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: GATECIoud.net: a Platform for Large-Scale,

2 Open-Source Text Processing on the Cloud

g Valentin Tablan, Ian Roberts, Hamish Cunningham, Kalina Bontcheva

13 University of Sheffield

14 Department of Computer Science

15 Regent Court, 211 Portobello, S1 4DP

16 Sheffield, United Kingdom

ig Cloud computing is increasingly being regarded as a key enabler of the “democratisation
19 of science”, since on-demand, highly scalable cloud computing facilities enable researchers
20 anywhere to carry out data-intensive experiments. In the context of Natural Language Processing
21 (NLP), algorithms tend to be complex, which makes their parallelisation and deployment on
22 cloud platforms a non-trivial task. This paper presents a new, unique cloud-based platform for
23 large-scale NLP research — GATECloud.net. It enables researchers to carry out data-intensive
24 NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud.
25 Important infrastructural issues are dealt with by the platform, completely transparently for the
26 researcher: load balancing, efficient data upload and storage, deployment on the virtual machines,
27 security, and fault tolerance. We also include a cost-benefit analysis and usage evaluation.

28

29

30

g; 1. Introduction

22 The continued growth of unstructured content and the availability of ever more powerful
35 computers has resulted in an increased need for researchers in diverse fields (e.g.
36 humanities, social sciences, bio-informatics) to carry out language processing and text
37 mining experiments on very large document collections (or corpora). An additional
38 impetus is the availability of key datasets, e.g. Wikipedia and Freebase snapshots,
39 which can help with experimental repeatability. Many of these datasets are impossible
40 to process in reasonable time on standard computers such as desktop machines or
41 individual servers.

42 In the context of Natural Language Processing (NLP) research, large-scale
43 algorithms (also referred to as data-intensive or web-scale NLP) are demonstrating
44 increasingly superior results compared to approaches trained on smaller datasets, mostly
45 thanks to addressing the data sparseness issue through collection of significantly larger
46 numbers of naturally occurring linguistic examples [8]. The need for and the success of
47 data-driven NLP methods to a large extent mirrors recent trends in other research fields,
48 leading to what is being referred to as “the fourth paradigm of science” [3].

49 However, while researchers at big corporations (e.g. Google, Yahoo, Microsoft,
50 IBM) have access to both Web-scale textual data (including web query logs) and
51 vast computing infrastructures, scientists from smaller research groups and universities
52 are faced with major technological challenges when carrying out cutting edge data-
53 driven text processing experiments. Cloud computing [5] is increasingly being regarded
54

55

56

57

58 Ph{‘lf)'& Trans'.‘R. Soc. A-Math. Phys. Eng. Sci. 1-16; doi: 10.1098/rspa.00000000

59 This journal is © 2011 The Royal Society

60

http://mc.manuscriptcentral.com/issue-ptrsa



©CoO~NOUTA,WNPE

Submitted to Phil. Trans. R. Soc. A - Issue

2

as a key enabler of the “democratisation of science” [7, 3], giving researchers
everywhere affordable access to computing infrastructures, which allow the deployment
of significant compute power on an on-demand basis, and with no upfront costs.

However, NLP algorithms tend to be complex, which makes deployment on cloud
platforms a specialised, non-trivial task, with its own associated costs in terms of
significant time overhead and expertise required.

To answer these challenges, we have developed a novel, unique cloud-based platform
for large-scale NLP research — GATECloud.net. It aims to give researchers access to
specialised software and enables them to carry out large-scale NLP experiments by
harnessing the vast, on-demand compute power of the Amazon cloud. It also eliminates
the need to implement specialised parallelisable text processing algorithms. Important
infrastructural issues are dealt with by the platform, completely transparently for the
researcher: load balancing, efficient data upload and storage, deployment on the virtual
machines, security, and fault tolerance.

This paper is structured as follows. Section 2 differentiates GATECloud.net from
related work on data-intensive NLP and cloud computing. Section 3 motivates the need
for an NLP Platform-as-a-Service (PaaS) and presents a number of requirements. Next,
the architecture and implementation of GATECloud.net are discussed (Section 4) in
relation to these requirements. The paper concludes with a number of use cases and
evaluation experiments (Section 5) and a discussion of future work (Section 6).

