markup’. The data models of the various systems are now much closer than they
were before XML existed, and the potential for interoperation between referential systems
like GATE and XML-based architectures is greater as a result. GATE exploits this potential
by providing input from and output to XML in most parts of the data model Cunningham
et al. (2002a,b).

17

5.3.1 Markup-based architectures

Language data can be represented by embedding annotation in the document itself (at least
in the case of text documents; users of embedding typically transcribe speech documents
before markup, or use ‘stand-off markup’ – see below). The principal examples of embedded
markup for language data use the Standard Generalized Markup Language (SGML Goldfarb
(1990); XML is discussed below). SGML is a meta-language, a language used to create other
languages. The syntax of SGML is therefore abstract, with each document filling in this
syntax to obtain a concrete syntax and a particular markup language for that document.
In practice certain conventions are so widespread as to be de facto characteristics of SGML
itself. For example, annotation is generally delimited by <TAG> and </TAG> pairs, often
with some attributes associated such as <TAG ATTRIBUTE=value>. The legitimate tags (or
elements) and their attributes and values must be defined for each class of document, using
a Document Type Definition (DTD). It does not specify what the markup means; the DTD
is the grammar which defines how the elements may be legally combined and in what order
in a particular class of text; see Goldfarb (1990). A good example of SGML used for corpus
annotation is the British National Corpus (BNC) Burnard (1995).

The HyperText Markup Language (HTML) is an application of SGML, and is specified by its
own DTD. A difference with ordinary SGML is that the DTD is often cached with software
such as Web browsers, rather than being a separate file associated with the documents that
instantiate it. In practice Web browsers have been lenient in enforcing conformance to the
HTML DTD, and this has led to diversity amongst Web pages, meaning that HTML DTDs
now represent an idealised specification of the language which often differs from its usage in
reality.

Partly in response to this problem the eXtensible Markup Language, XML Goldfarb and
Prescod (1998) has been developed. SGML is a complex language: DTDs are difficult to
write, and full SGML is difficult to parse. XML made the DTD optional, and disallowed
certain features of SGML such as markup minimisation. For example, the American National
Corpus (ANC) Macleod et al. (2002) uses XML and XCES Ide et al. (2000) to encode
linguistic annotations.

One of the problems in the SGML/XML world is that of computational access to and ma-
nipulation of markup information. Addressing this problem, the Language Technology group
at the University of Edinburgh developed an architecture and framework based on SGML
called the LT Normalised SGML Library (LT NSL) McKelvie et al. (1998). This in turn led
to the development of LT XML Brew et al. (1999) tracking the introduction of the XML
standard.

Tools in an LT NSL system communicate via interfaces specified as SGML DTDs (essen-
tially tag set descriptions), using character streams on pipes: a pipe-and-filter arrangement
modelled after UNIX-style shell programming. To avoid the need to deal with certain diffi-
cult types of SGML (e.g. minimised markup) texts are converted to a normal form before
processing. A tool selects what information it requires from an input SGML stream and adds
information as new SGML markup. LT XML is an extension of LT NSL to XML; in this

18

case the normalisation step is unnecessary.

Other similar work in this area include: the XDOC workbench Rösner and Kunze (2002);
Artola et al. (2002) report work on stand-off markup for NLP tools. Cassidy and Harrington
(2001) discusses multi-level annotation of speech.

5.3.2 Reference Annotation (I): TIPSTER

The ARPA-sponsored TIPSTER programme in the US, which finished in 1998, produced a
data-driven architecture for NLP systems Grishman (1997). A number of sites implemented
the architecture, e.g., GATE version 1 Cunningham et al. (1999), ELLOGON Petasis et al.
(2002); the initial prototype was written by Ted Dunning at the Computing Research Lab
of New Mexico State University. In contrast to the embedding approach, in TIPSTER the
text remains unchanged while information about it is stored in a separate database (DB).
The database refers back to the text by means of offsets. The data is stored by reference.

Information is stored in the database in the form of annotations, which associate arbitrary
information (attributes), with portions of documents (identified by sets of start/end character
offsets or spans). Attributes will often be the result of linguistic analysis, e.g. POS tags. In
this way information about texts is kept separate from the texts themselves. In place of an
SGML DTD (or XML XSchema), an annotation type declaration defines the information
present in annotation sets (though note that few implementations instantiated this part of
the architecture). Figure 1 gives an example which “shows a single sentence and the result of
three annotation procedures: tokenisation with part-of-speech assignment, name recognition,
and sentence boundary recognition. Each token has a single attribute, its part of speech (pos),
. . . ; each name also has a single attribute, indicating the type of name: person, company,
etc.” Grishman (1997).

Documents are grouped into collections (or corpora), each with an associated database stor-
ing annotations and document attributes such as identifiers, headlines, etc. The definition of
documents and annotations in TIPSTER forms part of an Object-Oriented model that can
deal with inter- as well as intra-textual information by means of reference objects that can
point at annotations, documents and collections. The model also describes elements of IE
and IR systems relating to their use, providing classes representing queries and information
needs.

TIPSTER-style models have a number of advantages and disadvantages. Texts may appear
to be one-dimensional, consisting of a sequence of characters, but this view is incompatible
with structures like tables, which are inherently two-dimensional. Their representation and
manipulation is easier in a referential model like TIPSTER than in an embedding one like
SGML where markup is stored in a one-dimensional text string. In TIPSTER, a column
of a table can be represented as a single object with multiple references to parts of the
text (an annotation with multiple spans, or a document attribute with multiple references
to annotations). Marking columns in SGML requires a tag for each row of the column, and
manipulation of the structure as a whole necessitates traversal of all the tags and construction

19

Text

Kevin admired his bike.

0...|5...|10..|15..|20

Annotations

Id Type Span Attributes

Start End

1 token 0 5 pos=NP

2 token 6 13 pos=VBD

3 token 14 17 pos=PP

4 token 18 22 pos=NN

5 token 22 23

6 name 0 5 name type=person

7 sentence 0 23

Figure 1. TIPSTER annotations example

of some other, non-SGML data structure.

Distributed control has a relatively straightforward implementation path in a database-
centred system like TIPSTER: the DB can act as a blackboard, and implementations can
take advantage of well-understood access control technology.

On the issue of storage overhead and contrasting with the hyperlinking used in LT XML, we
see that:

(1) There is no need to break up a document into smaller chunks as the DBMS 10 in the
document manager can deal efficiently with large data sets and visualisation tools can
give intelligible views into this data.

(2) To cross-refer between annotations is a matter of citing ID numbers (which are them-
selves indexes into DB records and can be used for efficient data access). It is also
possible to have implicit links: simple API calls will find all the token annotations sub-
sumed by a sentence annotation, for example, via their respective byte ranges without
any need for additional cross-referencing information.

