
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

D2.2.2 Report: Controlled
Language IE Components version 2

Adam Funk, Brian Davis, Valentin Tablan, Kalina Bontcheva,
Hamish Cunningham

(University of Sheffield)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D2.2.2 (WP2.2)

This deliverable outlines an approach to automatic generation of metadata from natural language.
The emphasis is on easy to use applications and controlled language interfaces. In brief, Con-
trolled Language Information Extraction (CLIE) uses natural language processing technology to
enable users to create, modify and use knowledge stored in repositories like KAON and SESAME.

Keyword list: controlled language, information extraction, language processing

Copyright c© 2007 NLP Group, Departement of Computer Sceience, University of Sheffield

Document Id.
Project
Date
Distribution

SEKT/2005/D2.2.2/v1.0
SEKT EU-IST-2003-506826
January 15, 2007
public

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Technikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid
Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Executive Summary

In this task we developed a controlled language and a software tool to allow end users to
edit ontologies.

A controlled language is a subset of a natural language which is generally designed
to be less ambiguous than the complete language and furthermore to include only certain
vocabulary terms and grammar rules which are relevant for a specific task. Controlled
languages have a long history of use. Since the 1970s, CLs have been used by large
companies such as Caterpillar, Boeing, and Perkins for generation of multilingual docu-
mentation.

Although most machine translation systems use some sort of intermediate represen-
tation for the information contained in the sentences which are being translated, the use
of CLs for knowledge management is a relatively new endeavour whose first applications
appeared in the mid 1990s. [Sow02] shows that all languages have the power to express
first order logic statements.

Natural language, however, is far more powerful than first order logic and contains
lexical, syntactic, semantic and logical ambiguities. Constraining the language to avoid
ambiguities yields a great improvement in parsing accuracy and efficiency and can result
in a medium suitable for human use to produce formal conceptual data.

The Controlled Language Information Extraction (CLIE) software and the CLOnE
(Controlled Language for Ontology Editing) language have been developed in SEKT to
enable users to create, administer and use information stored in knowledge repositories
like KAON and SESAME.

In 2006 (SEKT year 3) we made significant improvements in CLOnE and CLIE. The
language now supports synonyms (implemented as RDF labels), two types of properties,
multiple properties sharing the same domain and range (with different property descrip-
tions), and delete- and undo-functionality. The CLIE engine also refers to the existing
information in the ontology to interpret input sentences, allowing CLOnE to be more
powerful without further complicating the syntax, so CLOnE is still easy to learn by fol-
lowing examples.

We also carried out a comparative evaluation of CLIE and Protégé with human sub-
jects in order to measure usability for ontology editing; we obtained favourable results for
CLIE as well as interesting and useful suggestions for improving it.

CLIE development will not end with SEKT; it will be used and further developed in
Poleazy, Nepomuk and Lı́on, and potentially in NeOn, KnowledgeWeb and other projects.

Contents

Contents 1

1 Introduction 3
1.1 Aims of CLIE . 3
1.2 Achievements in Year 3 of SEKT . 4
1.3 Structure of this document . 5

2 Related work 6
2.1 ACE . 6
2.2 Aqualog . 8
2.3 Cypher . 9
2.4 GINO . 9
2.5 Simplified English . 10
2.6 Discussion . 11

3 User’s guide 12
3.1 Installing and running CLIE in GATE 12
3.2 Writing CLOnE . 14

4 Implementation 21
4.1 Processing . 21
4.2 Syntax and semantics . 23
4.3 Using the ontology to interpret CLOnE input 28

5 Evaluation 30
5.1 Methodology . 30
5.2 Background . 31
5.3 Statistical analysis . 32

5.3.1 Statistical measures . 32
5.3.2 Quantitative findings . 32
5.3.3 Sample quality . 34

5.4 Subjects’ suggestions and comments . 36
5.5 Discussion . 37

1

CONTENTS 2

6 Ongoing and future work 38
6.1 Poleazy . 38
6.2 Nepomuk . 38
6.3 Lı́on . 39
6.4 Generation of CLOnE from ontologies 39
6.5 Other uses . 40

Bibliography 41

A Evaluation documents 44
A.1 Training manual . 44

A.1.1 CLIE How-To . 46
A.1.2 Protégé How-To . 52

A.2 Test procedure, tasks and questionnaires 56

B CLIE gazetteer (keywords and phrases) 64

Chapter 1

Introduction

1.1 Aims of CLIE

People need to organise, compartmentalise, and order their environments. The world of
computing is rife with structured information. Object-oriented programs, databases and
file-systems are common examples of structured data. Controlled Language Information
Extraction (CLIE) is an application which will allow users to design, create, and manage
information spaces without knowledge of complicated standards such as XML, RDF and
OWL, or ontology engineering tools such as Protégé.1 The CLIE architecture is divided
into two independent parts: the language interface and the application.

The language interface builds on existing research from machine translation (MT) and
applications of controlled natural languages for knowledge representation. The applica-
tion interface is based on common lightweight technologies which are familiar to web
users. The growing interest in Semantic Web applications and the need to port informa-
tion into a machine readable format create many uses for this type of application.

Creating formal data is a high initial barrier for small organisations and individuals
wishing to create ontologies and thus benefit from semantic knowledge technologies. Part
of the solution comes from ontology authoring tools such as Protégé, but these often
require specialist knowledge about ontology engineering. Therefore, in the case of naive
users, the definition of a controlled language for formal data description will enable them
to author ontologies directly in natural language. Building on controlled language MT
work, information extraction (IE) for controlled language analysis may achieve the high
levels of accuracy necessary to make the ontology authoring process more widely feasible.

The controlled language IE task has developed a simplified natural language processor
that allows the specification of logical data for Semantic KT purposes in normal language,
but at the same time attains the high accuracy levels necessary for high reliability in appli-
cations. The components are based on GATE’s existing cascade of finite state transducers

1http://protege.stanford.edu

3

http://protege.stanford.edu

CHAPTER 1. INTRODUCTION 4

(FSTs) for IE. [CMBT02] CLIE is configured so that it either accepts input as valid (in
which case accuracy is generally 100%) or rejects it and will warn the user of needed re-
pairs to his syntax. Because the parsing process is deterministic, the usual IE performance
measures (precision and recall) are not relevant.

1.2 Achievements in Year 3 of SEKT

In 2006 we made significant improvements in the CLOnE controlled language and the
CLIE engine. (The following points are explained in more detail in Chapter 4.)

• Users can now add (and remove) synonyms for classes and instances, which are
stored in the ontology as RDF labels for subsequent re-use. Synonyms can be used
in subsequent CLOnE statements and are dereferenced to the appropriate classes
and instances.

• CLOnE now supports two types of object properties:

1. Books have chapters.

2. Agents are authors of documents.
Agents are publishers of documents.
This construction allows multiple properties to have the same domain and
range, distinguished by the “middle part” (e.g. author or publisher) of the
property.

(CLIE previously supported only the first type, and more than one property could
not share the same domain and range.)

• All additions to the ontology can be undone or deleted by writing CLOnE sentences
beginning with the keyword Forget.

• CLIE uses information already in the ontology in several ways as part of the inter-
pretation of input sentences (as explained in detail in Section 4.3).

• Referring to the ontology allows us to “re-use” the same syntax in some cases with
different semantics for classes and instances (see Sections 4.2 and 4.3) so that the
language is more powerful but no less intuitive, and still easy to learn by examples
(as 3.2 will show).

We also carried out a comparative usability evaluation of CLIE as Chapter 5 will describe
in detail.

CHAPTER 1. INTRODUCTION 5

1.3 Structure of this document

Chapter 2 reviews related work in controlled languages and user-friendly ontology-editing
interfaces, and compares them with our goals for CLIE. Chapter 3 is our user’s guide to
running CLIE and writing input in CLOnE, and Chapter 4 (supplemented by Appendix B)
explains in detail how the CLIE software works.

To demonstrate the usability of our work, Chapter 5 and Appendix A present our user
evaluation of CLIE in comparison with the well-known ontology-editing tool, Protégé.
Finally, Chapter 6 sets out our plans for further development and use of CLIE outside the
SEKT project.

Chapter 2

Related work

2.1 ACE

Attempto Controlled English1 (ACE) is a well-known controlled natural language. It is a
subset of standard English designed for knowledge representation and technical specifi-
cations, and constrained to be unambiguously machine-readable into discourse represen-
tation structures, a form of first-order logic. (It can also be translated into other formal
languages.) ACE has been adopted as the controlled language for the EU FP6 Network of
Excellence REWERSE2 (Reasoning on the Web with Rules and Semantics). [FKK+06]

The Attempto Parsing Engine (APE) consists principally of a definite clause grammar,
augmented with features and inheritance and written in Prolog. [Hoe04] This tool can be
tested and demonstrated with a web browser through the APE Webinterface3 and clients
for the APE web service are also available.4

Figure 2.1 presents APE’s output for the sentence “Every book has a title.”, as gener-
ated through the web interface. The resulting DRS (Discourse Representation Structure)
can be mapped cleanly to first-order logic and OWL DL5, and REWERSE proposes ACE
OWL, a sublanguage of ACE, as a means of writing formal, simultaneously human- and
machine-readable summaries of scientific papers. [KF06, Kuh06]

There are a few difficulties with ACE OWL. In order to be highly expressive but at the
same time strictly unambiguous, ACE itself prohibits certain very natural constructions
such as the use of only as an adverb; consequently defining carnivore as an animal that
eats only meat requires either two affirmative sentences (“Every carnivore eats nothing
but meat.” and “Everything that eats nothing but meat is a carnivore.”) or a logically

1http://www.ifi.unizh.ch/attempto/
2http://rewerse.net/
3http://www.ifi.unizh.ch/attempto/tools/
4http://www.ifi.unizh.ch/attempto/documentation/ape webservice.html
5Web Ontology Language Description Logic

6

http://www.ifi.unizh.ch/attempto/
http://rewerse.net/
http://www.ifi.unizh.ch/attempto/tools/
http://www.ifi.unizh.ch/attempto/documentation/ape_webservice.html

CHAPTER 2. RELATED WORK 7

Input:
Every book has a title.
or
Each book has a title.
Paraphrase:

if there is a book A then the book A has a title B .

DRS:

[]
[A]
object(A, atomic, book, object, cardinality,

count_unit, eq, 1)-1
=>
[B, C]
object(B, atomic, title, object, cardinality,

count_unit, eq, 1)-1
predicate(C, unspecified, have, A, B)-1

Figure 2.1: Example of APE input and output

equivalent but less human-readable sentence (such as “No carnivore eats something that
is not a meat.”). [Kal06a] Since ACE OWL also aims to provide reversibility (translating
OWL DL into ACE), OWL’s allValuesFrom must be translated into a similar construction
which can be rather difficult for humans to read. Currently, ACE OWL does not currently
support enumerations (OWL’s oneOf) and has limited support for datatype properties.
[Kal06b]

ACE OWL imposes several further restrictions on ACE, such as the elimination of
plural nouns. (Although APE generates identical output for “Every book has a title.” and
“Each book has a title.”, it rejects the input “All books have titles.” with a general error
message indicating that it cannot be analysed.) [Kal06b]

Although ACE itself has a predefined lexicon, unknown words can be used if they are
annotated with a POS6 tag, e.g. “Every carnivore is a n:meat-eater”, but this does require
the user to be familiar with the lexicon. [Kal06b]

In summary, ACE OWL allows users to express in a sublanguage of English much of
the functionality of OWL DL, but it requires training and practice to write correctly. It is,
however, easy to read—with the exception of some constructions generated from OWL
DL (as mentioned above).