2. Large-Scale Text Mining and Compute Clouds

Following the Software-as-a-Service paradigm from cloud computing [5], a number
of text processing services have been developed, e.g. OpenCalais', Extractiv?, and
Alchemy API®. These mostly provide information extraction services, which are
accessible programmatically (over a RESTful API) and charged based on number of
documents processed. However, they suffer from two key technical drawbacks. Firstly,
document-by-document processing over HTTP is inefficient on large datasets and is also
limited to within-document text processing algorithms. Secondly, the text processing
algorithms are pre-packaged: it is not possible for researchers to extend the functionality
(e.g. adapt such a service to recognise new kinds of entities). Additionally, these text
processing SaaS sites come with daily rate limits, in terms of number of API calls or
documents that can be processed. Consequently, using these services is not just limited in
terms of text processing functionality offered, but also quickly becomes very expensive
on large-scale datasets, especially web pages and tweets which tend to be short but
numerous.

At the same time, NLP researchers have started developing distributed algorithms
for data-intensive text mining over terabyte-scale datasets. Many approaches adopt the
MapReduce model for distributed computation which can be deployed via Hadoop
on clusters of affordable compute servers. For instance, Lin [15] demonstrates using
Hadoop to calculate word co-occurrence matrices; later Lin and Dyer [16] present a
number of distributed algorithms widely used in NLP tasks (Page-Rank, Expectation
Maximisation, Hidden Markov Models) and discuss their MapReduce implementations.

! http://www.opencalais.com
2 http://extractiv.com
3 http://www.alchemyapi.com
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Meng [19] demonstrates using Hadoop with NLTK [17]; word counts, name similarity
and tf*idf are calculated and HMMs are trained. However, having to adapt NLP
algorithms in this way is very time consuming. For example, van Gael and Bratieres from
Cambridge University reported several person months of effort to learn Hadoop, Amazon
AWS and to rewrite their part-of-speech tagging algorithm [9]. An added complication
is that not all NLP algorithms are actually implementable in the MapReduce paradigm,
e.g. those requiring shared global state.

Apart from needing new algorithms, large-scale text processing also requires access
to sufficiently large clusters of servers. Utilising on-demand compute power is now
possible through Infrastructure-as-a-Service (IaaS) providers [14]. Arguably the most
successful commercial one is currently Amazon, who offers various kinds of virtual
machine instances. However, making optimal use of virtual IaaS infrastructures for
data-intensive NLP again comes with a significant overhead, e.g. having to learn the
intricacies of Amazon’s APIs for the elastic compute cloud and simple storage services.

Platform-as-a-Service (PaaS) [5] are a type of cloud computing service which
insulate developers from the low-level issues of utilising IaaS effectively, while
providing facilities for efficient development, testing, and deployment of software over
the Internet, following the SaaS model. In the context of traditional NLP research
and development, and pre-dating cloud computing by several years, similar needs
were addressed through NLP infrastructures, such as GATE [4] and UIMA [6]. These
infrastructures have accelerated significantly the pace of NLP research, by providing
a number of reusable algorithms (e.g. rule-based pattern matching engines, common
machine learning algorithms), free tools for low-level NLP tasks (e.g. tokenisation,
sentence identification), and in-built support for multiple input and output document
formats (e.g. XML, PDF, DOC, RDF, JSON).

Some attempts have been made to extend UIMA functionality to utilise cloud
computing; Zhou et al [23] propose a layered architecture built on UIMA and Hadoop
with the intention of allowing UIMA to operate over very large datasets. Thus far, only a
proof of concept on topic detection has been described. Ramakrishnan et al [20] explore
the topic of scaling up processing for the SciKnowMine project. They discuss various
possibilities, including cloud computing via the Behemoth project, which aims to make
both UIMA and GATE functionality available on Hadoop. Luis and Matos [18] aim to
make the benefits of cloud computing available outside of established NLP frameworks.
They describe an approach to integrating various NLP tools and executing them in
parallel. They comment that UIMA and GATE would benefit from adopting MapReduce.
Laclavic et al [12] demonstrate using Ontea [11] with Hadoop.

This paper presents GATECloud.net — the adaptation of the GATE infrastructure
to the cloud, following the PaaS paradigm. It enables researchers to run their NLP
applications without the significant overheads of re-implementing their algorithms for
MapReduce and understanding Amazon’s [aaS APIs.

GATECIoud.net is novel and unique in that it is currently the only open-source
cloud-based PaaS for large-scale text processing. Similar to the text processing SaaS
discussed above, it offers a growing number of pre-packaged NLP services. However,
due to being a specialised NLP PaaS, GATECloud.net also supports a bring-your-own-
pipeline option, which can be built easily by reusing pre-existing NLP components
and adding some new ones. Moreover, GATECloud.net is the only cloud-based NLP
platform that supports the complete NLP development lifecycle. In addition to offering
entity extraction services like OpenCalais, our NLP PaaS also supports data preparation

http://mc.manuscriptcentral.com/issue-ptrsa
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(e.g., HTML content extraction), manual corpus annotation, measurement of inter-
annotator agreement, performance evaluation, data visualisation, indexing and search
of full text, annotations, and ontological knowledge.