Another disadvantage of embedded markup compared with TIPSTER is that an SGML
structure like <w id=p4.w1> has to be parsed in order to extract the fact that we have a
“w” tag whose “id” attribute is “p4.w1”. A TIPSTER annotation is effectively a database
record with separate fields for type (e.g. “w”), ID and other attributes, all of which may be
indexed and none of which ever requires parsing.

10 DataBase Management System.
20

There are three principal disadvantages of the TIPSTER approach.

(1) Editing of texts requires offset recalculation.
(2) TIPSTER specifies no interchange format, and TIPSTER data is weakly typed (there

is no effective DTD mechanism; though this is also to an extent an advantage, as a
complex typing scheme can inhibit unskilled users).

(3) The reference classes can introduce brittleness in face of changing data: unless an ap-
plication chases all references and updates them in face of changes in the objects they
point to, the data can become inconsistent.

(The latter problem also applies to hyperlinking in embedded markup.)

5.3.3 Reference Annotation (II): LDC

The Linguistic Data Consortium (LDC) have proposed the use of Directed Acyclic Graphs
(DAGs), or just Annotation Graphs (AGs), as a unified data structure for text and speech
annotation Bird et al. (2000b). Bird and Liberman (1999b) provides an example of using
these graphs to to mark up discourse-level objects. This section compares the structure of
TIPSTER annotations with the graph format.

TIPSTER annotations as discussed above are associated with documents and have:

• a type, which is a string;
• an ID, which is a string unique amongst annotations on the document;
• a set of spans that point into the text of the document;
• a set of attributes.

TIPSTER attributes, which are associated with annotations and with documents and col-
lections of documents have:

• a name, which is a string;
• a value, which may be one of several data types including a string, a reference to annota-

tion, document or collection, or a set of strings or references.

Some implementors of the architecture, including GATE and Corelli, have relaxed the type
requirements on attribute values, allowing any object as a value. This has the advantage
of flexibility and the disadvantage that viewing, editing and storage of annotations is made
more complex.

TIPSTER explicitly models references between annotations with special reference classes.
These rely on annotations, documents and collections of documents having unique identifiers.

LDC annotations are arcs in a graph whose nodes are time points (or, by extension, character
offsets in a text). Each annotation has a type and a value, which are both atomic. A document
may have a number of different graphs, and graphs can be associated with more than one
document; this is not specified in the model.

21

There are no explicit references. References are handled implicitly by equivalence classes: if
two annotations share the same type and value, they are considered coreferential. In order to
refer to particular documents or other objects, an application or annotator must choose some
convention for representing those references as strings, and use those as annotation values.
This seems problematic: an annotation of type CoreferenceChain and value Chain23 should
be equivalent to another of the same type and value, but this is not true for an annotation
of type PartOfSpeech and value Noun.

LDC annotation values are atomic. Any representation of complex data structures must
define its own reference structure to point into some other representation system.

TIPSTER is a richer formalism, both in terms of the complexity of the annotation/attribute
part of the model and also because documents and collections of documents are an explicit
part of the model, as are references between all these objects.

The inherent problems with developing a model of a task to be solved in software in iso-
lation from the development of instances of that software are evident in Cassidy and Bird
(2000), where the properties of the LDC AG model when stored and indexed in a relational
database are discussed. At this point the authors added identifier fields to annotations to
allow referencing without the equivalent class notion.

5.3.4 Reference Annotation (III): GATE

GATE version 2 has a reference annotation model that was designed to combine the advan-
tages of the TIPSTER and LDC models:

• annotation sets are more explicitly graph-based. This allows increased efficiency of traver-
sal and simpler editing because offsets are moved from the annotations into a separate node
object. Also the offsets can be both character and time offsets, thus enabling annotation
of multimodal data;

• multiple annotation sets are allowed on documents. Consider the situation when two peo-
ple are adding annotation to the same document, and later wish to compare and merge
their results. TIPSTER would handle this by having an “annotator” attribute on all the
annotations. It is much simpler to have disjoint sets.

• documents and collections are an essential part of the model, and information can be
associated with them in similar fashion to that on annotations;

• all annotations have unique identifiers to allow for referencing;
• an annotation only has two nodes, which means that the multiple-span annotations of

TIPSTER are no longer supported (the workaround is to store non-contiguous data struc-
tures as features of the document, and point from there to the multiple annotations that
make up the structures);

• the annotation values are extensible, i.e., any classes of object can be added to the model
and be associated with annotations.

22

In addition, both LDC and TIPSTER need an annotation meta-language, to describe for
purposes of validation or configuration of viewing and editing tools the structure and permis-
sible value set of annotations. GATE uses the XML Schema language supported by W3C as
an annotation meta-language Cunningham et al. (2002b). These annotation schemas define
what attributes and optionally what values are permissible for each type of annotation (e.g.,
part-of-speech, named entity). For instance, a chosen tag set can be specified as permissi-
ble values for all part-of-speech annotations. This meta-information enables the annotation
tools to control the correctness of the user input, thus making it easier to enforce annotation
standards.

5.4 Data About Language

Preceding sections described language data – information related directly to examples of
human performance of language. This section considers work on data about language, or
description of human language competence. Much work in this area has concentrated on
formalisms for the representation of the data, and has advocated declarative, constraint-
based representations (using feature-structure matrices manipulated under unification) as
an appropriate vehicle with which “many technical problems in language description and
computer manipulation of language can be solved” Shieber (1992). One example of an in-
frastructure project based on Attribute-Value Matrices (AVMs) is ALEP – the Advanced
Language Engineering Platform. ALEP aims to provide “the NLP research and engineering
community in Europe with an open, versatile, and general-purpose development environ-
ment” Simkins (1992, 1994); Eriksson (1996). ALEP, while in principle open, is primarily an
advanced system for developing and manipulating feature structure knowledge-bases under
unification. Also provided are several parsing algorithms, algorithms for transfer, synthesis
and generation Schütz (1994). As such, it is a system for developing particular types of LR
(e.g. grammars, lexicons) and for doing a particular set of tasks in LE in a particular way.

The system, despite claiming to use a theory-neutral formalism (in fact an HPSG-like for-
malism), is still committed to a particular approach to linguistic analysis and representation.
It is clearly of utility to those in the LE community using that class of theories and to whom
those formalisms are relevant; but it excludes, or at least does not actively support, those
who are not, including an increasing number of researchers committed to statistical and
corpus-based approaches.

Other systems that use AVMs include: Zajac (1992), a framework for defining NLP systems
based on AVMs; the Eurotra architecture Schütz et al. (1991): an ‘open and modular’ archi-
tecture for MT promoting resource reuse; the DATR morphological lexicon formalism Evans
and Gazdar (1996); the Shiraz MT Architecture Amtrup (1999), a chart and unification-
based architecture for MT; Zajac (1998a), a unified FST/AVM formalism for morphological
lexicons; the RAGS architecture (see below).