6POS: part of speech, e.g. noun, verb, adjective, determiner.

CHAPTER 2. RELATED WORK 8

2.2 Aqualog

AquaLog7 is an ontology-driven, portable question-answering (QA) system built for the
goal of providing a natural language query interface to semantic mark-up stored in knowl-
edge base. The application scenario for AquaLog and other systems reviewed in this sec-
tion is very much similar to a natural language interface to relational database, but with
semi-structured data encoded in ontologies instead of structured data stored in RDBMS.
[LM04]

By using tools from the GATE framework [CMBT02], AquaLog translates controlled
natural language queries into a triple representation called Query-Triples. GATE pro-
vides a set of linguistic annotations and additional JAPE (Java Annotation Pattern Engine)
grammars are created in order to capture relations and question indicators and to perform
partial or shallow parsing across the user’s questions. As with typical finite-state parsing
or shallow parsing, JAPE consists of a cascade of finite state automata, which in combina-
tion can provide sufficient parsing information in order to process the questions efficiently.
Not all language processing tasks require deep context-free-based parsing. The authors
[LM04] comment in relation to [KL03] on the discussion of the costs and benefits of full
parsing and furthermore on the time-consuming efforts of engineering the grammar not
to mention how often a substantial amount of parse information would be discarded. This
is also the case for Aqualog, whereby the system is implemented using a simple triple-
based intermediate representation as opposed to DRS (discourse representation structure)
or fully formed FOPL (first-order predicate logic). [BKGK05]

Further processing is conducted by the Relation Similarity Service (RSS) module.
The role of the RSS module is to map CL questions into ontology compliant queries. Fur-
thermore this module invokes the use of string similarity metrics, lexical resources such
as WordNet [Fel98] and domain-dependent lexicons in order to generate query-triples that
are compliant with the underlying ontology. [LM04] The RSS module plays a crucial role
within the system. It structurally checks the generated query triples against the underly-
ing ontology. If the RSS fails to discover matching relations or concepts within the KB,
it requests, as last resort, the user to disambiguate the relation or concept from a given set
of candidates.

An initial study of Aqualog against a KB containing the AKT ontology and the KMi
knowledge base, with 10 users having no knowledge about Aqualog, when given unre-
stricted questions, demonstrates that AquaLog can handle 48.68% of the questions. The
advantages of AquaLog include: its wide coverage over the types of questions that can
be asked, the combination of WordNet and users’ feedback to tackle the disambigua-
tion problem while mapping users’ queries to concepts and relations in the ontology, and
portability that allows minimal configuration change while using different ontology as
knowledge source. Though Aqualog can handle unrestricted questions, from a linguistic
perspective the syntactical constructs themselves are controlled and thus the input lan-

7http://kmi.open.ac.uk/technologies/aqualog/

http://kmi.open.ac.uk/technologies/aqualog/

CHAPTER 2. RELATED WORK 9

guage can be seen as a controlled language.

Theoretically, in comparison to the ACE Question Answering System [BKGK05] for
instance, the linguistic components are more robust and maintainable, due to the shallow
NLP methods employed by the system. However, existing linguistic rules pose difficulties
with respect to complex queries, requiring extension of the NLP component. Aqualog’s
authors plan to remedy this in their future work. An additional key limitation of AquaLog
is that only a single ontology can be used at a time. This is to be addressed in Power-
Aqua [LMU06], which aims to find answers from distributed, ontology-based semantic
markup. This allows PowerAqua to find answers that require “composing heterogeneous
information derived from multiple information sources that are autonomously created and
maintained.” [LMU06]. At the time of writing, PowerAqua had not been completely im-
plemented for any evaluation.

2.3 Cypher

Cypher8 is proprietary (but free of charge) software from Monrai Technologies that trans-
lates natural language input into RDF and SeRQL (Sesame RDF Query Language) ac-
cording to grammars and lexica defined by the user in XML. It is designed particularly to
parse noun phrases and descriptive clauses, in order to help users build a natural language
interface to the Semantic Web.

As Cypher is recently developed proprietary software and is not the subject of any
research papers, it is difficult to examine here. We may note, however, that it is designed
to analyse a user-defined subset of natural language (not necessarily a controlled language
in the technical sense) and that it requires the development of a grammar and lexicon for
each application domain.

2.4 GINO

GINO (Guided Input Natural Language Ontology Editor) aims to use guided data entry to
overcome two problems of natural language input (NLI) systems: the adaptivity barrier,
caused by the varying requirements of different domains; and the habitability problem,
the disparity between what users expect and what the system is capable of doing. [BK06]

The GINO editor provides a guided, controlled NLI for domain-independent ontology
editing for the Semantic Web. As the user types a sentence, GINO incrementally parses
the input not only to warn the user as soon as possible about errors but also to offer the
user (through the GUI) suggested completions of words and sentences—similarly to the
“code assist” feature of Eclipse9 and other development environments. GINO translates

8http://www.monrai.com/products/cypher/cypher manual
9http://www.eclipse.org/

http://www.monrai.com/products/cypher/cypher_manual
http://www.eclipse.org/

CHAPTER 2. RELATED WORK 10

the completed sentence into triples (for ontology editing) or SPARQL10 statements (for
queries) and passes them to the Jena Semantic Web framework. (The JENA Eyeball11

model checker verifies the OWL for consistency.) Because GINO has been developed as
an extension to the GINSENG [Kau06] NLI querying system it also support queries in a
similar way.

Unlike many NLIs (including to some extent ACE), GINO does not rely on a lexicon
fixed in advance; it flexibly uses the vocabulary inherent in the grammar (specified in a
form similar to Backus-Naur) along with the terms found in the loaded ontologies. GINO
also offers the option of graphically editing the ontology beside the NLI.

Although the guided interface facilitates input, the sentences are quite verbose. For
example to create a class lake, a numeric property lakeDepth and an instance, the user
must enter the following.

• there is a class called lake.

• there is a new property named lake depth.

• there is an instance of class lake named tahoe.

2.5 Simplified English

Simplified English is a well-established controlled language originally developed by the
European Association of Aerospace Manufacturers in the 1980s for writing technical
documentation, especially aircraft maintenance manuals. It is now maintained by the
AeroSpace and Defence Industries Association of Europe (ASD) Simplified Technical
English Maintenance Group (STEMG) and sold as a proprietary specification12 although
an obsolete document is available on the web.13

Simplified English is designed to produce unambiguous documents that can be
easily read (especially by non-native speakers of English) and translated (even semi-
automatically), particularly for safety-critical, human-readable documents.14 It is based
on a standard lexicon of syntactically and semantically unambiguous words: for example,
close functions as a verb only, and follow means only come after, not obey. The stan-
dard lexicon includes a large number of verbs and nouns relevant to the intended domain
and allows the addition of “Technical names” such as proper nouns, measurements, dial
markings, etc.

10http://www.w3.org/TR/rdf-sparql-query/
11http://jena.sourceforge.net/Eyeball/full.html
12http://www.simplifiedenglish-aecma.org/Simplified English.htm
13http://www.userlab.com/Downloads/SE.pdf
14http://www.userlab.com/SE.html

http://www.w3.org/TR/rdf-sparql-query/
http://jena.sourceforge.net/Eyeball/full.html
http://www.simplifiedenglish-aecma.org/Simplified_English.htm
http://www.userlab.com/Downloads/SE.pdf
http://www.userlab.com/SE.html

CHAPTER 2. RELATED WORK 11

Although Simplified English is designed to facilitate the use of machine translation, it
is not a formal language intended for knowledge representation. It does however represent
a historically important and commercially significant step in the history of controlled
natural language.

2.6 Discussion

CLIE and CLOnE, the software and input language that we present in this deliverable, are
designed to offer the following advantages.

• CLIE requires only one programming language or runtime environment, Java 1.5.

• CLOnE is a sublanguage of English.

• As far as possible, CLOnE is grammatically lax; in particular it does not matter
whether the input is singular or plural (or even in grammatical agreement). For
example, the lines of input within each group in Figure 2.2 have the same semantics.

• CLOnE is case-insensitive.

• CLOnE can be compact; the user can create any number of classes or instances in
one sentence.

• As Section 3.2 will show, CLOnE is easy to learn by following examples and a few
guiding rules, without having to study formal expressions of syntax.

• Nonetheless, the current implementation of CLIE uses only 11 syntactic rules (pre-
sented in Section 4.2).

• Any valid sentence of CLOnE can be unambiguously parsed.

CLIE and CLOnE have been favourably evaluated by test users (as shown in Chapter 5)
as part of the SEKT project, and will be developed and applied beyond the project (as
indicated in Chapter 6).

Book is a type of document.
Books is a type of document.
Books are types of document.
Books are types of documents.
Alice is a person. Bob is a person.
Alice and Bob are person.
Alice and Bob are persons.

Figure 2.2: Groups of equivalent sentences in CLOnE

Chapter 3

User’s guide

3.1 Installing and running CLIE in GATE

1. Ensure you have Sun Java 1.5 and a recent development snapshot of GATE 4.0.
(CLIE requires GATE 4.0, which requires Java 1.5.)
http://java.sun.com/javase/downloads/index.jsp
http://gate.ac.uk/download/snapshots/

2. Refer to the GATE documentation for instructions on how to run GATE on your
platform.
http://gate.ac.uk/documentation.html

3. Unpack the CLIE application (clie.zip or clie.tar.gz). This
will create the sins and sins/clone directories, the application file
sins/clone/clie-demo.xgapp and the additional files that make up the ap-
plication.

4. Launch GATE. Click File on the menu bar and then Restore Application
from File. Browse to clie-demo.xgapp and select it, as shown in Fig-
ure 3.1. This will create a corpus pipeline CLIE, a document Text input and
an ontology Ontology, as well as the other components required by the applica-
tion.

5. At this point the CLIE application is loaded and connected to an empty ontology
and an empty input document. You can start with the empty ontology (CLIE will
create a top class Entity when a top class is first required) or load an existing
ontology using either of the following methods.

• To load a file of ontological data, right-click on the Ontology and se-
lect Load OWL-Lite data, Load OWL-DL data, Load OWL-Full
data or Load RDF(S) data. Then select the file. Two sample files of

12

http://java.sun.com/javase/downloads/index.jsp
http://gate.ac.uk/download/snapshots/
http://gate.ac.uk/documentation.html

CHAPTER 3. USER’S GUIDE 13

Figure 3.1: Loading the CLIE application

CHAPTER 3. USER’S GUIDE 14

OWL-Lite data are provided with CLIE: sins/clone/library0.owl
and library1.owl.