Crucially for researchers who only run large-scale text processing experiments
infrequently, there are no recurring monthly costs: instead, GATECloud.net is pay-
per-use, billed per hour (due to Amazon’s per-hour charging model). There is also no
daily limit on the number of documents to process or on document size. Consequently,
processing costs depend on the total data size, not on the number of documents. This is
particularly advantageous for bulk processing of Twitter data and other such numerous,
but small-sized texts. One downside of our per-hour billing approach is that it makes
it harder for users to estimate likely usage costs upfront. We return to this issue in
Section 5, where we discuss how users can overcome this problem.

3. Towards an NLP PaaS: Requirements and Methodology

NLP platforms, such as GATE and UIMA, have been hugely successful thanks to the
clean separation between low-level tasks such as data storage, data visualisation, location
and loading of components and execution of processes from the data structures and
algorithms that actually process human language. They also reduce significantly the
integration overheads by providing standard mechanisms for NLP components to be
combined into complete pipelines and to communicate data about language, using open
standards such as XML and RDF.

In a cloud computing context, developing an NLP PaaS requires the careful
consideration of the following additional requirements:

(i) Straightforward deployment and sharing of NLP pipelines: How can we achieve
this transparently for the NLP developer, i.e. NLP applications developed on
a desktop machine can run without any adaptation on the PaaS. In addition,
developers need to be able to share easily their NLP pipelines as SaaS, with on-
demand scalability and robustness ensured by the underlying NLP PaaS.

(i) Efficient upload, storage, and sharing of large corpora: An NLP PaaS needs to
support a secure and efficient way for users to bulk upload, analyse, and download
large text corpora, i.e. batch processing over large datasets. In addition, users need
to be able to share their large text corpora between different NLP pipelines, running
on the PaaS - both for services bundled within the NLP PaaS and services created
by the developers themselves.

(iii) Algorithm-agnostic parallelisation: how best to parallelise the execution of
complex NLP pipelines, which could contain arbitrary algorithms, not all of which
are implemented/suitable for MapReduce and Hadoop.

(iv) Load balancing: determine the optimal number of virtual machines for running a
given NLP application within the PaaS, given the size of the document collection
to be processed and taking into account the considerable overhead of starting up
new virtual machines on demand.

(v) Security and fault tolerance: As with any web application, the NLP PaaS needs to
ensure secure data exchange, processing, and storage, as well as be robust in face
of hardware failures and processing errors.

http://mc.manuscriptcentral.com/issue-ptrsa
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In addition to these technical requirements, an NLP PaaS needs to offer
comprehensive methodological support to underpin the NLP application development
lifecycle:

1.

Create an initial prototype of the NLP pipeline, testing on a small document
collection, using an NLP application development environment, running on a
standard desktop or a local server machine;

. Crowd-source a gold-standard corpus for evaluation and/or training, using a web-

based collaborative corpus annotation tool, deployed as a service on the PaaS;

. Evaluate the performance of the automatic pipeline on the gold standard (either

locally within the desktop development environment or through the manual
annotation environment on the cloud). Return to step 1 for further development
and evaluation cycles, as required.

Upload the large datasets and deploy the NLP pipeline on the PaaS;

. Run the large-scale text processing experiment and download the results as XML,

JSON, RDF, or schema.org formats. Optionally, an NLP PaaS could also offer
scalable semantic indexing and search over the linguistic annotations and the
document content.

. Lastly, analyse any errors, and if required, iterate again over the required system

development stages, either on a local machine or on the NLP PaaS.

Next, we present GATECloud.net — a fully implemented NLP PaaS and discuss
how specifically we chose to address the technical and methodological requirements
discussed above.

4. GATECloud.net: An Implemented NLP PaaS

(a) An Overview of the GATE NLP Infrastructure

The GATE framework [4] was chosen as the most suitable open-source NLP
infrastructure to underpin the GATECloud.net PaaS, since it provides a unique
combination of tools, addressing all the steps in the NLP application development
methodology outlined above:

o A comprehensive and extensible NLP application development environment

(GATE Developer), offering specialised user interfaces for visualisation and
editing of linguistic annotations, parse trees, ontologies, and other NLP-specific
resources (e.g. name lists, lexicons), as well as numerous tools for automating
performance evaluation of language processing components.