A related issue is that of grammar development in an LE context – see Netter and Pianesi
(1997); Estival et al. (1997). Fischer et al. (1996) presents an abstract model of Thesauri

23

and terminology maintenance in an OO framework. ARIES Goni et al. (1997) is a formalism
and development tool for Spanish morphological lexicons.

The RAGS (Reference Architecture for Generation Systems) project Cahill et al. (1999b,a)
has concentrated on describing structures that may be shared amongst NLG component
interfaces. This choice is motivated by the fact that the input to a generator is not a document
but a meaning representation. RAGS describes component I/O using a nested feature matrix
representation, but doesn’t describe the types of LR that an NLG system may use, or the
way in which components may be represented, loaded, etc. More recently Mellish et al.
(2004) present the RAGS conceptual framework, while Mellish and Evans (2004) discuss the
implementation of this framework in several experimental systems, and how these systems
illustrate a range of wider issues for the construction of SALE for generation.

5.5 Indexing and Retrieval

Modern corpora, and annotations upon them, frequently run to many millions of tokens. To
enable efficient access to this data the tokens and annotation structures must be indexed.
In the case of raw corpora, this problem equates to Information Retrieval (IR; aka docu-
ment detection), a field with a relatively well-understood set of techniques based on treating
documents as bags of stemmed words and retrieving based on relative frequency of these
terms in documents and corpora – see for example van Rijsbergen (1979). Although these
processes are well understood and relatively static, nevertheless IR is an active research field,
partly because existing methods are imperfect and partly because that imperfection becomes
more and more troubling in face of the explosion of the Web. There have been a number of
attempts to provide SALE systems in this context.

As noted above, the TIPSTER programme developed a reference model of typical IR com-
ponent sets TIPSTER (1995). More concretely, this programme also developed a commu-
nication protocol based on Z39.50 for detection interactions between querying application
and search engine Buckley (1998). The annotation and attribute data structures described
in section 5.3.2 were also applied for IR purposes, though the practical applications of the
architecture were found in general to be too slow for the large data sets involved.

GATE Cunningham et al. (2002b,a) uses an extendable, open-source IR engine, Lucene, in
order to index documents and corpora for full-text retrieval. Lucene also allows indexing
and retrieval by custom-provided fields like annotations. The model used to wrap Lucene in
GATE is designed for extensibility to other IR systems when required.

Whereas the problem of indexing and retrieving documents is well understood, the problem
of indexing complex structures in annotations is more of an open question. The Corpus
Query System Christ (1994, 1995) is the most cited source in this area, providing indexing
and search of corpora and later of WordNet. Similar ideas have been implemented in CUE
Mason (1998) for indexing and search of annotated corpora, and at the W3-Corpora site
University of Essex (1999) for searchable on-line annotated corpora. Some work on indexing

24

in the LT XML system is reported in McKelvie and Mikheev (1998). Bird et al. (2000a)
propose a query language for the LDC annotation graph model, called AGQL. Cassidy
(2002) discusses the use of XQuery as an annotation query language and concludes that it is
good for dealing with hierarchical data models like XML, but needs extending with better
support for sequential data models like annotation graphs.

GATE indexes and retrieves annotations by storing them in a relational database, indexed
by type, attributes and their values. In this way, it is possible to retrieve all documents that
contain a given attribute and/or value or retrieve all annotations of a given type in a corpus,
without having to traverse each document separately Cunningham et al. (2002b); Bontcheva
et al. (2002). The query language used is SQL.

6 Recent Trends and Future Directions

As has become evident from the work reviewed here, there are many tools and architectures,
many of them focused on sub-areas of NLP (e.g., dialog, speech) or specific formalisms (e.g.
HPSG). Each of these infrastructures offers specialised solutions, so it is not likely that
there will ever be only one, universal architecture or infrastructure. Instead, the focus in
recent work has been on inter-operability – allowing infrastructures to work together – and
reusability – enabling users to reuse and adapt tools with a minimum effort. We will review
some of these new trends here to see how they are likely to influence the next period of
research on SALE.

6.1 Towards multipurpose repositories

In order to support reusability of resources, a number of repositories have been established,
some describing NLP tools e.g., ACL Natural Language Software Registry, and others dis-
tributing Language Resources like corpora and lexicons, e.g, ELRA and LDC. To date these
repositories have remained largely independent of each other, with the exception of reposi-
tories like TRACTOR Martin (2001), which contain both corpora in a number of languages
and specialised tools for corpus analysis.

As argued in Declerck (2001), there is a need for linking the two kinds of repositories in order
to allow corpus researchers find the tools they need to process corpora and vice versa. The
idea is to create a multipurpose infrastructure for the storage and access of both language
data and the corresponding processing resources. One of the cornerstones of such an infras-
tructure is metadata, associated with each resource and pointing at other relevant resources,
e.g., tools pointing at the language data that they need and can process. In the following sec-
tion, we discuss recent research on metadata descriptions for tools and Language Resources,
including handling of multimodal and multilingual data.

25

6.2 Resource Metadata and Annotation Standards

As discussed in section 4.3, there are a number of reasons why metadata should be part of
a component infrastructure, i.e., why it is useful beyond the more narrow scope of providing
descriptions of resources in a repository. One dimension that affects the kinds of metadata
needed to describe resources is their type, e.g., whether they are documents in a corpus,
a lexicon, or a tool working on language data. For example, the ISLE Computational Lex-
icon working group has defined a modular architecture, called MILE, designed to factor
out linguistically independent primitive units of lexical information, deal with monolingual,
bilingual and multilingual lexicons, and avoid theoretical bias Calzolari et al. (2001). Some
of these desiderata are relevant also to the problem of resource distribution, as discussed
in section 5.1 and Cunningham et al. (2000). Multimedia/multimodal Language Resources
(MMLR) pose a different set of problems and existing standards for tagging textual doc-
uments (e.g., XCES Ide et al. (2000)) are not sufficient. Broeder and Wittenburg (2001)
provide a metadata vocabulary for MMLR, which encodes information related to the media
files (e.g., format and size) and the annotation units used (e.g., part-of-speech), as well as
the basic information on creator, content, etc.

Another aspect of improving resource reusability and interoperability is the development of
standards for encoding annotation data. Ide and Romary (2002) describes a framework for
linguistic annotations based on XML and the XML-based RDF and DAML+OIL standards
for defining the semantics of the annotations. This provides a link with recent work on formal
ontologies and the Semantic Web and enables the use of the related knowledge management
tools to support linguistic annotation. For example, Collier et al. (2002) use the popular
Protégé ontology editor as a basis of an annotation tool capable of producing RDF(S)
annotations of language data in multiple languages.