• To load an ontology from a URL, right-click on Language Resources
and select either KAON Ontology or Jena Ontology, then enter a
name of your choice and the source URL.1 You must now configure CLIE
to use this ontology instead of the default one. Double-click on CLIE,
then select CLIE Jape Transducer (under Selected Processing
Resources). Click the pull-down menu for the ontology parameter in
the lower part of the window and select the new ontology you wish to modify
with CLIE.

6. To modify the ontology with CLIE, double-click on the Text input GATE doc-
ument and type sentences in the CLOnE language (described in the next section).
To process the input, either right-click on CLIE and select Run, or click on the
Run button in the CLIE pane. After running CLIE you can inspect the selected
ontology by double-clicking on it and view the RDF output and error messages in
the Messages pane.

Figures A.2 and A.3 (page 47) illustrate the text input and ontology viewing areas
in the GATE GUI.

Once your input text has been correctly processed, you can delete it using your
platform’s usual “select all” keybinding and the delete or backspace key. If it has
not been completely successful, you can delete the correct sentences, undo others
by prefixing them with Forget that, and edit others to make them correct and
parseable.

If you leave correctly processed sentences in the input text and run them again, it
will generate errors.

7. To save your modified ontology as an OWL-Lite file, right-click on the ontology,
select Save to file, select a directory and enter a file name.

3.2 Writing CLOnE

CLOnE (Controlled Language for Ontology Editing) is designed to be easy to learn from
examples, and consists of keywords (including punctuation) and names (of classes, in-
stances and properties). In the following examples, keywords (all of which are listed in in
Figure 3.2) are underlined.

Many CLOnE sentences can be negated by adding Forget or Forget that at the
beginning. These negative sentences generally “undo” the effect of the basic form, but

1For example http://proton.semanticweb.org/2005/04/protonkm for the Proton
Knowledge Management Module.

http://proton.semanticweb.org/2005/04/protonkm

CHAPTER 3. USER’S GUIDE 15

they do not always delete everything you might expect. Such differences are pointed out
below.

In any place in CLOnE where we give a list of names (e.g. projects and
organizations) you can also use a single name as well as a longer list of more than
two names (provided there is a comma or the keyword and between each name).

Manipulating classes

1. There are projects and organizations.

Create two new classes, Project and Organization, directly under the top class En-
tity.

2. Universities and companies are types of organization.

The class Organization must already exist. Make classes University and Company
direct subclasses of Organization and create the first two classes if they do not
already exist. (A class can have more than one direct superclass.)

3. Forget that universities and companies are types of
organization.

Unlink the subclass-superclass relationships. This statement does not delete any
classes. (See example 6 for deleting classes.)

Manipulating instances

4. ’University of Sheffield’ is a university.

Create an instance University of Sheffield of the class University (which must al-
ready exist). Because the name contains a preposition (of) it needs to be enclosed
in quotation marks—these tell the CLIE program to treat everything between them
as one name. (See item 6 for deleting instances.)

5. ’Smith and Sons’ and ’Jones Ltd.’ are companies.

Create two instances Smith and Sons and Jones Ltd of the class Company (which
must already exist). These names are quoted because the first one contains a key-
word (and) and the second one contains punctuation (.). (See item 23 below for a
fuller explanation of quoting.)

Deleting classes and instances

6. Forget ’Smith and Sons’, Alice Smith and projects.

CHAPTER 3. USER’S GUIDE 16

and
are
are a type of
are also called
are also known as
are called
are known as
are types of
can have
date
date as
dates
dates as
delete all
delete everything
forget
forget all
forget everything
forget that
has

have
is
is a
is a type of
is also called
is also known as
is an
is called
is known as
number
number as
numbers
numbers as
numeric
numeric as
string
string as
strings
strings as
text

text as
texts
texts as
textual
textual as
that can have
that has
that have
there are
there is
which are
which can have
which has
which have
which is
with value
.
,

a, an, that, the, these and other determiners.
at, in, of and other prepositions.

Figure 3.2: Reserved words and phrases

CHAPTER 3. USER’S GUIDE 17

Delete the instances Smith and Sons and Alice Smith and the class Project. In this
statement, the list can contain a mixture of classes and instances.

Manipulating object properties

7. Persons are authors of deliverables.

If the classes Person and Deliverable exist, define a property Per-
son Author of Deliverable between them. You can provide a list of class
names for both the domain and range, and CLIE will create the property for all the
combinations.

8. Forget that persons are authors of deliverables.

Delete the property defined in the last example.

9. Alice Smith and Bob Davis are authors of ’D2.3.4’.

If Alice Smith and Bob Davis are instances of Person and D2.3.4 is an instance
of Deliverable, and the property already exists, create two property definitions to
indicate that they are authors of it. D2.3.4 must be quoted because it contains
punctuation (.)—see item 23 below.

10. Forget that Bob Davis is author of ’D2.3.4’.

Remove the property definition for one of the authors in the previous example. (This
leaves the other author defined.)

11. Journals and conferences have articles.

If classes Journal, Conference and Article exist, create properties Jour-
nal has Article and Conference has Article.

12. ’Journal of Knowledge Management’ has ’Crossing the
Chasm’.

If the named instances are members of classes between which a has-property
already exists, instantiate the property with these instances. (See item 23 below for
an explanation of the quotation marks.)

13. Forget that conferences have articles.

Delete the property Conference has Article (created in example 11).

14. Forget that ’Journal of Knowledge Management’ has
’Crossing the Chasm’.

Delete the property definition instantiated in example 12.

CHAPTER 3. USER’S GUIDE 18

Manipulating datatype properties

15. Projects have string names.

Create a datatype property with domain Project (the class must already exist) and
the name Project has name. The type can be specified with one of the following
keywords: text, textual, or string; date; and number or numeric.

16. Forget that projects have string names.

Delete the property from the previous example.

17. SEKT has name with value ’Semantically Enhanced
Knowledge Technologies’.

Instantiate a datatype property definition.

Adding and removing synonyms

18. Alice Smith is also called Alice and ’A. Smith’.

Add two synonyms (Alice and A. Smith) to the instance Alice Smith. After doing
this, you can use the either form, Alice or ’A. Smith’, to refer to the same
instance in later statements.

19. Persons are also called people.

Add the synonym People to the class Person, so that you can later make a statement
such as “Alice and Bob are people.” with the same effect as “Alice
and Bob are persons.”.

20. Forget that Alice Smith is also called ’A. Smith’.

Delete a synonym (or list of synonyms). This works for classes and instances. This
statement does not affect changes already made to the ontology using the synonym.

Clearing the entire ontology

21. Forget everything.

This deletes everything in the ontology.

Typing the names of classes and instances

22. Names are normalized using initial upper-case letters and the base forms of words
with underscores between them, so that

CHAPTER 3. USER’S GUIDE 19

• Deliverables and deliverable both refer to the class Deliverable, and

• Alice Smith and alice smith both refer to the instance Alice Smith.

23. Names containing reserved words (see Figure 3.2), punctuation, prepositions (at,
of, etc.) and determiners (the, that, these, etc.) must be enclosed in quotation
marks (’...’).

For example, ’Journal of Cell Biology’, ’String Theory’ and
’Smith and Sons’ will not be interpreted correctly without them. Sen-
tences containing the first two expressions without quotes are unparseable, whereas
Smith and Sons will be interpreted as a list of two names separated by the
keyword and. It is also important to use quotation marks in correctly positioned
pairs.

Lists of classes and instances

24. Many CLOnE statements take a list of names as one or two of their arguments. A
list can consist of only one name or of two or more names with a comma (,) or
the keyword and or both (, and) separating the names. So the following lists are
equivalent.

Alice, Bob, and Charles
Alice and Bob and Charles
Alice, Bob, Charles

Sentences that refer to classes or instances

25. Some statements have the same structure (syntax) but take either classes or in-
stances as arguments, for example (25C) and (25D) in the following list.:

(A) Books are a type of document.

(B) ’Syntactic Structures’ is a book.

(C) People are authors of documents.

(D) Chomsky is the author of ’Syntactic Structures’.

In these cases, CLIE examines the ontology to see if the arguments are classes (as
in 25C) or instances (as in 25D) and processes the statement (or generates an error
message) appropriately. As long as you match classes with classes and instances
with instances in such sentences (examples 7–12 above), CLIE will resolve them
and interpret the sentences correctly.

CHAPTER 3. USER’S GUIDE 20

Furthermore, 25B makes Syntactic Structures an instance of class Book but
25C treats Syntactic Structures as an instance of Document—in fact Syntac-
tic Structures is an instance of both Book and Document and is subject to all the
properties defined for both classes. CLIE resolves this automatically for you.

Chapter 4

Implementation

The syntax of the controlled language is based principally on chunks, which are used to
name classes, instances, properties and values, and keyphrases; POS (part-of-speech) tags
and morphological analysis (stemming) also play a role.

Section 4.1 will present the procedural description of CLIE, then Section 4.2 will
discuss the syntax and semantics of CLOnE. Finally Section 4.3 will highlight the ways
in which CLIE consults the ontology (which in effect acts as input as well as output) in
order to interpret the semantics of the CLOnE input.

4.1 Processing

Procedurally, CLIE’s analysis consists of a GATE pipeline of Processing Resources (PRs)
which are executed in the following sequence, as illustrated in Figure 4.1.

PR 1. The text is annotated into tokens1 with the ANNIE English tokenizer.

PR 2. The text is split into sentences (again using the ANNIE tool for this purpose).

PR 3. The tokens are POS-tagged2 with the Hepple tagger.

PR 4. The GATE morphological analyser adds stores each token’s lemma3 as a root
feature.

1Linguistic tokens are the units of lexical meaning in a sentence, such as words, numbers and punctuation
marks. In English (but not in all languages) they are usually separated by spaces, although the string doesn’t,
for example, would be divided into two tokens: does+n’t.

2POS-tagging means marking each token with a code for its part of speech (noun, verb, adjective, etc.).
3The lemma is the canonical form of a word, typically its dictionary headword. For example, go, goes,

going, gone and went all have the same lemma: go.

21

CHAPTER 4. IMPLEMENTATION 22

Chunk content in the input text Features
’Wiley and Sons’ canonical Wiley_and_Sons

root wiley and son
string Wiley and Sons

’multiword expressions’ canonical Multiword_Expressions
root multiword expression
string multiword expressions

Multiword expressions canonical Multiword_Expression
root multiword expression
string Multiword expressions

Table 4.1: Examples of Chunk annotations from quoted and unquoted chunks

Lookup.majorType == CLIE-Subclass
is a type of
are a type of
are types of

Table 4.2: Keyphrases indicating subclasses

PR 5. The CLIE QuoteFinder (a JAPE4 transducer) identifies passages of the text in pairs
of quotation marks (either single ’ or double ") and annotates them as chunks.
Each such Chunk annotation’s span includes the quotation marks but its features
are derived from the string and root features of the Token and SpaceToken anno-
tations within the quotation marks, as shown in Table 4.1. (Chunks are the basis
of names of classes, instances and properties and their role will become clearer in
subsequent sections.)