Numerous reusable text processing components for many natural languages,
underpinned by a finite state transduction language (JAPE) for rapid prototyping
and efficient implementation of shallow NLP analysis methods, as well as an
extensible machine learning layer.

http://mc.manuscriptcentral.com/issue-ptrsa
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e A multi-paradigm repository (GATE Mimir) which can be used to index and
search over text, linguistic annotations, semantic schemas (ontologies), and
semantic meta-data. It supports queries that arbitrarily mix full-text, structural,
linguistic and semantic constraints and scales up to terabytes of text through
federated indexing.

e A web-based annotation environment (GATE Teamware) for collaborative
creation of manually annotated corpora (needed for NLP algorithm training and
for quantitative evaluation).

GATE is widely used for building text processing application in diverse domains,
including bio-informatics [10], social media analysis [22] and humanities computing
[21]. Recent projects have increasingly faced the problem of running GATE-based text
processing on terabyte datasets, e.g. [2]. At the same time, the multi-tier service-oriented
architecture of GATE Teamware, coupled with its centralised workflow engine, has made
its deployment and administration too complex and error-prone for many researchers.

(b) The GATECloud.net Architecture

The high-level approach taken in GATECloud.net is to layer the GATE NLP
infrastructure on top of Amazon’s cloud infrastructure and services, much in the same
way in which GATE insulates researchers from having to deal with data formats, storage,
and command-line processing, while also making it straightforward to create new and
run text analysis algorithms.

laasS Cloud
(AWS)

Download Results \
Task List

Control (SimpleDB)
GATEC, | Weondow - B Brage
Submit / Monitor CLOUD = (s3)
Processing Job

Upload Pipeline / Data

https://gatecloud.net

(Web Application) GATE
v A P \\Teamware
Access ............................ *.services.gate.ac.uk . 4
(proxy server)

Dedicated
Server

Figure 1. GATECloud.net Architecture: dashed lines refer to supporting on-demand servers, while solid
lines are for large-scale processing jobs

The GATECloud.net* architecture comprises the following main elements:

GATECIloud.net web application a web site implemented using the Grails® web
application framework. Its main functions are providing security and user
authentication, web-based user interface for virtual servers management and
annotation jobs management.

4 Available at http://gatecloud.net.
5 http://grails.org

http://mc.manuscriptcentral.com/issue-ptrsa

Page 6 of 16



Page 7 of 16

P OO~NOUILAWNPE

Submitted to Phil. Trans. R. Soc. A - Issue

7

Amazon Web Services as the cloud infrastructure provider. Elastic Compute Cloud

(EC2) provides virtual server instances that are used for hosting on-demand
servers and for text processing (annotation) jobs. SimpleDB is used for jobs
and task management across distributed compute swarms. Finally, the Simple
Storage Service (S3) stores software images for our on-demand servers, datasets,
processing results, and processing reports in the case of annotation jobs.

services.gate.ac.uk a specially-configured Apache server that manages the

*.services.gate.ac.uk sub-domain. We use that to provide persistent
DNS names for the on-demand servers belonging to the system users. This
insulates users from the implementation details of the Amazon cloud, where each
server instance gets a new IP address and a new DNS name whenever it is started.
Amazon EC2 offers a service named Elastic IPs where a set of static IP addresses
can be allocated to the virtual servers as needed. However, this is limited to 5
addresses as standard, while we needed to be able to support far larger numbers

of machine reservations.

Making a server reservation

e The user requests a new reservation
through the GATECloud.net web site,

e a persistent data volume is created and
associated with the user account,

e a persistent server name is reserved for
the user,

e the user is notified in the web dashboard
and through email.

Destroying a server reservation

o The user requests the destruction of the
reservation,

e a check is made that the reservation is
not currently associated with a running
instance,

o the previously created data volume is
deleted,

e the reserved server name removed from
the database,

e the user is notified.

Starting a server

o The user requests the start-up of the
server,

e anew instance is started,

e the previously created data volume is
attached to the new instance,

e the reserved server name is associated
with the IP address of new instance,

o the start-up process is confirmed to have
completed successfully,

e the user is notified.

Stopping a server

e The user requests the stopping of the
server,

o the software services are stopped,
o the persistent data partition is detached,
e the server instance is terminated,

o the user’s account is updated with the
associated costs,

e the link between the reserved server
name and the IP address of the
terminated instance is removed,

e the user is notified.