6.3 Open Archives

One of the new research directions has been towards open archives – archives aiming to make
resources easily discoverable, accessible and identifiable. This not only includes Language
Resources like corpora and lexicons but also software tools, i.e. processing resources and
development environments. Resource discovery is made possible by meta-data associated
with each resource and made available in a centralised repository. The recently established
Open Language Archives Community (OLAC) Bird et al. (2002); Bird and Simons (2001)
aims at creating a world-wide virtual library of Language Resources, through development
of interoperating repositories and tools for their maintenance and access. OLAC also aims at
establishing and promoting best practice in archiving for Language Resources. The OLAC
infrastructure is based on two initiatives from digital library research – the Open Archives
Initiative (www.openarchives.org) and the Dublin Core initiative for resource metadata
(dublincore.org). Currently OLAC comprises 12 archives with a cross-archive searching
facility.

26

As argued in Wynne (2002), the current trends towards multilinguality and multimodality
suggest that the Language Resources of the future will span across languages and modalities,
will be distributed over many repositories and form virtual corpora, supported by a diverse
set of linguistic analysis and searching tools. As already discussed in the previous section,
metadata and annotation standards play a very important role here. The other major chal-
lenge lies in making existing processing resources accessible over the Web and enhance their
reusability and portability. This is where we look next.

6.4 Component Reusability, Distributed Access and Execution

In order to enable virtual corpora and collaborative annotation efforts spanning country
boundaries, software infrastructures and tools need to control user access to different docu-
ments, types of annotations, and metadata. Ma et al. (2002) discuss how this can be achieved
by using a shared relational database as a storage medium, combined with a number of an-
notation tools based on the annotation graph formalism discussed in section 5.3.3. The same
approach has been taken in GATE Cunningham et al. (2002b) where all Language Resources
and their associated annotations can be stored in Oracle or PostgreSQL. This enables users
to access remote LRs, index LRs by their annotations, and construct search queries retrieving
LRs given annotations or metadata constraints (e.g., find all documents that contain person
entities called Bush). User access is controlled at individual and group level, with read/write
access rights specified at LR creation time by their owner (the user who has first stored the
LR in the database). Since the storage mechanisms in GATE are separate from the API used
for accessing LRs and annotations, the visualisation tools and processing resources work on
both local and remote data in the same way. Ma et al. (2002) discuss a special version of
AGTK TableTrans tool created to work with the database annotations. In addition, GATE’s
database storage model supports other LRs like lexicons and ontologies.

The recent development of web services enables integration of different information reposi-
tories and services across the Internet and offers a new way of sharing Language Resources
across the Internet. Dalli (2002) discusses an architecture for Web-based interoperable LRs
based on SOAP and Web services. (Work in progress extends this approach to processing
resource execution in the context of on-line adaptive Information Extraction – see Tablan
et al. (2003).) Both make extensive use of XML for metadata description. However, the
benefits of the relational database storage mechanism can still be maintained by providing
a conversion layer, which transforms the stored LRs and annotations into the desired XML
format when needed. Similarly, Todirascu et al. (2002) describe an architecture that uses
SOAP to provide distributed processing resources as services on the net, both as a protocol
for message passing and a mechanism for executing remote modules from the client.

Bontcheva et al. (2004) report recent work in upgrading GATE to meet challenges posed
by research in semantic web, large-scale digital libraries and machine learning for language
analysis.

Popov et al. (2004) present an application that combines several SALE systems, including
27

GATE and Sesame 11 , to create a platform for semantic annotation called KIM (Knowledge
and Information Management). The paper covers a number of issues relating to architecting
scaleable ontology-based Information Extraction.

6.5 Measurement

A persistent theme of SALE work has been measurement, quantitative evaluation and the
relationship between engineering practice and scientific theory. To quote Kelvin:

When you can measure what you are speaking about, and express it in numbers, you
know something about it; but when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory kind: it may be the beginning
of knowledge, but you have scarcely in your thoughts advanced to the stage of science.
(Lord Kelvin (William Thomson), in a lecture to the Institution of Civil Engineers, London,
3 May 1883.)

On the other hand, Einstein tells us:

Not everything that counts can be counted, and not everything that can be counted counts.
(Albert Einstein, from a sign hanging in his office at Princeton University.)

Researchers have taken similarly varied approaches to measurement, both of component
systems developed using SALE systems and of the success of those systems themselves. The
presentation of IBM’s TEXTRACT architecture by Neff et al. (2004) includes an illustration
of how the same mechanism can be used for producing both quantitative metrics and for
visual feedback to users of the results of automated processing.

Ferrucci and Lally (2004) report a successor to TEXTRACT called UIMA (Unstructured
Information Managment Architecture), which is in active development to support the work
of several hundred research and development staff working in areas as diverse as question an-
swering and machine translation. The significant commitment of IBM to SALE development
indicates the success of the TEXTRACT concept, and of architectural support for language
processing research.

7 Prognosis

The principal defining characteristic of NLE work is its objective: to engineer products
which deal with natural language and which satisfy the constraints in which they have
to operate. This definition may seem tautologous or a statement of the obvious to an
engineer practising in another, well established area (e.g. mechanical or civil engineering),
but is still a useful reminder to practitioners of software engineering, and it becomes

11 http://www.openrdf.org/

28

near-revolutionary when applied to natural language processing. This is partly because of
what, in our opinion, has been the ethos of most Computational Linguistics research. Such
research has concentrated on studying natural languages, just as traditional Linguistics
does, but using computers as a tool to model (and, sometimes, verify or falsify) fragments
of linguistic theories deemed of particular interest. This is of course a perfectly respectable
and useful scientific endeavour, but does not necessarily (or even often) lead to working
systems for the general public. Boguraev et al. (1995.)

Working systems for public consumption require qualities of robustness that are unlikely
to be achieved at zero cost as part of the normal development of experimental systems
in language computation research Maynard et al. (2002). Investing the time and energy
necessary to create robust reusable software is not always the right thing to do, of course –
sometimes what is needed is a quick hack to explore some simple idea with as little overhead
as possible. To conclude that this is always the case is a rather frequent error, however, and
this is of particular concern at a time when web-scale challenges to language processing are
common.

Also problematic for SALE is the fact that it is not always easy to justify the costs of engi-
neered systems when developers of more informal and short-term solutions have been known
to make claims for their power and generality that are, shall we say, somewhat optimistic. 12 .
The fact that the majority of the language processing field has, as we write this in the mid-
naughties, used a SALE system of one type or another indicates that this has been a fruitful
pursuit.

References

Amtrup, J., 1995. ICE – INTARC Communication Environment User Guide and Reference
Manual Version 1.4. Tech. rep., University of Hamburg.

Amtrup, J., 1999. Architecture of the Shiraz Machine Translation System,
http://crl.nmsu.edu/shiraz/archi.html.

Artola, X., de Ilarraza, A. D., Ezeiza, N., Gojenola, K., Hernández, G., Soroa, A., 2002.
A Class Library for the Integration of NLP Tools: Definition and implementation of an
Abstract Data Type Collection for the manipulation of SGML documents in a context of
stand-off linguistic annotation. In: Proceedings of LREC 2002 Third International Con-
ference on Language Resources and Evaluation. Las Palmas, Canary Islands - Spain, pp.
1650–1657.