PR 6. The CLIE gazetteer marks all the keywords and phrases with Lookup anno-
tations indicating their signifance; for example, the phrases in Table 4.2 re-
ceive Lookup annotations with the feature (attribute-value pair) majorType ==
CLIE-Subclass. Appendix B lists the complete gazetteer with the feature or
features for each phrase’s Lookup annotation.

PR 7. The CLIE Chunker is a multi-phase JAPE transducer that marks list separa-
tors (commas and the word and) and then labels as chunks all continuous se-
quences of tokens excluding list separators, Lookup annotations, stops (.), to-
kens POS-tagged as prepositions and determiners, and chunks already marked by
the QuoteFinder. Each chunk is marked with a Chunk annotation with features

4JAPE (Java Annotation Pattern Engine) is a language used in GATE for writing regular expressions
over annotations and rules for adding more annotations and executing Java code when the patterns are
matched. Section 4.2 will illustrate its use.

CHAPTER 4. IMPLEMENTATION 23

derived from from the string features of the Token and SpaceToken annotations
within the chunk’s span, as shown in Table 4.1.

PR 8. Finally, the CLIE JAPE transducer processes each sentence in the input text and
manipulates the ontology appropriately—as Section 4.2 will explain in detail. This
PR refers to the contents of the ontology in order to analyse the input sentences
and check for errors; some syntactically identical sentences may have different
results if they refer to existing classes, existing instances, or non-existent names,
for example.

As Table 4.1 suggests, the canonical feature—from which the name of a new class or
instance is derived—is generated differently for quoted and unquoted chunks. For quoted
chunks, it is the catenation of the string values of the tokens and underscores for the
space-tokens (which can represent literal spaces, tabs or newlines). For unquoted chunks,
the lemmata of the tokens are used. This is reasonable because quoted chunks are in-
tended principally for proper names such as Wiley and Sons and Journal of Irreproducible
Results.

The Java code that tests chunks in the input text against existing classes and instances
in the ontology returns a match if any of the three features of the chunk (canonical,
root or string) is case-insensitively equal to any of those features of an existing class or
instance; for example, the chunks ’multiword expressions’ and Multiword
expressions match each other, although the class name in the ontology varies accord-
ing to which one is first used to create the class.

4.2 Syntax and semantics

An input document in CLOnE consists of a series of sentences, each of which consists of
chunks, list separators, prepositions and keyphrases and ends with a full stop. A parseable
sentence matches the pattern (similar to a regular expression) left-hand side (LHS) of one
of the rules in the CLIE JAPE transducer and the sentence’s semantics are determined by
the rule’s right-hand side (RHS), which contains Java code to manipulate the ontology.

We now present the full current list of CLIE syntactic rules, for each of which is given
the following details:

• the JAPE pattern (regular expression) of GATE annotations (please refer to Ta-
bles 4.3, 4.4 and 4.5 for explanations of the notation used);

• an informal statement of the pattern, using variables such as CLASS and INSTANCE

(and CLASSES, for example, to indicate a list of one or more);

• one or more examples of CLOnE input; and

CHAPTER 4. IMPLEMENTATION 24

Notation Explanation
SlantedText a GATE annotation of the named type over one

or more tokens of the input text
* Kleene star
Chunk* zero or more consecutive occurrences of the

Chunk annotation, for example
? optional item
CLIE-Negate? zero or one occurrence of the CLIE-Negate an-

notation, for example
(. . .) grouping
(A B)* an empty list, A B, A B A B, etc.

Table 4.3: Notation used for JAPE syntax in this document

Annotation type Significance
Chunk name of a class, instance or property; value of a

datatype property
Lookup keyword or phrase from the gazetteer
Prep preposition
Separator comma (,) or and
Split full stop (.)

Table 4.4: Annotation types used in CLIE JAPE patterns

• an explanation of the rule’s semantics, i.e. what CLIE does when an input sentence
matches the rule.

Many of the sentences also have negative forms indicated by the CLIE-Negate? op-
tional element at the beginning of the pattern. The negative forms (Forget...) can be
used to correct input errors (a form of “undo”-function) as well as to delete old (but not
necessarily previously erroneous) information while editing an existing ontology.

Rule 1. CLIE-Negate? CLIE-NewClass ChunkList Split

There is/are CLASSES.
Forget that there is/are CLASSES.

There are agents and documents.

Create a new class immediately under the top class for each chunk in ChunkList.
If negated, delete each class named in ChunkList.

Rule 2. CLIE-Negate? ChunkList0 CLIE-InstanceOf Chunk1 Split

INSTANCES is a/are CLASS.

CHAPTER 4. IMPLEMENTATION 25

Figure 4.1: The CLIE pipeline

Abbreviation Significance
DT determiner (Token.category==DT)
Prep preposition (Token.category==IN)
ChunkList one or more chunks, separated by commas or

and
pattern: (Chunk Separator)* Chunk

CLIE-Have Lookup.majorType==CLIE-Have
CLIE-NewClass Lookup.majorType==CLIE-NewClass
.

Table 4.5: Abbreviations used in the CLIE JAPE patterns

CHAPTER 4. IMPLEMENTATION 26

Forget that INSTANCES is a/are CLASS.

’University of Sheffield’ is a university.
Alice Jones and Bob Smith are persons.

For each chunk in ChunkList0 create an instance of class Chunk1. If negated,
delete each instance. If Chunk1 does not name an existing class, generate an
error.

Rule 3. CLIE-Negate? ChunkList0 CLIE-Subclass Chunk1 Split

CLASSES is/are a type/types of CLASS.
Forget that CLASSES is/are a type/types of CLASS.

Universities and persons are types of agent. Dogs
are a type of mammal. Forget that dogs are a type of
cat.

For each chunk in ChunkList0, if it already exists as a class, make it a subclass of
the class named by Chunk1; if it does not exist, create a new class as a subclass
of Chunk1.5

If the sentence is negated, unlink the subclass-superclass relationship (but do not
delete the subclass).

If Chunk1 does not name an existing class, generate an error.

Rule 4. CLIE-Negate? ChunkList0 CLIE-Have ChunkList1 Split

CLASSES/INSTANCES have CLASSES/INSTANCES.
Forget that CLASSES/INSTANCES have CLASSES/INSTANCES.

Journals have articles. ’Journal of Knowledge
Management’ has ’Crossing the Chasm’.

Iterate through the cross-product of chunks in ChunkList0 and chunks in
ChunkList1. For each pair, if both are classes, create a property of the form
Domain has Range. If both are instances, find a suitable property and instantiate
it with those instances; if there is a class-instance mismatch or a suitable property
does not exist, generate an error.

Rule 5. CLIE-Negate? ChunkList0 CLIE-Have CLIE-Datatype Chunk1 Split

CLASSES have DATATYPE DESCRIPTION.
Forget that CLASSES have DATATYPE DESCRIPTION.

Projects have string names. Deliverables and
conferences have dates as deadlines.

5CLIE and the GATE Ontology API support multiple inheritance.

CHAPTER 4. IMPLEMENTATION 27

For each class named in ChunkList0, create a datatype property of the form
Domain has Chunk1.6

Rule 6. CLIE-Negate? ChunkList0 CLIE-Have Chunk1 CLIE-PropertyValue Chunk2
Split

INSTANCE has DESCRIPTION with value VALUE.
Forget that INSTANCE has DESCRIPTION with value VALUE.

SEKT has name with value ’Semantically-Enabled
Knowledge Technology’. D2.2.2’ has deadline with
value ’M36’.

For each instance named in ChunkList0, find a suitable datatype property with
the description Chunk1 and instantiate it with the data value Chunk2.

Rule 7. CLIE-Negate? Chunk0 CLIE-Synonymous ChunkList1 Split

CLASS/INSTANCE is/are also called/known as SYNONYMS.
Forget that CLASS/INSTANCE is/are also called/known as SYNONYMS.

Dogs are also called canines. Bob Smith is also
called Bob.

Add all the chunks listed in ChunkList1 as synonyms of the class or instance
named in Chunk0. The synonyms are indexed and can be used in subsequent
statements of CLIE, although they do not affect the classes’ and instances’
primary names in the ontology. If negated, delete the synonym in ChunkList1
from the class or instance in Chunk0.

Synonyms are implemented as RDF-labels so they are saved in the OWL-Lite file
that CLIE exports and can be used again when the same file is re-loaded.

Rule 8. CLIE-NewClass ChunkList0 Separator? CLIE-Have ChunkList1 Split

There are CLASSES, which have CLASSES.

There are projects, which have workpackages and
deliverables.

Create a class under the top class for each chunk in ChunkList0, and create
properties of the form Domain has Range for the cross-product of new classes
in ChunkList0 and existing classes in ChunkList1.

Rule 9. CLIE-Negate? ChunkList0 CLIE-Copula DT? Chunk1 Prep ChunkList2 Split

CLASSES/INSTANCES are DESCRIPTION PREPOSITION CLASSES/INSTANCES.
Forget that CLASSES/INSTANCES are DESCRIPTION PREPOSITION

CLASSES/INSTANCES.
6The gazetteer distinguishes string, numeric and date types, but they are all currently implemented as

strings.

CHAPTER 4. IMPLEMENTATION 28

Persons are authors of documents. Carl Pollard
and Ivan Sag are the authors of ’Head-Driven Phrase
Structure Grammar’.

Iterate through the cross-product of chunks in ChunkList0 and in Chun-
kList2. For each pair, if both name classes, create a property of the form
Domain Chunk1 Prep Range.

If both name instances and a suitable property can be found, instantiate the prop-
erty between the given instances. If there is a class-instance mismatch or one of
the names cannot be dereferenced, an error message is produced.

This rule is a particularly good example of CLIE’s use of information from the
ontology to interpret the input sentences.

Rule 10. CLIE-ClearAll Split

Forget everything.

Clear the whole ontology (and start over).

Rule 11. CLIE-Negate ChunkList Split

Forget CLASSES/INSTANCES.

Forget projects, journals and ’Department of Computer
Science’.

For each chunk in ChunkList, delete the named class or instance. (The GATE
ontology API will automatically delete subclasses and instances of named
classes, and properties and property definitions referring to named classes and
instances.)

4.3 Using the ontology to interpret CLOnE input

The last stage of analysis, the CLIE JAPE transducer (PR 8 in Section 4.1), refers to the
existing ontology in several ways in order to interpret the input sentences.

• Rules 4 and 9 can take classes or instances as their arguments. The Java code that
interprets these rules refers to the ontology and behaves differently according to
each argument’s status in the ontology (class, instance, or non-existent).

– If the domain and range arguments both refer to classes, the code creates a
new property between those classes.

– If the domain and range arguments both refer to instances and a suitable prop-
erty definition exists, the code defines a new property value between the in-
stances.

CHAPTER 4. IMPLEMENTATION 29

– In other cases (either argument does not exist, or one is a class and the other
an instance), the code generates an error message.

Each syntactic rule is easier for the user to learn and the two functions (semantic
interpretations) of each rule are intuitively distinguished by the user.