Table 1. On-demand server workflows

http://mc.manuscriptcentral.com/issue-ptrsa



©CoO~NOUTA,WNPE

Submitted to Phil. Trans. R. Soc. A - Issue

(¢) On-demand Servers

As discussed above, the GATE family of NLP tools includes server-side platforms
(GATE Teamware and GATE Mimir), both having complex architectures and sets of
dependencies that make them difficult to install and maintain. In many NLP projects,
these tools are only needed for a limited time only (e.g. Teamware is only required
for manual annotation of training and evaluation corpora), which can make them
uneconomical to install and maintain. A cloud-based SaaS deployment thus makes sense,
as it reduces the costs in terms of admin effort and server hardware required.

Consequently, we created pre-installed Teamware and Mimir servers, running as
Amazon EC2 instances, based on 64-bit Ubuntu Linux. Instead of virtual machine
definitions (Amazon Machine Images, or AMIs) for server description, we chose to use
‘recipes’ instead. Such a recipe comprises scripts and configuration data describing how
to transform a standard base AMI into a dedicated Teamware or Mimir server. These
scripts include steps such as downloading and installing the software and the appropriate
support packages (e.g. Java or MySQL), initialising the databases and configuration files,
attaching the persistent data storage associated with the user owning the machine. These
steps are executed automatically each time a new server instance is started.

One downside of our approach is that is slightly increases the start-up time, typically
by less than five minutes. However, the advantages are manifold:

Reduced administration costs: since our dedicated servers are built on top of standard
AMIs, the responsibility for maintaining the basic operating system (e.g. installing
security updates, or upgrading software packages to newer versions, etc.) falls with
the publisher of the AMI. We are currently using official Ubuntu Linux images,
but any system that supports Java would work equally well.

Flexibility: upgrading to a new version of the base operating system (or even starting
to use a completely different OS) is simply a matter of changing the base AMI
identifier used in our recipe.

Improved security: each server instance is essentially re-installed from scratch on each
start-up. This reduces the scope for possible persistent attack vectors.

In order to provision a server, a GATECloud.net user needs to first make a reservation
for it. Once reserved, the server appears in the user’s dashboard, from where they can
start it and stop it as required. While the server is running, the user incurs hourly
charges. When the server is not required any more, the user can destroy the reservation,
thus releasing all resources associated with it, such as the persistent data partition. The
workflows used for these different operations are shown in Table 1.

(d) On-demand Large-Scale Text Processing

The other half of the GATECIoud.net infrastructure is the support for processing
of large document collections using cloud computing. As discussed in Section 3,
there are five major technical requirements that need to be met, coupled with many
methodological ones, arising from the specifics of text processing.

The implementation of Annotation Jobs on GATECloud.net addressed most of these
technical and methodological requirements, leaving researchers free to concentrate on
their experiments. From a researcher’s perspective, processing a document collection
involves a few simple steps:

http://mc.manuscriptcentral.com/issue-ptrsa
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e upload the document collection (or point the system to the location where the data
is available),

e upload a GATE-based processing pipeline to be used (or choose one provided as
SaaS on GATEC]Ioud.net),

e press the ‘Start’ button.

While the job is running, a regularly updated execution log is made available in the
user’s dashboard. Upon job completion, an email notification is also sent. Most of the
implementation details are hidden away from the user, who interacts with the system
through a web-based job editor, depicted in Figure 2.

Annotation Job "Annotation Job - ANNIE + Measurements”

Detalls Inputs m Execution Progress Download Results m
On this tab you can specify what snould happen to the OUDUE O yOur annotation Job.
Select one of the cutputs on the left to change its parameters.

¢ An application file has been
& provided.

Detalls for the selected output:
Type » Some input documents have been
PELINE S provided.

File suffix E
-out.xml (©) some outputs have been defined.
Output filters (which annotations should be saved):

=l Annotation Set: Annotation Type:

[Default] Person Delete
[Default] Location Delete
t [Default] Organization

urements.xml E %
Type [Default] Measurement Delete

"~ Add New Filier

Add New | Delete Selected
Start Job top Job | Delete Job ‘

Figure 2. Web-based Job Editor

Next we discuss how GATECloud.net PaaS meets the requirements from Section 3:

(i) Pipeline deployment and sharing: GATECloud.net can run any NLP
pipeline developed on the researcher’s desktop, after it has been packaged by the
GATE Developer environment [4], using the application export option “Export for
GATECIloud.net”. This is an automated process that builds a self-contained zip file,
including all text processing modules and the linguistic data and ontologies required
by them. In other words, there is no additional implementation effort required, in order
to deploy a GATE-based NLP pipeline on the cloud-based NLP PaaS and execute it on
a large-scale dataset.