Berners-Lee, T., Connolly, D., Swick, R., 1999. Web Architecture: Describing and Exchanging
Data. Tech. rep., W3C Consortium, http://www.w3.org/1999/04/WebData.

Bird, S., Buneman, P., Tan, W., 2000a. Towards a query language for annotation graphs. In:

12 How to revolutionise distributed programming, the easy way: Monday: ‘I heard someone mention
the Grid. What is this Grid thing?’ Tuesday (to PhD student): ‘Can you put a SOAP interface
on that?’ Wednesday (giving a talk): ‘Our IE system is fully distributed, with a Grid-based
architecture.’

29

Proceedings of the Second International Conference on Language Resources and Evalua-
tion. Athens.

Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun, C., Liberman, M., 2000b. ATLAS: A
flexible and extensible architecture for linguistic annotation. In: Proceedings of the Second
International Conference on Language Resources and Evaluation. Athens.

Bird, S., Liberman, M., 1999a. A Formal Framework for Linguistic Annotation. Technical
Report MS-CIS-99-01, Department of Computer and Information Science, University of
Pennsylvania, http://xxx.lanl.gov/abs/cs.CL/9903003.

Bird, S., Liberman, M., 1999b. Annotation graphs as a framework for multidimensional lin-
guistic data analysis. In: Towards Standards and Tools for Discourse Tagging, Proceedings
of the Workshop. ACL-99. pp. 1–10.

Bird, S., Simons, G., 2001. The olac metadata set and controlled vocabularies. In: Proceedings
of the ACL 2001 Workshop on Sharing Tools and Resources. pp. 27–38.

Bird, S., Uszkoreit, H., Simons, G., 2002. The open language archives community. In: Pro-
ceedings of 3rd Language Resources and Evaluation Conference (LREC’2002). Gran Ca-
naria, Spain.

Boguraev, B., Garigliano, R., Tait, J., 1995. Editorial. Natural Language Engineering. 1,
Part 1.

Boitet, C., Seligman, M., 1994. The “Whiteboard” Architecture: A Way to Integrate Het-
erogeneous Components of NLP Systems. In: Proceedings of COLING ’94. Kyoto, Japan,
pp. 426–430.

Bontcheva, K., Cunningham, H., Tablan, V., Maynard, D., Saggion, H., 2002. Developing
Reusable and Robust Language Processing Components for Information Systems using
GATE. In: Proceedings of the 3rd International Workshop on Natural Language and In-
formation Systems (NLIS’2002). IEEE Computer Society Press, Aix-en-Provence, France.

Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H., 2004. Evolving GATE to Meet
New Challenges in Language Engineering. Natural Language Engineering 10 (3/4), 349—
373.

Booch, G., 1994. Object-Oriented Analysis and Design 2nd Edn. Benjamin/Cummings.
Bos, J., Rupp, C., Buschbeck-Wolf, B., Dorna, M., 1998. Managing information at linguistic

interfaces. In: Proceedings of the 36th ACL and the 17th COLING (ACL-COLING ’98).
Montreal, pp. 160–166.

Brand, S., 1994. How Buildings Learn. Penguin, London.
Brew, C., McKelvie, D., Tobin, R., Thompson, H., Mikheev, A., 1999. The XML Library LT

XML version 1.1 User documentation and reference guide. Language Technology Group,
Edinburgh, http://www.ltg.ed.ac.uk/.

Brill, E., 1992. A simple rule-based part-of-speech tagger. In: Proceedings of the Third Con-
ference on Applied Natural Language Processing. Trento, Italy.

Broeder, D., Wittenburg, P., 2001. Multimedia language resources. In: Proceedings of the
ACL 2001 Workshop on Sharing Tools and Resources. pp. 47–51.

Brown, P., Cocke, J., Pietra, S. D., Pietra, V. D., Jelinek, F., Lafferty, J., Mercer, R.,
Roossin, P., 1990. A Statistical Approach to Machine Translation. Computational Lin-
guistics 16 (June), 79–85.

Brugman, H., Russel, A., Wittenburg, P., Piepenbrock, R., 1998a. Corpus-based Research

30

using the Internet. In: Workshop on Distributing and Accessing Linguistic Resources.
Granada, Spain, pp. 8–15, http://www.dcs.shef.ac.uk/~hamish/dalr/.

Brugman, H., Russel, H., Wittenburg, P., 1998b. An infrastructure for collaboratively
building and using multimedia corpora in the humaniora. In: Proceedings of the ED-
MEDIA/ED-TELECOM Conference. Freiburg.

Buckley, C., 1998. TIPSTER Advanced Query (DN2), tIPSTER programme working paper.
Burnard, L., May 1995. Users Reference Guide for the British National Corpus,

http://info.ox.ac.uk/bnc/.
Busemann, S., Apr. 1999. Constraint-Based Techniques for Interfacing Software Modules.

In: Proceedings of the AISB’99 Workshop on Reference Architectures and Data Standards
for NLP. The Society for the Study of Artificial Intelligence and Simulation of Behaviour,
Edinburgh.

Cahill, L., Doran, C., Evans, R., Mellish, C., Paiva, D., Reape, M., Scott, D., Tipper, N.,
1999a. Towards a Reference Architecture for Natural Language Generation Systems. Tech.
Rep. ITRI-99-14; HCRC/TR-102, University of Edinburgh and Information Technology
Research Institute, Edinburgh and Brighton.

Cahill, L., Doran, C., Evans, R., Paiva, D., Scott, D., Mellish, C., Reape, M., Apr. 1999b.
Achieving Theory-Neutrality in Reference Architectures for NLP: To What Extent is it
Possible/Desirable? In: Proceedings of the AISB’99 Workshop on Reference Architectures
and Data Standards for NLP. The Society for the Study of Artificial Intelligence and
Simulation of Behaviour, Edinburgh.

Cahoon, B., McKinley, K., 1996. Performance Evaluation of a Distributed Architecture for
Information Retrieval. In: Proceedings of SIGIR ’96. Zurich, pp. 110–118.

Calzolari, N., Lenci, A., Zampolli, A., 2001. International standards for multilingual resource
sharing: The isle computational lexicon working group. In: Proceedings of the ACL 2001
Workshop on Sharing Tools and Resources. pp. 39–46.

Carreras, X., Padró, L., 2002. A Flexible Distributed Architecture for Natural Language
Analyzers. In: Proceedings of the LREC 2002 Third International Conference on Language
Resources and Evaluation. Las Palmas, Canary Islands - Spain, pp. 1813–1817.

Cassidy, S., 2002. Xquery as an annotation query language: a use case analysis. In: Proceed-
ings of 3rd Language Resources and Evaluation Conference (LREC’2002). Gran Canaria,
Spain.