• When rules 4 and 9 are used to define property values between instances, the rele-
vant Java code looks for a suitable property. It searches the ontology for a list of all
the classes of which the domain instance is a direct or indirect member and a similar
list for the range instance; then it scans up the two lists (from the direct classes to
the top class in the ontology) until it finds a property whose “middle part” (e.g. has
or Author of) matches the corresponding string used in the sentence currently being
processed.

So in example 25 in Section 3.2 (page 19), Chomsky is a direct instance of Person,
and Syntactic Structures is a direct instance of Book and an indirect instance of
Document. Sentence 25D is therefore interpreted as a definition of the property
Person Author of Document which was created by sentence 25C.

• Rule 11 for deleting a list of classes and instances checks each name on
the list and calls the GATE Ontology API’s removeClass(OClass) or
removeInstance(OInstance) method as appropriate; it returns an error
message for each name it cannot find in the ontology.

• Rule 2 checks that the class exists before attempting to create instances.

• In all the rules, the user can refer to a class or instance by its canonical name (de-
rived from the name used when it was created) or any of the synonyms that have
been added (and not subsequently deleted) by rule 7. The canonical names and syn-
onyms are stored in an index and as RDF labels in the ontology. Common Java code
used by all the rules looks up names in the index (with case-insensitive matching)
and dereferences them to the correct classes and instances.

• Rule 3 verifies that Chunk1 refers to an existing class in the ontology. For each
name in ChunkList0 that refers to an existing class, Chunk1 is added as a direct
superclass; for each new class name in ChunkList0, CLIE creates a new class as a
direct subclass of Chunk1.

Chapter 5

Evaluation

We carried out a user evaluation of CLIE in comparison with Protégé in order to obtain
quantitative measures and quantified subjective evaluations of usability as well as com-
ments and suggestions.

5.1 Methodology

We prepared the following documents (given in full in Appendix A) for the users.

• The pre-test questionnaire (Figure A.15) asks for background information: how
much each subject already knows about ontologies, the Semantic Web, Protégé and
controlled languages. We scored this questionnaire by assigning each answer a
value from 0 to 2 (from left to right) and dividing the total by 12 to obtain a score
of 0–100.

• The short manual (Section A.1) introduces ontologies and provides “quick start”
instructions for both pieces of software. Although much simpler, our manual was
partly inspired by Protégé’s Ontology 101: Creating your First Ontology documen-
tation. [NM01]

• The post-test questionnaire for each tool (Figure A.16) is the System Usability
Scale, a de facto standard for evaluating software usability, which also produces
a score of 0–100. [Bro96]

• We devised the comparative questionnaire (Figure A.17) to measure each user’s
preference for one of the two tools. This form is scored similarly to SUS so that 0
would indicate a total preference for Protégé, 100 would indicate a total preference
for CLIE, and 50 would result from marking all the questions neutral. On the
reverse side (Figure A.18) and in discussion with the facilitator, we offered each
user the opportunity to provide comments and suggestions.

30

CHAPTER 5. EVALUATION 31

• We prepared two lists of ontology-editing tasks (Figures A.11 and A.13) divided
into three sublists covering the following task types:

– creating subclasses,

– creating instances, and

– creating and defining properties.

We recruited 15 volunteers with varying experience levels and asked each subject to
complete the pre-test questionnaire, to read the manual, and to carry out each of the two
task lists with one of the two tools. Approximately half the users (8 of 15) carried out
Task List A (Figure A.11) with CLIE and then Task List B (Figure A.13) with Protégé;
the others (7 of 15) carried out A with Protégé and then B with CLIE.

We measured each user’s time for each task list and in most cases (12 of 15) for each
sublist. After each task list we asked the user to complete the SUS questionnaire for the
specific tool used, and finally we asked him to complete the comparative questionnaire.

Section 5.2 explains the theoretical justification for our methodology; the remainder
of this chapter presents the statistical results as well as a summary of the users’ comments
and suggestions for improving CLIE.

5.2 Background

Our methodology constitutes a repeated-measures, task-based evaluation: each subject
carries out a similar list of tasks on both tools being compared.

We chose the SUS questionnaire as our principal measure of software usability be-
cause it is a de facto standard in this field. Although it superficially seems subjective and
its creator called it “quick and dirty”, it was developed according to the proper techniques
for a Likert scale. [Bro96]

Furthermore, researchers at Fidelity Investments carried out a comparative study of
SUS, three other published usability questionnaires and an internal questionnaire used
at Fidelity, over a population of 123 subjects, to determine the sample sizes required
to obtain consistent, accurate results. They found that SUS produced the most reliable
results across all sample sizes; they noted a jump in accuracy to 75% at a sample size of
8, but recommended a sample of at least 12–14 subjects. [TS04]

As a reference for interpreting the results, average SUS scores are usually between
65 and 70. [Bai06] We will consider this to be the baseline for comparison in the next
section.

CHAPTER 5. EVALUATION 32

Measure min mean median max
Pre-test scores 25 55 58 83
CLIE SUS rating 65 78 78 93
Protégé SUS rating 20 47 48 78
CLIE/Protégé preference 43 72 70 93

Table 5.1: Summary of the questionnaire scores

5.3 Statistical analysis

5.3.1 Statistical measures

Before presenting and interpreting the findings from our experimental data, we briefly
explain the statistical measures used in the following sections.

A 95% confidence interval calculated from a data sample is a range which is 95%
likely to contain the mean score of the whole population which the sample represents.
[JLP96]

A correlation coefficient over a set of pairs of numeric data is analogous to the appear-
ance of a scatter graph or X-Y plot. +1 signifies a perfect correlation and corresponds to
a graph in which all points lie on a straight line with a positive slope; −1 signifies a per-
fect inverse correlation (the points lie on a straight line with a negative slope); 0 indicate
a complete lack of correlation (random distribution of the points). Values > +0.7 and
< −0.7 are generally considered to indicate strong correlations.

The formula for Pearson’s coefficients assumes that the two variables are linearly
meaningful; physical measurements such as length and temperature are good examples
of such variables. The formula for Spearman’s coefficients, on the other hand, stipulates
only ordinal significance (ranking) and is often considered more appropriate for subjec-
tive measurements (such as many in the social sciences). [CS71, HLR77, JLP96, Cal96,
Sim06]

5.3.2 Quantitative findings

As the descriptive statistics in Table 5.1 show, the SUS scores for CLIE are generally
above the baseline and distributed generally higher than those for Protégé, and scores on
the comparative questionnaire are generally favourable to CLIE. We can also break the
scores down according to the tool used and the task list (A or B) carried out and calculate
confidence intervals as shown in Table 5.2; these indicate that for each task list and for
the combined results, the larger population which our sample represents will also produce
mean SUS scores for CLIE that are both higher than those for Protégé and above the SUS
baseline.

CHAPTER 5. EVALUATION 33

Task List Tool Confidence interval
A Protégé 33–65
A CLIE 75–93
B Protégé 30–58
B CLIE 67–79
A&B Protégé 37–56
A&B CLIE 73–84

Table 5.2: Confidence intervals (95%) for the SUS scores

Measure Measure Pearson’s Spearman’s
Pre-test CLIE time -0.06 -0.15
Pre-test Protégé time -0.13 -0.27
CLIE time Protégé time 0.78 0.51
CLIE SUS Protégé SUS -0.31 -0.20
CLIE SUS C/P Preference 0.68 0.63
Protégé SUS C/P Preference -0.62 -0.63
Pre-test CLIE SUS -0.17 -0.17
Pre-test Protégé SUS -0.16 -0.15
CLIE time CLIE SUS 0.26 0.15
Protégé time Protégé SUS -0.17 -0.24
CLIE time Protégé SUS 0.19 -0.01
Protégé time CLIE SUS 0.42 0.44

Table 5.3: Correlation coefficients

We also generated Pearson’s and Spearman’s correlations coefficients for a wide range
of data from the experiments; Table 5.3 shows the highlights of these calculations. In
particular, we note the following points.

• The pre-test score has no correlation with task times or SUS results.

• The task times for both tools are moderately correlated with each other but there
are no significant correlations between task times and SUS scores, so both tools are
technically suitable for carrying out both task lists.

• As expected, the C/P preference score has a moderately strong correlation with the
CLIE SUS score and a moderately strong negative correlation with the Protégé SUS
score. (The SUS scores for the two tools also show a weak negative correlation with
each other.) These figures confirm the coherence of the questionnaires as a whole.

CHAPTER 5. EVALUATION 34

Source Tool order Total
PC CP

G GATE team 4 5 9
NG others 4 2 6
Total 15 8 7

Table 5.4: Groups of subjects by source and tool order

5.3.3 Sample quality

Although our sample size (n = 15) satisifies the requirements for reliable SUS evaluations
(as discussed in Section 5.2), it is also worthwhile to establish the consistency of two
partitions of our sample, as enumerated in Table 5.4:

by tool order or task-tool assignment: subjects who carried out task list A on CLIE and
then B on Protégé, in comparison with those who carried out A on Protégé then B
on CLIE; and

by sample source: subjects drawn from the GATE development team, in comparison
with others.

Tool order was divided almost evenly among our sample. Although the SUS scores
differed slightly according to tool order (as indicated in Table 5.2), the task times given
in Table 5.5 suggest that task lists A and B required similar effort.1 We note that the SUS
scores for each tool tend to be slightly lower for task list B, as shown in Table 5.6, and
we suspect this may have resulted from the subjects’ waning interest as the evaluation
progressed.2 But because Table 5.2 in particular shows consistent results between CLIE
and Protégé for each task list, we conclude that our study was fair.

We must also consider the possibility of biased subjects drawn from colleagues of the
developers and facilitator. As Table 5.4 shows, members of the GATE team constituted
60% of the user sample. The measures summarized in Table 5.7, however, show the
following.

• Members of group G generally rated their own expertise higher (in the pre-test
questionnaire) than those in group NG.

• Groups G and NG produced very similar ranges of SUS scores for each tool and of
C/P preferences scores.

1The shortest time for task list A with Protégé, 1.5 minutes, is an outlier; the second shortest time for
this task list and tool was 4.5 minutes.

2To eliminate the possibility of this effect with the same reliability, we would need twice as many
subjects, each carrying out one task list with one tool (a between-subject experiment, in contrast to our
within-subject experiment).

CHAPTER 5. EVALUATION 35

Task List Tool min mean median max
A CLIE 5.0 9.9 9.3 17.2
A Protégé *1.5 9.6 10.0 18.9
A both 1.5 9.7 9.3 18.9
B CLIE 4.9 9.1 8.1 18.3
B Protégé 5.5 9.9 10.0 18.0
B both 4.9 9.5 8.5 18.3
A&B CLIE 4.9 9.5 8.5 18.3
A&B Protégé 1.5 9.7 10.0 18.9

(*outlier: see note 1)

Table 5.5: Times (in minutes) by task list and tool

Task List Tool min mean median max
A CLIE 65 84 88 93
A Protégé 20 49 49 78
A both 20 66 70 93
B CLIE 65 73 73 88
B Protégé 25 44 45 68
B both 25 60 68 88
A&B CLIE 65 78 78 93
A&B Protégé 20 47 48 78

Table 5.6: SUS scores by task list and tool

Measure Group min mean median max
Pre-test G 25 62 67 83

NG 33 44 42 58
CLIE SUS G 65 78 78 90

NG 65 78 78 93
Protégé SUS G 25 46 48 70

NG 20 47 46 78
C/P Preference G 50 71 68 90

NG 43 74 79 93
CLIE time G 4.9 10.0 9.3 18.3

NG 6.7 8.7 8.5 12.1
Protégé time G 4.5 10.3 7.3 18.9

NG *1.5 8.8 10.3 10.6
(*outlier: see note 3)

Table 5.7: Comparison of the two sources of subjects

CHAPTER 5. EVALUATION 36

• Groups G and NG produced largely overlapping ranges of task times, although
some members of group G took significantly longer than any members of NG.3

These measures allay concerns about biased subjects: we conclude that groups G and NG
were equally reliable so the sample as a whole is satisfactory for the SUS evaluation.