(ii) Efficient Data Management: From an implementation perspective, job
execution requires access to potentially large amounts of data, including the text
processing application file(s), the document collection to be processed, the execution
reports, the results files (if any are produced). We chose to store all this data in a separate
S3 ’location’ that is created especially for each job and cannot be accessed by other jobs.
Once the job completes, users get a grace period (by default 10 days, but this can be
changed) during which they can download the results. When this time has elapsed, the
job’s S3 location is deleted entirely in order to save storage costs. Alternatively, the user
can chose to provide their own S3 location for storing the job data (with the appropriate
permissions for the GATECloud.net AWS user account), in which case no automatic
deletion takes place.

http://mc.manuscriptcentral.com/issue-ptrsa
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(iii) Parallelisation and (iv) Load Balancing: Job execution is supported by
multiple inter-connected, parallel workflows, which are described next.

Job Management: Each Job advances through a series of states during its life-cycle.
The jobs management process is implemented by the GATECloud.net web application
and deals with taking the appropriate steps to transition each active job from one state
to the next. Each step usually involves generating new Tasks, and queueing them for
execution. A Task is a piece of work that needs to be performed, and that is executed by
a Node (a server instance in the cloud). Once all the Tasks belonging to a Job in a given
state have completed, the Job can move to the next state.

Swarm Load Management: Swarms are sets of cloud instances (Nodes) that have
identical configurations and that execute Tasks from the same task queue. Each Swarm

has a target load factor, defined as 2% tazlgzvz Eggﬁ;ﬂg @sks ' A load factor of 1 indicates the
intention of allocating a separate node for each running task, while a value of 2 means
that the system would aim to have e.g 5 running nodes for a list of 10 tasks. The Swarm
management process (also part of the the GATECloud.net web application) starts new
Node instances associated with all of the registered Swarms as required in order to keep
the actual load factors as close as possible to the target values.

Node Workflow: Each Node instance is configured during start-up with the tasks
queue it should use. Once started, its workflow is a simple loop collecting the first
pending Task from the queue, and executing it. When no more pending tasks have
been available for a while, the node shuts itself down automatically. Each Task has an
associated state and a time stamp. When a Node picks up a task for execution, it changes
its state from pending to active. It also updates the time stamp at regular intervals
while the Task is being executed. If a Node crashes for whatever reason, any Task it
was working on will be left in an active state; however its time stamp will stop being
updated. Active Tasks with an old time stamp are presumed to have failed and will be
re-scheduled for execution three times. If a Task keeps failing to execute, then its state is
changed to failed and it is not scheduled again, thus avoiding infinite loops.

The Tasks queue is implemented as an Amazon SimpleDB domain accessible by both
the GATECloud.net web application and all processing Nodes. Concurrency control is
implemented by associating a version attribute with each item in the domain. The
versionstarts at 0 and is incremented with each write operation. Completing the picture
are the atomic conditional update operations provided by SimpleDB which are used
to make sure new values are only written if the version has not been independently
changed since the old values were read.

(v) Security: Since the PaaS allows researchers to upload their own NLP pipelines,
we have no control over the software included within: it could contain poorly written,
insecure, or even malicious code. Consequently, security is a major concern and we
are addressing this by judicious privilege isolation. The system user, which has access
to cloud login credentials and system settings, is only executing code that has been
produced by the platform authors and security audited. User data and user processes are
executed by a separate OS-level user, which has very restricted permissions, allowing
file access only within a given data directory. All the data and processes owned by this
user are destroyed upon completion of each Task. This ensures that data and software
belonging to different researchers are never present at the same time on the same Node
machine instance.

While stored on the cloud, the user data is protected by the security procedures
instituted by the cloud infrastructure provider. All the transfers between the cloud
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storage, the processing nodes, and the user’s computer are done via an encrypted
channel, using SSL.