Cassidy, S., Bird, S., 2000. Querying databases of annotated speech. In: Eleventh Aus-
tralasian Database Conference. Australian National University, Canberra.

Cassidy, S., Harrington, J., 2001. Multi-level annotation in the Emu speech database man-
agement system. Speech Communication 33, 61–77.

Cheong, T., Kwang, A., Gunawan, A., Loo, G., Qwun, L., Leng, S., 1994. A Pragmatic
Information Extraction Architecture for the Message Formatting Export (MFE) System.
In: Proceedings of the 2nd Singapore Conference on Intelligent Systems (SPICIS ’94).
Singapore, pp. B371–B377.

Christ, O., 1994. A Modular and Flexible Architecture for an Integrated Corpus Query
System. In: Proceedings of the 3rd Conference on Computational Lexicography and Text
Research (COMPLEX ’94). Budapest, http://xxx.lanl.gov/abs/cs.CL/9408005.

Christ, O., 1995. Linking WordNet to a Corpus Query System. In: Proceedings of the Con-

31

ference on Linguistic Databases. Groningen.
Clements, P., Northrop, L., 1996. Software Architecture: An Executive Overview. Tech. Rep.

CMU/SEI-96-TR-003, Software Engineering Institute, Carnegie Mellon University.
Collier, N., Takeuchi, K., Nobata, C., Fukumoto, J., Ogata, N., 2002. Progress on multi-

lingual named entity annotation guidelines using rdf(s). In: Proceedings of the 3rd Lan-
guage Resources and Evaluation Conference (LREC’2002). Gran Canaria, Spain.

Cunningham, H., 1999. A Definition and Short History of Language Engineering. Journal of
Natural Language Engineering 5 (1), 1–16.

Cunningham, H., 2000. Software Architecture for Language Engineering. Ph.D. thesis, Uni-
versity of Sheffield, http://gate.ac.uk/sale/thesis/.

Cunningham, H., 2002. GATE, a General Architecture for Text Engineering. Computers and
the Humanities 36, 223–254.

Cunningham, H., Bontcheva, K., Peters, W., Wilks, Y., September 2000. Uniform language
resource access and distribution in the context of a General Architecture for Text Engi-
neering (GATE). In: Proceedings of the Workshop on Ontologies and Language Resources
(OntoLex’2000). Sozopol, Bulgaria, http://gate.ac.uk/sale/ontolex/ontolex.ps.

Cunningham, H., Freeman, M., Black, W., 1994. Software Reuse, Object-Oriented Frame-
works and Natural Language Processing. In: New Methods in Language Processing
(NeMLaP-1), September 1994. (Re-published in book form 1997 by UCL Press), Manch-
ester.

Cunningham, H., Gaizauskas, R., Humphreys, K., Wilks, Y., Apr. 1999. Experience with a
Language Engineering Architecture: Three Years of GATE. In: Proceedings of the AISB’99
Workshop on Reference Architectures and Data Standards for NLP. The Society for the
Study of Artificial Intelligence and Simulation of Behaviour, Edinburgh.

Cunningham, H., Humphreys, K., Gaizauskas, R., Wilks, Y., Mar. 1997. Software Infrastruc-
ture for Natural Language Processing. In: Proceedings of the 5th Conference on Applied
Natural Language Processing (ANLP-97). http://xxx.lanl.gov/abs/cs.CL/9702005.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., 2002a. GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications. In:
Proceedings of the 40th Anniversary Meeting of the Association for Computational Lin-
guistics (ACL’02).

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Ursu, C., 2002b. The GATE User
Guide. http://gate.ac.uk/.

Cunningham, H., Peters, W., McCauley, C., Bontcheva, K., Wilks, Y., 1998. A Level Playing
Field for Language Resource Evaluation. In: Workshop on Distributing and Accessing
Lexical Resources at Conference on Language Resources Evaluation, Granada, Spain.

Cunningham, H., Scott, D., 2004. Introduction to the Special Issue on Software Architecture
for Language Engineering. Natural Language Engineering.

Dalli, A., 2002. Creation and evaluation of extensible language resources for maltese. In:
Proceedings of 3rd Language Resources and Evaluation Conference (LREC’2002). Gran
Canaria, Spain.

Declerck, T., 2001. Introduction: Extending nlp tools repositories for the interaction with
language data resource repositories. In: Proceedings of the ACL 2001 Workshop on Sharing
Tools and Resources. pp. 3–6.

32

DFKI, 1999. The Natural Language Software Registry, http://www.dfki.de/lt/registry/.
EAGLES, 1999. EAGLES recommendations, http://www.ilc.pi.cnr.it/-

EAGLES96/browse.html.
Edmondson, W., Iles, J., 1994. A Non-linear Architecture for Speech and Natural Language

Processing. In: Proceedings of International Conference on Spoken Language Processing
(ICSLP ’94). Vol. 1. Yokohama, Japan, pp. 29–32.

Eriksson, M., 1996. ALEP, http://www.sics.se/humle/projects/svensk/platforms.html.
Erman, L., Hayes-Roth, F., Lesser, V., Reddy, D., 1980. The Hearsay II speech understanding

system: integrating knowledge to resolve uncertainty. Computing Surveys 12.
Estival, D., Lavelli, A., Netter, K., Pianesi, F. (Eds.), Jul. 1997. Computational Environments

for Grammar Development and Linguistic Engineering. Association for Computational
Linguistics, madrid, ACL-EACL’97.

Evans, R., Gazdar, G., 1996. DATR: A Language for Lexical Knowledge Representation.
Computational Linguistics 22 (1).

Ferrucci, D., Lally, A., 2004. UIMA: An Architectural Approach to Unstructured Information
Processing in the Corporate Research Environment. Natural Language Engineering.

Fikes, R., Farquhar, A., 1999. Distributed Repositories of Higly Expressive Reusable Ontolo-
gies. IEEE Intelligent Systems 14 (2), 73–79.

Fischer, D., Mohr, W., Rostek, L., 1996. A Modular, Object-Oriented and Generic Approach
for Building Terminology Maintenance Systems. In: TKE ’96: Terminology and Knowledge
Engineering. Frankfurt, pp. 245–258.

Gaizauskas, R., Wilks, Y., 1998. Information Extraction: Beyond Document Retrieval. Jour-
nal of Documentation 54 (1), 70–105.