5.4 Subjects’ suggestions and comments

The test users made several suggestions about the controlled language and the user inter-
face.

• Several subjects complained that they needed to spell and type correctly the exact
names of the classes and instances, such as “Journal of Knowledge Management”
and that CLOnE is intolerant of typos and spelling mistakes. They suggested spell-
checking and hinting (as provided in the Eclipse4 UI) to alleviate this cognitive
load.

• A related suggestion is to highlight the input text with different colours for classes,
instances and properties, perhaps after the user clicks a Check button, which would
be provided in addition to the Run button. The Check button could also suggest
corrections and give error messages without affecting the ontology.

• Users complained that it was difficult to tell why some input sentences failed to
have any effect, because CLIE does not explicitly indicate unparsable sentences.

• Some suggested that CLIE should automatically clear the input text box after each
run, but they also realized this would make it more difficult to correct errors, be-
cause it is currently easy to prefix the keyword forget to incorrect sentences from
the previous input without having to retype them.

• Some suggested making the Run button easier to find and putting the ontology
viewer and the input box on the screen at the same time instead of in alternative
panes.

• A few users said it would be useful to have an Undo button that would simply re-
verse the last input text, instead of having to forget all the sentences individually.

3The shortest time for Protégé in group NG, 1.5 minutes, is an outlier (in fact, the same one as mentioned
in note 1 on page 34); the second shortest time for this tool and group was 9.5 minutes.

4http://www.eclipse.org/

CHAPTER 5. EVALUATION 37

5.5 Discussion

Our user evaluation consistently indicated that our subjects found CLIE signficantly more
usable and preferable than Protégé for the straightforward tasks that we assigned. (Of
course we make no claims about the more complicated knowledge engineering work for
which Protégé but not CLIE is designed and intended.)

Our subjects made several interesting and useful suggestions for improvements to
CLIE, many of which we already envisage developing in future work on this software
beyond SEKT, as Chapter 6 will indicate. In particular, we will embed CLIE in wikis
and perhaps other user interfaces which will eliminate some of the constraints imposed by
running it in the GATE GUI, which is really intended for developing language engineering
applications (such as CLIE itself) rather than for interactively editing language resources
(such as documents and ontologies). The use of CLIE in NEPOMUK (Section 6.2) will
especially address these issues.

Chapter 6

Ongoing and future work

6.1 Poleazy

We are assisting the EPSRC-funded Poleazy project to use CLIE to provide a controlled
natural language interface for editing IT authorization policies (access to network re-
sources such as directories and printers) stored as ontologies. This project will probably
involve specialized extensions to the controlled language as well as a virtuous circle or
round-trip information flow, to be completed by generation of CLOnE (as discussed in
Section 6.4). [CS06]

6.2 Nepomuk

Work is being carried out in collaboration with DERI Galway1 on the integration of CLIE
as a web service for Round Trip Ontology Authoring (see also Section 6.4) for the Inte-
grated Knowledge Articulation and Visualization Workbench as a part the Nepomuk So-
lution (The Social Semantic Desktop). We are also investigating the provision of CLOnE
as a local service within one of the promised semantic wikis in addition to the possible
use of CLIE for Semi-Semantic Annotation post editing.

NEPOMUK2 aims to realize and deploy a comprehensive solution—methods, data
structures, and a set of tools—for extending the personal computer into a collaborative
environment, which improves the state of art in online collaboration and personal data
management and augments the intellect of people by providing and organizing infor-

1Located at the National University of Ireland, Galway.
http://www.deri.ie/
http://www.nuigalway.ie/

2Project FP6-027705
http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main1/Project+
Objectives

38

http://www.deri.ie/
http://www.nuigalway.ie/
http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main1/Project+Objectives
http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main1/Project+Objectives

CHAPTER 6. ONGOING AND FUTURE WORK 39

mation created by single or group efforts. This solution is called the Social Semantic
Desktop. This enhanced personal workspace (Desktop) will give information a well de-
fined meaning, making it processable by the computer (Semantic), and will support the
interconnection and exchange with other desktops and their users (Social).

6.3 Lı́on

In cooperation with DERI Galway, National University of Ireland, Galway, we are cur-
rently evaluating possible use cases for the inclusion of CLOnE within the Lı́on Project,
specifically the WikiAnno subproject.

The Semantic Web aims to leverage and expand Web technology to cover new ground.
In recent years, new standard proposals have been established, laying the foundation for
further expansion and consolidation. Although the standards have been established to
create a world-wide shared information space, the critical mass to overcome the initial
chicken-and-egg problem for creating this space has not yet been established. One of the
reasons is that development so far has only focused on standards and core technology
development, but not on creating applications. The mission of the Lı́on project in DERI
is to develop technologies and applications to create a social semantic information space.
From the very beginning, the Web was a medium that helped to create communities and
to connect individuals and communities - which may be communities of interest or prac-
tice and which also include businesses. The developed Semantic Web standards allow
for a greater automation of information dissemination and connection of these commu-
nities. The Lı́on project is the research element of the DERI CSET (Centre for Science,
Engineering and Technology), and is funded by Science Foundation Ireland3 under grant
number SFI/02/CE1/I131.

6.4 Generation of CLOnE from ontologies

In previous chapters, we discussed using CLIE to generate ontologies from input text. The
reverse of the process involves the generation of CLOnE from an existing on ontology by
Natural Language Generation (NLG), specifically shallow NLG. A prototype component
for generating CLOnE has already been implemented as a GATE resource. The textual
output of the generator is configured using a an XML file, which contains text templates
that are instantiated and filled in with ontological values. The NL generator and the au-
thoring process both combine to form a round-trip ontology authoring environment: one
can start with an existing or empty ontology, produce CLOnE using the NL generator,
modify or edit the text as requirement and subsequently parse the text back into the on-
tology using the CLOnE environment. The process can be repeated as necessary until

3http://www.sfi.ie/

http://www.sfi.ie/

CHAPTER 6. ONGOING AND FUTURE WORK 40

the required result is obtained. Current developments in relation to the NL generator in-
volve extending modifying the XML templates with respect to the generator’s linguistic
output in order to ensure compliance with the grammar and subsequent extensions such
as alternatives for expressing the same message. This is essential in order to ensure that
the generation component does not interfere with ontological data created or modified by
CLIE. We refer the reader to [TPCB06] for specific implementation details.

6.5 Other uses

CLIE is being considered for use in the NeOn4 FP6 project and the KnowledgeWeb5 FP6
Network of Excellence.

The GATE development team at the University of Sheffield is considering embedding
CLIE in an internally used web wiki to enhance it semantically.

4http://www.neon-project.org/web-content/
5http://knowledgeweb.semanticweb.org/

http://www.neon-project.org/web-content/
http://knowledgeweb.semanticweb.org/

Bibliography

[Bai06] Bob Bailey. Getting the complete picture with usability testing. Usability
updates newsletter, U.S. Department of Health and Human Services, March
2006.

[BK06] Abraham Bernstein and Esther Kaufmann. GINO—a guided input natural
language ontology editor. In 5th International Semantic Web Conference
(ISWC2006), 2006.

[BKGK05] A. Bernstein, E. Kaufmann, A. Göring, and C. Kiefer. Querying Ontologies:
A Controlled English Interface for End-users. In 4th International Semantic
Web Conference (ISWC), pages 112–126, November 2005.

[Bro96] J. Brooke. SUS: a “quick and dirty” usability scale. In P.W. Jordan,
B. Thomas, B.A. Weerdmeester, and A.L. McClelland, editors, Usability
Evaluation in Industry. Taylor and Francis, London, 1996.

[BS06] François Bry and Uta Schwertel, editors. REWERSE Annual Meeting 2006,
March 2006.

[Cal96] Judith Calder. Statistical techniques. In Roger Sapsford and Victor Jupp,
editors, Data Collection and Analysis, chapter 9. Open University, 1996.

[CMBT02] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A Frame-
work and Graphical Development Environment for Robust NLP Tools and
Applications. In Proceedings of the 40th Anniversary Meeting of the Associ-
ation for Computational Linguistics (ACL’02), 2002.

[CS71] T. G. Connolly and W. Sluckin. An Introduction to Statistics for the Social
Sciences. Macmillan, third edition, 1971.

[CS06] David Chadwick and Angela Sasse. The virtuous circle of expressing autho-
rization policies. In Semantic Web Policy Workshop, Athens, Georgia, 2006.

[Fel98] Christiane Fellbaum, editor. WordNet - An Electronic Lexical Database. MIT
Press, 1998.

41

BIBLIOGRAPHY 42

[FKK+06] Norbert E. Fuchs, Kaarel Kaljurand, Tobias Kuhn, Gerold Schneider, Loic
Royer, and Michael Schröder. Attempto Controlled English and the semantic
web. Deliverable I2D7, REWERSE Project, April 2006.

[HLR77] David K. Hildebrand, James D. Laing, and Howard Rosenthal. Analysis of
Ordinal Data. Quantititate Applications in the Social Sciences. Sage, 1977.

[Hoe04] Stefan Hoefler. The syntax of Attempto Controlled English: An abstract
grammar for ACE 4.0. Technical Report ifi-2004.03, Department of Infor-
matics, University of Zurich, 2004.

[JLP96] Jr. John L. Phillips. How to Think about Statistics. W. H. Freeman and
Company, New York, 1996.

[Kal06a] Kaarel Kaljurand. From ACE to OWL and from OWL to ACE. In Bry and
Schwertel [BS06].

[Kal06b] Kaarel Kaljurand. Writing owl ontologies in ace. Technical report, University
of Zurich, August 2006.

[Kau06] E. Kaufmann. Talking to the semantic web—query interfaces to ontologies
for the casual user. In 5th International Semantic Web Conference (ISWC),
2006.

[KF06] Kaarel Kaljurand and Norbert E. Fuchs. Bidirectional mapping between
OWL DL and Attempto Controlled English. In Fourth Workshop on Prin-
ciples and Practice of Semantic Web Reasoning, Budva, Montenegro, June
2006.

[KL03] B. Katz and J. Lin. Selectively using relations to improve precision in ques-
tion answering. In Proceedings of the EACL-2003 Workshop on Natural Lan-
guage Processing for Question Answering, April 2003, 2003.