5. Use Cases and Experiments

In order to quantify the performance gains from running text processing algorithms
on large datasets on GATECloud.net, we carried out experiments on three document
collections: 50 million tweets (very short texts), 20,000 news articles (medium-sized
texts), and 100,000 patents (larger sizes, up to 6 MiB). With respect to data sizes, the
statistics for the three datasets are as follows:

Twitter We randomly selected 50 million tweets from a 1TB dataset. The Twitter feed
was first simplified by only preserving the tweet text, tweet ID and the ID of the
author, while discarding all other metadata fields. After conversion to XML, the
size of the resulting corpus was 6 GiB. The 50 million tweets were chosen to
be a usefully sized dataset, 10 times larger than the one used by Abel et al [1]
and 10 times smaller than the one used by Laniado and Mika [13]. Additional
experiments, not detailed here due to space constraints, showed that processing
time scales linearly with the number of tweets, on all hardware configurations (see
below). Consequently, the performance and cost figures reported here can be used
to easily estimate the corresponding values for smaller or larger tweet datasets.

News The news corpus comprised 20,000 HTML pages (1.31 GiB), collected from
the web sites of news broadcasters BBC and CNN, and UK newspapers The
Independent and The Guardian. The shortest document was just 9 characters (from
the CNN web site), whereas the longest was 230 KiB. Most news articles are well
clustered around the middle, with an average size of 68.7 KiB.

Patents The corpus contained 100,000 patent documents, with an overall size of
5.47 GiB. The mean document size is around 58 KiB, with the smallest document
being just under 3 KiB (containing only the abstract) and the largest at 5.94 MiB.
The majority of the patent documents are clustered around the middle, with lower
quartile: 22 KiB, median of 43 KiB, and the upper quartile: 70 KiB.

The news and Twitter datasets were annotated for named entities with the standard
ANNIE entity annotation pipeline [4], deployed as SaaS within GATECloud.net. For the
patents dataset we reused a pre-existing text processing pipeline [2] which recognises
patent-specific types, including references to other patents, scientific publications,
measurement expressions, patent sections, claims, examples, references to figures and
tables.

In order to carry out a cost-benefit evaluation of GATECloud.net, we ran three sets of
experiments, where each dataset was processed on the following hardware configuration:

Desktop Lenovo ThinkCentre M58p desktop computer, Intel Xeon E5502 1.86 GHz
CPU (2 cores), 4 GiB RAM, 320 GB HDD Serial ATA II, cost ~£1300. This is
currently a standard desktop configuration for researchers in our laboratory.

Server HP ProLiant DL385 G7 server, AMD Opteron 2.3 GHz CPU (12 cores), 32 GiB
RAM, 2 TB disk space, cost ~£4800. For these experiments, we had access to 6
of the processing cores only.
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Cloud GATECloud.net swarm, using 10 Extra Large instances on the Amazon Cloud.
Each node has 15 GiB of RAM, 8 EC2 Compute Units (4 virtual cores with 2
EC2 Compute Units each), 1690 GB of local instance storage, 64-bit platform.
One EC2 Compute Unit (ECU) provides the equivalent CPU capacity of a 1.0-
1.2 GHz 2007 Opteron or 2007 Xeon processor. For running costs, see Table 2.

The only exception is the patents dataset which was too large to be processed on the
desktop computer in a reasonable amount of time.

Time (hh:mm:ss) Speed | Cost(GBP)
CPUTime Computer Time ClockTime| (KiB/s) | £/GiB Total
Experiment 1: Patents | Desktop N/A N/A N/A

Server 91:42:00 18:39:54 18:39:54 85.33

100,000 patent documents |y, 162:38:00 1656:37  02:03:32]  773.6] £3.08] £16.83
[~ Experiment 2: News  |Deskiop 05.20.19 052019 05.20.19] _ 71.52
Server 04:43:00 03:08:00  03:08:00| 121.86

20,000 documents |y, g 07:47:00 01:21:20  00:35:31| 645.04| £1.51] £1.98
Experiment 3: Tweets [Deskiop | 32.26/46 322846 32.28.46]  52.80
Server 22:16:15 0319112 o03:19:12| 51653

50,000,000 tweets  f g 40:08:00 07:00:14  01:25:46| 1199.69| £1.35] £7.92

Table 2. Experiment Results

Table 2 reports the results of these three sets of experiments along several
dimensions. CPU Time measures the total amount of time spent, by any thread,
processing documents, while Computer Time is the time taken by a given machine. On
machines with multiple cores, Computer Time will be lower than the corresponding CPU
time, as multiple parallel execution threads are used. Clock time represents the time
interval between starting the process and its completion, as measured by an external
clock. This differs significantly from the other measurements only in the case of the
cloud-based experiments, where processing was distributed across several machines. On
the desktop machine, even though it has two cores, only one of them was used due to
running the experiments as standard batch processes, using a single execution thread.
Consequently, the desktop running times are always the same for CPU time, computer
time, and clock time. The Clock time column shows the overall time saving due to using
more powerful hardware configurations: from a desktop computer to a server, then to the
cloud.