Goldfarb, C., Prescod, P., 1998. The XML Handbook. Prentice Hall, New York.
Goldfarb, C. F., 1990. The SGML Handbook. Oxford University Press.
Goni, J., Gonzalez, J., Moreno, A., 1997. ARIES: A lexical platform for engineering Spanish

processing tools. Journal of Natural Language Engineering 3 (4), 317–347.
Görz, G., Kessler, M., Spilker, J., Weber, H., 1996. Research on Architectures for Integrated

Speech/Language Systems in Verbmobil. In: Proceedings of COLING-96. Copenhagen.
Grishman, R., 1997. TIPSTER Architecture Design Document Version 2.3. Tech. rep.,

DARPA, http://www.itl.nist.gov/div894/894.02/related projects/tipster/.
Hendler, J., Stoffel, K., 1999. Back-End Technology for High-Performance Knowledge Rep-

resentation Systems. IEEE Intelligent Systems 14 (3), 63–69.
Herzog, G., Ndiaye, A., Merten, S., Kirchmann, H., Becker, T., Poller, P., 2004. Large-

Scale Software Integration for Spoken Language and Multimodal Dialog Systems. Natural
Language Engineering.

Hobbs, J., 1993. The Generic Information Extraction System. In: Proceedings of the
Fifth Message Understanding Conference (MUC-5). Morgan Kaufmann, California,
http://www.itl.nist.gov/div894/894.02/related projects/tipster/gen ie.htm.

Ibrahim, M., Cummins, F., 1989. TARO: An Interactive, Object-Oriented Tool for Build-
ing Natural Language Systems. In: IEEE International Workshop on Tools for Artificial
Intelligence. Los Angeles, pp. 108–113.

Ide, N., 1998. Corpus Encoding Standard: SGML Guidelines for Encoding Linguistic Cor-
pora. In: Proceedings of the First International Language Resources and Evaluation Con-

33

ference. Granada, Spain, pp. 463–470.
Ide, N., Bonhomme, P., Romary, L., 2000. XCES: An XML-based Standard for Linguistic

Corpora. In: Proceedings of the Second International Language Resources and Evaluation
Conference (LREC). Athens, Greece, pp. 825–830.

Ide, N., Romary, L., 2002. Standards for language resources. In: Proceedings of 3rd Language
Resources and Evaluation Conference (LREC’2002). Gran Canaria, Spain.

Ide, N., Romary, L., 2004. Standards for language resources. Natural Language Engineering.
Jing, H., McKeown, K., 1998. Combining Multiple, Large-Scale Resources in a Reusable

Lexicon for Natural Language Generation. In: Proceedings of the 36th ACL and the 17th
COLING (ACL-COLING ’98). Montreal, pp. 607–613.

Kay, M., Gawron, J., Norvig, P., 1994. Verbmobil, A Translation System for Face-to-Face
Dialog. CSLI, Stanford, CA.

Koning, J., Stefanini, M., Deamzeau, Y., 1995. DAI Interaction Protocols as Control Strate-
gies in a Natural Language Processing System. In: Proceedings of IEEE Conference on
Systems, Man and Cybernetics.

Lassila, O., Swick, R., 1999. Resource Description Framework (RDF) Model and
Syntax Specification. Tech. Rep. 19990222, W3C Consortium, http://www.w3.org/-

TR/REC-rdf-syntax/.
Lavelli, A., Pianesi, F., Maci, E., Prodanof, I., Dini, L., Mazzini, G., 2002. SiSSA: An infras-

tructure for developing nlp applications. In: Proceedings of 3rd Language Resources and
Evaluation Conference (LREC’2002). Gran Canaria, Spain.

LREC-1, 1998. Conference on Language Resources Evaluation (LREC-1). Granada, Spain.
LuperFoy, S., Loehr, D., Duff, D., Miller, K., Reeder, F., Harper, L., 1998. An Architecture for

Dialogue Management, Context Tracking, and Pragmatic Adaptation in Spoken Dialogue
Systems. In: Proceedings of the 36th ACL and the 17th COLING (ACL-COLING ’98).
Montreal, pp. 794–801.

Ma, X., Lee, H., Bird, S., Maeda, K., 2002. Models and tools for collaborative annotation. In:
Proceedings of 3rd Language Resources and Evaluation Conference (LREC’2002). Gran
Canaria, Spain.

Macleod, C., Ide, N., Grishman, R., 2002. The American National Corpus: Standardized Re-
sources for American English. In: Proceedings of 2nd Language Resources and Evaluation
Conference (LREC). Athens, Greece, pp. 831–836.

Marcus, M., Santorini, B., Marcinkiewicz, M., 1993. Building a Large Annotated Corpus of
English: The Penn Treebank. Computational Linguistics 19 (2), 313–330.

Martin, W., 2001. An archive for all of europe. In: Proceedings of the ACL 2001 Workshop
on Sharing Tools and Resources. pp. 11–14.

Mason, O., 1998. The CUE Corpus Access Tool. In: Workshop on Distributing and Ac-
cessing Linguistic Resources. Granada, Spain, pp. 20–27, http://www.dcs.shef.ac.uk/-

~hamish/dalr/.
Maynard, D., Tablan, V., Cunningham, H., Ursu, C., Saggion, H., Bontcheva, K., Wilks,

Y., 2002. Architectural Elements of Language Engineering Robustness. Journal of Natural
Language Engineering – Special Issue on Robust Methods in Analysis of Natural Language
Data 8 (2/3), 257–274.

McClelland, J., Rumelhart, D., 1986. Parallel Distributed Processing. MIT Press, Cambridge,

34

MA.
McKelvie, D., Brew, C., Thompson, H., 1998. Using SGML as a Basis for Data-Intensive

Natural Language Processing. Computers and the Humanities 31 (5), 367–388.
McKelvie, D., Mikheev, A., 1998. Indexing SGML files using LT NSL, lT Index documenta-

tion, from http://www.ltg.ed.ac.uk/.
Mellish, C., Evans, R., 2004. Implementation Architectures for Natural Language Generation.

Natural Language Engineering.
Mellish, C., Scott, D., Apr. 1999. Workshop preface. In: Proceedings of the AISB’99 Work-

shop on Reference Architectures and Data Standards for NLP. The Society for the Study
of Artificial Intelligence and Simulation of Behaviour.

Mellish, C., Scott, D., Cahill, L., Evans, R., Paiva, D., Reape, M., 2004. A Reference Archi-
tecture for Generation Systems. Natural Language Engineering.

Miller (Ed.), G. A., 1990. WordNet: An on-line lexical database. International Journal of
Lexicography 3 (4), 235–312.

MITRE, 2002. Galaxy Communicator, http://communicator.sourceforge.net/.
Neff, M. S., Byrd, R. J., Boguraev, B. K., 2004. The Talent System: TEXTRACT Architec-

ture and Data Model. Natural Language Engineering.
Nelson, T., 1997. Embedded Markup Considered Harmful. In: Connolly, D. (Ed.), XML:

Principles, Tools and Techniques. O’Reilly, Cambridge, MA, pp. 129–134.
Netter, K., Pianesi, F., 1997. Preface. In: Proceedings of the Workshop on Computational

Environments for Grammar Development and Linguistic Engineering. Madrid, pp. iii–v.
Ogden, B., 1999. TIPSTER annotation and the Corpus Encoding Standard,

http://crl.nmsu.edu/Research/Projects/tipster/annotation.
Olson, M., Lee, B., 1997. Object Databases for SGML Document Management. In: IEEE

International Conference on Systems Sciences.
Petasis, G., Karkaletsis, V., Paliouras, G., Androutsopoulos, I., Spyropoulos, C., 2002. El-

logon: A new text engineering platform. In: Proceedings of 3rd Language Resources and
Evaluation Conference (LREC’2002). Gran Canaria, Spain.