[Kuh06] Tobias Kuhn. Attempto Controlled English as ontology language. In Bry and
Schwertel [BS06].

[LM04] Vanessa Lopez and Enrico Motta. Ontology driven question answering in
AquaLog. In NLDB 2004 (9th International Conference on Applications of
Natural Language to Information Systems), Manchester, 2004.

[LMU06] V. Lopez, E. Motta, and V. S. Uren. Poweraqua: Fishing the semantic web.
In ESWC, pages 393–410, 2006.

[NM01] Natalya F. Noy and Deborah L. McGuinness. Ontology development 101: A
guide to creating your first ontology. Technical Report KSL-01-05, Stanford
Knowledge Systems Laboratory, March 2001.

BIBLIOGRAPHY 43

[Sim06] Steve Simon. Stats: Steve’s attempt to teach statistics. Technical report, Chil-
dren’s Mercy Hospitals & Clinics, Kansas City, Missouri, November 2006.

[Sow02] J. Sowa. Architectures for intelligent systems. IBM Systems Journal, 41(3),
2002.

[TPCB06] V. Tablan, T. Polajnar, H. Cunningham, and K. Bontcheva. User-friendly
ontology authoring using a controlled language. In 5th Language Resources
and Evaluation Conference, 2006.

[TS04] Thomas S. Tullis and Jacqueline N. Stetson. A comparison of questionnaires
for assessing website usability. In Usability Professionals’ Association Con-
ference, Minneapolis, Minnesota, June 2004.

Appendix A

Evaluation documents

A.1 Training manual

An ontology is a formal representation of knowledge about a domain: it contains informa-
tion about the objects and types of objects in that domain and the relationships between
them. Formal here means basically “machine-readable”—the information is stored in a
well-defined way so that computer programs can read and analyse it and reason with it.
In recent years ontologies have become very important to scientific research because they
help with the digital classification and retrieval of human-readable information (such as
research papers and other documents).

An ontology consists of classes, instances and properties. The classes and instances
are often drawn in a tree as shown in Figure A.1.

A class is a description of a set or the name of a type of thing, such as Person
or Document. Classes are arranged in a hierarchy, so that the Document class might
have several subclasses (subtypes), Book, Journal and Article. In this example
Document is the “direct superclass” of Book, Journal and Article.

An instance or individual is one member of a class; for example, Syntactic
Structures is an instance of the class Book, and Noam Chomsky is an instance
of the class Person. Because of the superclass-subclass relationship, Syntactic
Structures is also an instance of the class Document.

A property is a relation between two classes which can be instantiated between in-
stances. We can for example create a property to express the idea that “persons are au-
thors of documents”, and then define an instance of this property to express the idea that
“Noam Chomsky is the author of Syntactic Structures”. Note that a property has an in-
herent “direction”; in other words, the two arguments of an property cannot (usually) be
interchanged: it is not the case, for example, that documents can be authors of persons.

44

APPENDIX A. EVALUATION DOCUMENTS 45

Figure A.1: Graphical depiction of classes and instances

APPENDIX A. EVALUATION DOCUMENTS 46

A.1.1 CLIE How-To

The facilitator will start CLIE and load the initial data, so that you will have a window
like the one shown in Figure A.2 to work with. You can click on the buttons or tabs across
the top to bring up the following panes.

Messages This pane explains in detail what CLIE has just done and includes error mes-
sages. You can distinguish the error messages by the word WARNING, and probably
ignore the INFO messages.

Text input In this pane (shown in Figure A.2) you will type statements in the controlled
language explained below. To clear the input, select all the text with the mouse and
press the backspace key. You can also edit individual parts of the text normally
using the arrow and backspace keys and the mouse.

Ontology This pane (shown in Figure A.3) shows you the state of the ontology, repre-
sented by a class and instance diagram (top left), a general list of properties (below),
and information about the selected class or instance (right). Click on classes or in-
stances to change the information in the right-hand section. Before you begin the
tasks, you might wish to look at the initial ontology to become familiar with it.

To run CLIE on your current input text, right click on the word CLIE near the top
of the left-hand pane and click Run in the menu that appears. As you are probably
aware, human language does not lend itself to precise computer processing; it contains
stylistic variations, ambiguities and other features that make it difficult for computers to
interpret. One way to let people write instructions and data so that computers can handle
the input correctly is to use an artificial language, such as a computer programming lan-
guage. Another approach is to use a controlled language, which is a restricted subset of a
natural language such as English. All the sentences in the controlled language are human-
readable sentences in English and have a specific meaning for the computer program, but
not all English sentences are valid in the controlled language. In one of the programs you
will test today, you will type sentences in a controlled language and run a program that
interprets them in order to add more classes, instances and properties to a simple ontology
representing a digital library (a computerized record of information about documents).

The controlled language used in CLIE is designed to be easy to learn from exam-
ples. (To avoid giving you the answers to your tasks here, we provide examples about
research projects.) The controlled language consists of keywords (including punctuation)
and names (of classes, instances and properties). In the following examples, keywords
are underlined.

• Manipulating classes

1. Universities and companies are types of partner.

APPENDIX A. EVALUATION DOCUMENTS 47

Figure A.2: CLIE Text input

APPENDIX A. EVALUATION DOCUMENTS 48

Figure A.3: CLIE Ontology viewer

Figure A.4: Symbols used in CLIE

APPENDIX A. EVALUATION DOCUMENTS 49

The class Partner must already exist. Make classes University and
Company direct subclasses of Partner and create the first two classes if
they do not already exist. (A class can have more than one direct superclass.)

2. Forget that universities are types of partner.

Unlink the subclass-superclass relationship. This statement does not delete
any classes.

• Manipulating instances

3. ’University of Sheffield’ is a university.

Create an instance University of Sheffield of the class
University (which must already exist). Because the name contains
a preposition (of) it needs to be enclosed in quotation marks—these tell the
CLIE program to treat everything between them as one name.

4. ’Smith and Sons’ and ’Jones Ltd.’ are companies.

Create two instances Smith and Sons and Jones Ltd of the class
Company (which must already exist). The names are quoted because the
first one contains a keyword (and) and the second one contains punctuation
(.). (Figure A.5 lists all the keywords.)

• Deleting classes and instances

5. Forget ’Smith and Sons’, Alice Smith and projects.

Delete the instance Smith and Sons and Alice Smith and the class
Project. In this statement, the list can contain a mixture of classes and
instances.

• Manipulating properties

6. Persons are authors of deliverables.

If the classes Person and Deliverable exist, define a property Person
Author of Deliverable between them.

7. Forget that persons are authors of deliverables.

Delete the property defined in the last example.

8. Alice Smith and Bob Davis are authors of ’D2.3.4’.

If Alice Smith and Bob Davis are instances of Person and D2.3.4
is an instance of Deliverable, and the property already exists, create two
property definitions to indicate that they are authors of it. (D2.3.4 must be
quoted because it contains punctuation (.).

APPENDIX A. EVALUATION DOCUMENTS 50

9. Forget that Bob Davis is author of ’D2.3.4’.

Remove the property definition for one of the authors in the previous example.
(This leaves the other author defined.)

• Typing the names of classes and instances

10. Names are normalized using initial upper-case letters and the base forms
of words with underscores between them, so that Deliverables and
deliverable both refer to the class Deliverable, and Alice Smith
refers to the instance Alice_Smith.

11. Names containing reserved words (see Figure A.5), punctuation, preposi-
tions (such as of) and determiners (the, that, these, etc.) must be en-
closed in quotation marks (’...’). For example, ’Journal of Cell
Biology’, ’Smith and Sons’ and ’String Theory’ will not be
interpreted correctly without them.

In order to carry out the tasks we ask you to do, you can alternate between the ontology
viewer and the input text box. When you are satisfied that your input text is probably right,
click “Run” in the CLIE pane and check the results in the ontology viewer. You can make
corrections by undoing mistakes with “Forget...” statements and trying again with
new statements.

When you click “Run”, CLIE processes your input text from the top down, so it is im-
portant (for example) to define a new class before using it to define instances, subclasses
or properties—although you can do all these steps in the same input text.

APPENDIX A. EVALUATION DOCUMENTS 51

and
are
are a type of
are also called
are also known as
are called
are known as
are types of
can have
date
date as
dates
dates as
delete all
delete everything
forget
forget all
forget everything
forget that
has

have
is
is a
is a type of
is also called
is also known as
is an
is called
is known as
number
number as
numbers
numbers as
numeric
numeric as
string
string as
strings
strings as
text

text as
texts
texts as
textual
textual as
that can have
that has
that have
there are
there is
which are
which can have
which has
which have
which is
with value
.
,

Figure A.5: Reserved words and phrases

APPENDIX A. EVALUATION DOCUMENTS 52

A.1.2 Protégé How-To

The facilitator will start Protégé and load the initial data, so that you will have a window
like the one shown in Figure A.6 to work with. The named buttons across the top have
the following roles.

OWLClasses As shown in Figure A.6, this button brings up the Subclass Explorer, which
shows a hierarchical diagram of the classes in the ontology and which you can use
to select a specific class to work with, and the Class Editor, used for editing an
individual class.

You can right-click on a class in the Subclass Explorer to get a menu which will
allow you to create subclasses and individuals (instances) of existing classes, and
you can drag and drop classes to move them in the class hierarchy.

Properties This produces the Property Browser as shown in Figure A.7, a list of the
properties in the ontology.

You can create new properties by selecting the correct kind of property (“Object” or
“Datatype”) and clicking the first button after the list heading (“Object properties”
or “Datatype properties”). In the Property Editor you can select the domain and
range of each property.

Individuals This produces the display shown in Figure A.8, including the Class Browser
(similar to the Subclass Explorer), the Instance Browser (which shows a list of the
instances of the class currently selected in the Class Browser),and the Individual
Editor, which lets you edit and fill in the property definitions of the instance selected
in the Instance Browser.

The second button with a purple symbol in the Instance Browser provides another
means of adding instances to the selected class.

You can ignore the Metadata and Forms buttons and panes.

APPENDIX A. EVALUATION DOCUMENTS 53

Figure A.6: Protégé’s Subclass Explorer and Class Editor

APPENDIX A. EVALUATION DOCUMENTS 54

Figure A.7: Protégé’s Property Browser and Property Editor

APPENDIX A. EVALUATION DOCUMENTS 55

Figure A.8: Protégé’s Instance Browser and Individual Editor

Figure A.9: Symbols used in Protégé

APPENDIX A. EVALUATION DOCUMENTS 56

A.2 Test procedure, tasks and questionnaires

First we asked each subject to complete the pre-test questionnaire shown in Figure A.15.

We then gave him either CLIE or Protégé loaded with the initial ontology shown in
Figure A.10 and asked him to carry out the groups of related tasks (Task List A) shown in
Figure A.11, while we recorded the time taken to complete each group.

We then asked the subject to complete the questionnaire shown in Figure A.16. We
then gave the subject the other tool (Protégé or CLIE, respectively) loaded with the on-
tology in the state that would result from correctly carrying out the tasks listed above, as
shown in Figure A.12, and asked him to carry out the additional groups of tasks (Task
List B) in Figure A.13 with the second tool.