In terms of cost, the price per GiB for named entity recognition is very low (between
£1.35 and £1.50). The patents application is significantly more complex and therefore,
its cost per GiB processed is approximately double. Similarly, its performance figures
should not be compared directly to those obtained on news and tweets. The more
general point is that the cost per GiB of text processed on GATECloud.net varies widely
depending on the complexity of the underlying text processing algorithms. In addition,
specifically on the patents dataset, significant amount of time was spent on processing
the few larger documents of over 1 MiB in size. Time complexity for co-reference
resolution is higher than linear, so it tends to be much more time consuming on such
large documents due to the large number of candidate entities that need to be checked.
The time-complexity of most other algorithms tends to be near linear with respect to
document size.

It is, of course, required that users are able to estimate the cost of processing a given
document collection. Given that each document is processed independently from the
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rest, the time taken to process a collection can be approximated by multiplying the total
number of documents and the average execution time for a document®. The average
execution time can be estimated by processing a small but statistically representative
collection sample. Care should be taken when selecting the sample as, depending on
what the actual processing consists of, document length may not be a good indicator of
time complexity.

Compared to cloud infrastructure providers, GATECloud.net is simplifying cost
estimations by hiding details such as the cost of data storage and data transfers, behind
a simple cost model based exclusively on CPU-hours.

When looking at CPU time used, this always tends to be higher on the cloud than the
CPU times for the desktop and server. This is due to the overhead in using distributed
computing, specifically mainly due to the need to split the large datasets into batches that
run on separate nodes, as well as efficiency lost to virtualisation. In addition, the actual
hardware specifications of the Amazon Extra Large virtual machines are not as good as
those of the server, but are quite comparable to our desktop configuration.

As can be seen from the time statistics, the major benefit of using GATECloud.net
comes from the significant reduction in Clock Time taken for each of the experiments.
The speed-up compared to the Desktop configuration is between 10- and 20-fold. For
example, the processing time for the news dataset is reduced down from over 5 hours
to 35 minutes, which can help significantly not only for processing large-scale datasets,
but also during the development of the algorithms by reducing the time taken by the
develop-evaluate cycles. The time reduction is even greater on the tweets dataset, where
time goes down from 32 hrs to 1 hr and 25 minutes.

With respect to the gains made by using GATECloud.net instead of a local powerful
server, there are also significant benefits (5-fold speed-up on the news set and 10-fold on
the patents data). The benefits are less pronounced on tweets, due to their large number
and small size. In general, GATECloud.net has been optimised for processing medium-
to large-sized documents, where the benefits are most pronounced. In future work, we
will be working towards improving the infrastructure’s performance on large collections
of smaller documents.

An independent GATECloud.net benchmarking experiment was carried out by a
team of researchers from the UK Food and Environment Research Agency’. They started
by building a specialised text annotation pipeline, using GATE Developer. This included
over 20 different rule-based components, as well as some of the low-level linguistic
processing offered by GATE’s standard tools. The document collection consisted of
261,260 documents ranging from 1 KB to 2.5 MB of text. Of all the documents, 14
(i.e. 0.005%) failed to complete successfully, due to various text processing exceptions.
Their CPU time was just over 13 hours (786 minutes), whereas the Clock time value was
1 hr and 20 minutes, again a 10-fold speed-up.

6. Conclusions and Future Work

This paper motivated the need for a specialised NLP PaaS, identified a set
of requirements, and presented our implementation of such an NLP PaaS -

6 The actual formula is more complex, but this is the dominant term.
7 http://www.fera.defra.gov.uk/
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GATECIoud.net. This is aimed at helping researchers to carry out data-intensive text
processing experiments on the cloud.

The platform has been made available to the public as a beta service. During its
first 6 months of operation (between mid June and mid December 2011), there were
114 registered users. The number of processed documents was 4.7 million®, part of 302
annotation job runs. The accumulated server time used for both annotation jobs and
dedicated servers was 430 hours. This level of usage indicates a need for such tools and
a clear interest from researchers and the wider community.

Currently we are working on adding a programming API to GATECloud.net, so that
data upload, processing, and download can all be done automatically, outside of the web
interface. This will allow tighter integration with legacy work-flows and higher levels
of automation. Other future work will focus on going beyond batch-oriented processing
of documents, towards handling streaming data. Integration of MapReduce-based NLP
algorithms is also being considered.
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