Peters, W., Cunningham, H., McCauley, C., Bontcheva, K., Wilks, Y., 1998. Uniform Lan-
guage Resource Access and Distribution. In: Workshop on Distributing and Accessing
Lexical Resources at Conference on Language Resources Evaluation. Granada, Spain.

Poirier, H., 1999. The XeLDA Framework (presentation at Baslow workshop on Distribut-
ing and Accessing Linguistic Resources, Sheffield, 1999), http://www.dcs.shef.ac.uk/-

~hamish/dalr/baslow/xelda.pdf.
Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D., Goranov, M., 2004. KIM –

Semantic Annotation Platform. Natural Language Engineering.
Reiter, E., 1994. Has a Consensus NL Generation Architecture Appeared, and is it Psycholin-

guistically Plausible? In: Proceedings of the Seventh International Workshop on Natural
Language Generation (INLGW-1994). http://xxx.lanl.gov/abs/CS.cl/9411032.

Reiter, E., Apr. 1999. Are Reference Architectures Standardisation Tools or Descriptive
Aids? In: Proceedings of the AISB’99 Workshop on Reference Architectures and Data
Standards for NLP. The Society for the Study of Artificial Intelligence and Simulation of
Behaviour, Edinburgh.

Reiter, E., Dale, R., 2000. Building Natural Language Generation Systems. Cambridge Uni-

35

versity Press, Cambridge.
Rösner, D., Kunze, M., 2002. An XML-based document suite. In: Proceedings of the 19th

International Conference on Computational Linguistics (COLING’02). Taipei, Taiwan.
Schütz, J., Oct. 1994. Developing Lingware in ALEP. ALEP User Group News, CEC Lux-

emburg 1 (1).
Schütz, J., Thurmair, G., Cencioni, R., 1991. An Architecture Sketch of Eurotra-II. In: MT

Summit III. Washington D.C., pp. 3–11.
Shieber, S., 1992. Constraint-Based Grammar Formalisms. MIT Press, Cambridge, MA.
Simkins, N. K., 1992. ALEP User Guide, cEC Luxemburg.
Simkins, N. K., 1994. An Open Architecture for Language Engineering. In: First CEC Lan-

guage Engineering Convention. Paris.
Sperberg-McQueen, C., Burnard, L., 1994. Guidelines for Electronic Text Encoding and

Interchange (TEI P3). ACH, ACL, ALLC, http://etext.virginia.edu/TEI.html.
Sperberg-McQueen, C., Burnard, L. (Eds.), 2002. Guidelines for Electronic Text Encoding

and Interchange (TEI P4). The TEI Consortium.
Tablan, V., Bontcheva, K., Maynard, D., Cunningham, H., 2003. OLLIE: On-Line Learning

for Information Extraction. In: Proceedings of the HLT-NAACL Workshop on Software
Engineering and Architecture of Language Technology Systems. Edmonton, Canada.

Tablan, V., Ursu, C., Bontcheva, K., Cunningham, H., Maynard, D., Hamza, O., McEnery,
T., Baker, P., Leisher, M., 2002. A Unicode-based Environment for Creation and Use of
Language Resources. In: 3rd Language Resources and Evaluation Conference.

The Object Management Group, 1992. The Common Object Request Broker: Architecture
and Specification. John Wiley, New York.

TIPSTER, 1995. The Generic Document Detection System, http://www.itl.nist.gov/-

div894/894.02/related projects/tipster/gen ir.htm.
Todirascu, A., Kow, E., Romary, L., 2002. Towards reusable nlp components. In: Proceedings

of 3rd Language Resources and Evaluation Conference (LREC’2002). Gran Canaria, Spain.
Tracz, W., Mar. 1995. Domain-Specific Software Architecture (DSSA) Frequently Asked

Questions (FAQ), http://www.oswego.com/dssa/faq/faq.html.
University of Essex, 1999. Description of the W3-Corpora web-site,

http://clwww.essex.ac.uk/w3c/.
van Rijsbergen, C., 1979. Information Retrieval. Butterworths, London.
Veronis, J., Ide, N., Apr. 1996. Considerations for the Reusability of Linguistic Software.

Tech. rep., EAGLES, http://w3.lpl.univ-aix.fr/projects/multext/LSD/LSD1.html.
von Hahn, W., 1994. The Architecture Problem in Natural Language Processing. Prague

Bulletin of Mathematical Linguistics 61, 48–69.
Wolinski, F., Vichot, F., Gremont, O., 1998. Producing NLP-based On-line Contentware. In:

Natural Language and Industrial Applications. Moncton, Canada, http://xxx.lanl.gov/-
abs/cs.CL/9809021.

Wynne, M., 2002. The language resource archive of the 21st century. In: Proceedings of 3rd
Language Resources and Evaluation Conference (LREC’2002). Gran Canaria, Spain.

Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., Woodland, P., 1999. The HTK
Book (Version 2.2). Entropic Ltd., Cambridge, ftp://ftp.entropic.com/pub/htk/.

Yourdon, E., 1989. Modern Structured Analysis. Prentice Hall, New York.

36

Zajac, R., 1992. Towards Computer-Aided Linguistic Engineering. In: Proceedings of COL-
ING ’92. Nantes, France, pp. 828–834.

Zajac, R., 1997. An Open Distributed Architecture for Reuse and Integration of Heterogenous
NLP Components. In: Proceedings of the 5th conference on Applied Natural Language
Processing (ANLP-97).

Zajac, R., 1998a. Feature Structures, Unification and Finite-State Transducers. In: Inter-
national Workshop on Finite State Methods in Natural Language Processing. Ankara,
Turkey.

Zajac, R., 1998b. Reuse and Integration of NLP Components in the Calypso Architecture.
In: Workshop on Distributing and Accessing Linguistic Resources. Granada, Spain, pp.
34–40, http://www.dcs.shef.ac.uk/~hamish/dalr/.

37

	Introduction: Software Architecture
	Software Architectures for Language Engineering
	Categories of Work on SALE
	Processing Resources
	Locating and Loading
	Execution
	Metadata
	Commonalities

	Language Resources
	Programmatic Access
	Documents, Formats and Corpora
	Annotation
	Data About Language
	Indexing and Retrieval

	Recent Trends and Future Directions
	Towards multipurpose repositories
	Resource Metadata and Annotation Standards
	Open Archives
	Component Reusability, Distributed Access and Execution
	Measurement

	Prognosis