We then saved the ontology to examine later for correctness; the correct result is il-
lustrated in Figure A.14. We asked the subject to complete the questionnaire shown in
Figure A.16 and then separately the one in Figures A.17 and A.18.

APPENDIX A. EVALUATION DOCUMENTS 57

Figure A.10: Initial ontology (viewed in GATE)

• Class tasks

– Create a subclass Periodical of Document.

– Create a subclass Journal of Periodical.

• Instance tasks

– Create an instance Crossing the Chasm of class Article.

– Create an instance Journal of Knowledge Management of class Jour-
nal.

• Property tasks

– Create a property that agents are publishers of documents.

– Define a property that Hamish Cunningham, Kalina Bontcheva and
Yaoyong Li are authors of Crossing the Chasm.

Figure A.11: Task list A

APPENDIX A. EVALUATION DOCUMENTS 58

Figure A.12: Intermediate ontology (viewed in GATE)

• Class tasks

– Create a subclass Institution of Agent.

– Create a subclass Company of Institution.

• Instance tasks

– Create an instance Wiley and Sons of class Company.

– Create an instance Trends and Research of class Book.

• Property tasks

– Define a property that Wiley and Sons is publisher of Trends and Re-
search.

– Define a property that Wiley and Sons is publisher of Crossing the
Chasm.

Figure A.13: Task list B

APPENDIX A. EVALUATION DOCUMENTS 59

Figure A.14: Final ontology (viewed in GATE)

APPENDIX A. EVALUATION DOCUMENTS 60

1
Iu

nd
er

st
an

d
th

e
te

rm
“S

em
an

tic
W

eb
”.

N
o

A
lit

tle
Y

es
2

Ia
m

fa
m

ili
ar

w
ith

on
to

lo
gi

es
.

N
o

A
lit

tle
Y

es
3

Ih
av

e
w

or
ke

d
w

ith
on

to
lo

gi
es

.
N

ev
er

So
m

et
im

es
O

ft
en

4
Ih

av
e

ed
ite

d
or

de
si

gn
ed

an
on

to
lo

gy
.

N
ev

er
So

m
et

im
es

O
ft

en
5

Iu
nd

er
st

an
d

th
e

te
rm

“c
on

tr
ol

le
d

la
ng

ua
ge

”.
N

o
A

lit
tle

Y
es

6
Ih

av
e

us
ed

a
co

nt
ro

lle
d

la
ng

ua
ge

.
N

ev
er

So
m

et
im

es
O

ft
en

Fi
gu

re
A

.1
5:

Pr
e-

te
st

qu
es

tio
nn

ai
re

APPENDIX A. EVALUATION DOCUMENTS 61

St
ro

ng
ly

D
is

ag
re

e
N

eu
tr

al
A

gr
ee

St
ro

ng
ly

di
sa

gr
ee

ag
re

e
1

It
hi

nk
th

at
Iw

ou
ld

lik
e

to
us

e
th

is
sy

st
em

fr
eq

ue
nt

ly
.

2
If

ou
nd

th
e

sy
st

em
un

ne
ce

ss
ar

ily
co

m
pl

ex
3

It
ho

ug
ht

th
e

sy
st

em
w

as
ea

sy
to

us
e

4
I

th
in

k
th

at
I

w
ou

ld
ne

ed
th

e
su

pp
or

to
f

a
te

ch
ni

ca
lp

er
so

n
to

be
ab

le
to

us
e

th
is

sy
st

em
5

If
ou

nd
th

e
va

ri
ou

s
fu

nc
tio

ns
in

th
is

sy
st

em
w

er
e

w
el

li
nt

e-
gr

at
ed

6
It

ho
ug

ht
th

er
e

w
as

to
o

m
uc

h
in

co
ns

is
te

nc
y

in
th

is
sy

st
em

7
I

w
ou

ld
im

ag
in

e
th

at
m

os
t

pe
op

le
w

ou
ld

le
ar

n
to

us
e

th
is

sy
st

em
ve

ry
qu

ic
kl

y
8

If
ou

nd
th

e
sy

st
em

ve
ry

cu
m

be
rs

om
e

to
us

e
9

If
el

tv
er

y
co

nfi
de

nt
us

in
g

th
e

sy
st

em
10

I
ne

ed
ed

to
le

ar
n

a
lo

t
of

th
in

gs
be

fo
re

I
co

ul
d

ge
t

go
in

g
w

ith
th

is
sy

st
em

Fi
gu

re
A

.1
6:

Po
st

-t
es

tq
ue

st
io

nn
ai

re
fo

re
ac

h
to

ol

APPENDIX A. EVALUATION DOCUMENTS 62

C
L

IE
C

L
IE

Pr
ot

ég
é

Pr
ot

ég
é

1
I

fo
un

d
on

e
sy

st
em

’s
do

cu
m

en
ta

-
tio

n
ea

si
er

to
un

de
rs

ta
nd

.
m

uc
h

ea
si

er
ea

si
er

ne
ut

ra
l

ea
si

er
m

uc
h

ea
si

er

2
I

pa
rt

ic
ul

ar
ly

di
sl

ik
ed

us
in

g
on

e
sy

st
em

.
di

sl
ik

ed
st

ro
ng

ly
di

sl
ik

ed
ne

ut
ra

l
di

sl
ik

ed
di

sl
ik

ed
st

ro
ng

ly

3
If

ou
nd

on
e

sy
st

em
ea

si
er

to
us

e.
m

uc
h

ea
si

er
ea

si
er

ne
ut

ra
l

ea
si

er
m

uc
h

ea
si

er

4
O

ne
sy

st
em

w
as

ha
rd

er
to

le
ar

n.
m

uc
h

ha
rd

er
ha

rd
er

ne
ut

ra
l

ha
rd

er
m

uc
h

ha
rd

er

5
I

w
ou

ld
pr

ef
er

to
us

e
on

e
sy

st
em

ag
ai

n.
st

ro
ng

ly
pr

ef
er

pr
ef

er
ne

ut
ra

l
pr

ef
er

st
ro

ng
ly

pr
ef

er

6
I

fo
un

d
on

e
sy

st
em

m
or

e
co

m
pl

i-
ca

te
d.

m
uc

h
m

or
e

co
m

pl
ex

m
or

e
co

m
pl

ex
ne

ut
ra

l
m

or
e

co
m

pl
ex

m
uc

h
m

or
e

co
m

pl
ex

7
I

fo
un

d
it

ea
si

er
to

co
nt

ro
l

cl
as

se
s

an
d

su
bc

la
ss

es
in

on
e

sy
st

em
.

m
uc

h
ea

si
er

ea
si

er
ne

ut
ra

l
ea

si
er

m
uc

h
ea

si
er

8
N

ew
pr

op
er

tie
s

w
er

e
ea

si
er

to
cr

e-
at

e
w

ith
on

e
sy

st
em

.
m

uc
h

ea
si

er
ea

si
er

ne
ut

ra
l

ea
si

er
m

uc
h

ea
si

er

9
It

w
as

di
ffi

cu
lt

to
cr

ea
te

in
st

an
ce

s
in

on
e

sy
st

em
.

m
uc

h
ha

rd
er

ha
rd

er
ne

ut
ra

l
ha

rd
er

m
uc

h
ha

rd
er

10
It

w
as

aw
kw

ar
d

to
fil

l
(o

r
de

fin
e)

pr
op

er
tie

s
in

on
e

sy
st

em
.

ve
ry

aw
kw

ar
d

aw
kw

ar
d

ne
ut

ra
l

aw
kw

ar
d

ve
ry

aw
kw

ar
d

Fi
gu

re
A

.1
7:

Po
st

-t
es

tq
ue

st
io

nn
ai

re
co

m
pa

ri
ng

th
e

to
ol

s

APPENDIX A. EVALUATION DOCUMENTS 63

Do you have any comments on either or both systems?

Do you have any specific problems to report?

Do you have any suggestions for improving either system?

Figure A.18: Post-test questionnaire comparing the tools

Appendix B

CLIE gazetteer (keywords and phrases)

This table lists all the phrases annotated by the CLIE gazetteer, as described by PR 6
in Section 4.1 (page 22). The gazetteer marks each listed phrase with a Lookup an-
notation with the specified majorType feature; some phrases’ annotations also have a
minorType feature.

majorType minorType gazetteer entry

CLIE-ClearAll delete all
CLIE-ClearAll delete everything
CLIE-ClearAll forget all
CLIE-ClearAll forget everything
CLIE-Copula are
CLIE-Copula is
CLIE-Datatype date date as
CLIE-Datatype date date
CLIE-Datatype date dates as
CLIE-Datatype date dates
CLIE-Datatype numeric number as
CLIE-Datatype numeric number
CLIE-Datatype numeric numbers as
CLIE-Datatype numeric numbers
CLIE-Datatype numeric numeric as
CLIE-Datatype numeric numeric
CLIE-Datatype string string as
CLIE-Datatype string string
CLIE-Datatype string strings as
CLIE-Datatype string strings
CLIE-Datatype string text as
CLIE-Datatype string text
CLIE-Datatype string texts as

64

APPENDIX B. CLIE GAZETTEER (KEYWORDS AND PHRASES) 65

majorType minorType gazetteer entry

CLIE-Datatype string texts
CLIE-Datatype string textual as
CLIE-Datatype string textual
CLIE-Have can have
CLIE-Have has
CLIE-Have have
CLIE-Have that can have
CLIE-Have that has
CLIE-Have that have
CLIE-Have which can have
CLIE-Have which has
CLIE-Have which have
CLIE-InstanceOf are
CLIE-InstanceOf is a
CLIE-InstanceOf is an
CLIE-Negate forget that
CLIE-Negate forget
CLIE-NewClass there are
CLIE-NewClass there is
CLIE-PropertyValue which are
CLIE-PropertyValue which is
CLIE-PropertyValue with value
CLIE-Subclass are a type of
CLIE-Subclass are types of
CLIE-Subclass is a type of
CLIE-Synonymous are also called
CLIE-Synonymous are also known as
CLIE-Synonymous are called
CLIE-Synonymous are known as
CLIE-Synonymous is also called
CLIE-Synonymous is also known as
CLIE-Synonymous is called
CLIE-Synonymous is known as

	Contents
	Introduction
	Aims of CLIE
	Achievements in Year 3 of SEKT
	Structure of this document

	Related work
	ACE
	Aqualog
	Cypher
	GINO
	Simplified English
	Discussion

	User's guide
	Installing and running CLIE in GATE
	Writing CLOnE

	Implementation
	Processing
	Syntax and semantics
	Using the ontology to interpret CLOnE input

	Evaluation
	Methodology
	Background
	Statistical analysis
	Statistical measures
	Quantitative findings
	Sample quality

	Subjects' suggestions and comments
	Discussion

	Ongoing and future work
	Poleazy
	Nepomuk
	Líon
	Generation of CLOnE from ontologies
	Other uses

	Bibliography
	Evaluation documents
	Training manual
	CLIE How-To
	Protégé How-To

	Test procedure, tasks and questionnaires

	CLIE gazetteer (keywords and phrases)

