
GATE: an Architecture for Development of Robust HLT
Applications

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan
Department of Computer Science

University of Sheffield
Sheffield, S1 4DP, UK

{hamish,diana,kalina,valyt}@dcs.shef.ac.uk

Abstract

In this paper we present GATE, a
framework and graphical development
environment which enables users to de-
velop and deploy language engineering
components and resources in a robust
fashion. The GATE architecture has
enabled us not only to develop a num-
ber of successful applications for var-
ious language processing tasks (such
as Information Extraction), but also
to build and annotate corpora and
carry out evaluations on the applica-
tions generated. The framework can
be used to develop applications and re-
sources in multiple languages, based on
its thorough Unicode support.

1 Introduction

Producing robust components to process hu-
man language as part of applications software
requires attention to the engineering aspects of
their construction. This paper reports work on
GATE1, an infrastructure for language process-
ing software development that contributes on
several fronts to this type of predictability:

• The system is designed to separate cleanly
low-level tasks such as data storage, data
visualisation, location and loading of com-
ponents and execution of processes from the

1This work has been supported by the Engineering
and Physical Sciences Research Council (EPSRC) un-
der grants GR/K25267 and GR/M31699, and by several
smaller grants.

data structures and algorithms that actu-
ally process human language.

• Automating measurement of performance
of language processing components.

• Reducing integration overheads by provid-
ing standard mechanisms for components to
communicate data about language, and us-
ing open standards such as Java and XML
as the underlying platform.

• Providing a baseline set of language pro-
cessing components that can be extended
and/or replaced by users as required.

The rest of the paper is structured as fol-
lows. We first describe the GATE architecture
in Section 2, and then give details of some of
the applications we have built using GATE in
Section 3. Section 4 describes the processing re-
sources available within GATE, while Section 5
describes the language resources. In Section 6
we discuss the mechanisms for evaluation. Fi-
nally, Section 7 puts this work in the context
of some previous work and Section 8 discusses
future directions.

2 A framework for robust tools and
applications

GATE (Cunningham, 2002) is an architecture, a
framework and a development environment for
LE (Language Engineering)2. As an architec-
ture, it defines the organisation of an LE sys-
tem and the assignment of responsibilities to dif-

2GATE is freely available for download from
http://gate.ac.uk.



ferent components, and ensures that the com-
ponent interactions satisfy the system require-
ments. As a framework, it provides a reusable
design for an LE software system and a set of
prefabricated software building blocks that lan-
guage engineers can use, extend and customise
for their specific needs. As a development envi-
ronment, it helps its users to minimise the time
they spend building new LE systems or mod-
ifying existing ones, by aiding overall develop-
ment and providing a debugging mechanism for
new modules. Because GATE has a component-
based model, this allows for easy coupling and
decoupling of the processors, thereby facilitat-
ing comparison of alternative configurations of
the system or different implementations of the
same module (e.g., different parsers). The avail-
ability of tools for easy visualisation of data at
each point during the development process aids
immediate interpretation of the results.

The GATE framework comprises a core li-
brary (analogous to a bus backplane) and a set
of reusable LE modules. The framework imple-
ments the architecture and provides (amongst
other things) facilities for processing and visual-
ising resources, including representation, import
and export of data.

The reusable modules provided with the back-
plane are able to perform basic language pro-
cessing tasks such as POS tagging and semantic
tagging. This eliminates the need for users to
keep recreating the same kind of resources, and
provides a good starting point for new applica-
tions. The modules are described in more detail
in Section 4.

Applications developed within GATE can
be deployed outside its Graphical User Inter-
face (GUI), using programmatic access via the
GATE API (see http://gate.ac.uk). In addi-
tion, the reusable modules, the document and
annotation model, and the visualisation compo-
nents can all be used independently of the de-
velopment environment.

GATE components may be implemented
by a variety of programming languages and
databases, but in each case they are represented
to the system as a Java class. This class may
simply call the underlying program or provide

an access layer to a database; alternatively it
may implement the whole component.

In the rest of this section, we show how the
GATE infrastructure takes care of the resource
discovery, loading, and execution, and briefly
discuss data storage and visualisation.

2.1 Algorithms + data + GUI =
applications

The title expresses succinctly the distinction
made in GATE between data, algorithms, and
ways of visualising them. In other words, GATE
components are one of three types:

• LanguageResources (LRs) represent en-
tities such as lexicons, corpora or ontolo-
gies;

• ProcessingResources (PRs) represent
entities that are primarily algorithmic, such
as parsers, generators or ngram modellers;

• VisualResources (VRs) represent visual-
isation and editing components that partic-
ipate in GUIs.

These resources can be local to the user’s ma-
chine or remote (available via HTTP), and all
can be extended by users without modification
to GATE itself.

One of the main advantages of separating the
algorithms from the data they require is that
the two can be developed independently by lan-
guage engineers with different types of expertise,
e.g. programmers and linguists. Similarly, sepa-
rating data from its visualisation allows users to
develop alternative visual resources, while still
using a language resource provided by GATE.

Collectively, all resources are known as CRE-
OLE (a Collection of REusable Objects for Lan-
guage Engineering), and are declared in a repos-
itory XML file, which describes their name, im-
plementing class, parameters, icons, etc. This
repository is used by the framework to discover
and load available resources.

A parameters tag describes the parameters
which each resource needs when created or ex-
ecuted. Parameters can be optional, e.g. if a
document list is provided when the corpus is



Figure 1: GATE’s document viewer/editor

constructed, it will be populated automatically
with these documents.

When an application is developed within
GATE’s graphical environment, the user chooses
which processing resources go into it (e.g. to-
keniser, POS tagger), in what order they will be
executed, and on which data (e.g. document or
corpus).

The execution parameters of each resource are
also set there, e.g. a loaded document is given as
a parameter to each PR. When the application
is run, the modules will be executed in the spec-
ified order on the given document. The results
can be viewed in the document viewer/editor
(see Figure 1).

2.2 Data representation and handling

GATE supports a variety of formats including
XML, RTF, HTML, SGML, email and plain
text. In all cases, when a document is cre-
ated/opened in GATE, the format is analysed
and converted into a single unified model of an-
notation. The annotation format is a modified
form of the TIPSTER format (Grishman, 1997)
which has been made largely compatible with
the Atlas format (Bird et al., 2000), and uses the

now standard mechanism of ‘stand-off markup’
(Thompson and McKelvie, 1997). The annota-
tions associated with each document are a struc-
ture central to GATE, because they encode the
language data read and produced by each pro-
cessing module.

The GATE framework also provides persis-
tent storage of language resources. It currently
offers three storage mechanisms: one uses re-
lational databases (e.g. Oracle) and the other
two are file- based, using Java serialisation or an
XML-based internal format. GATE documents
can also be exported back to their original for-
mat (e.g. SGML/XML for the British National
Corpus (BNC)) and the user can choose whether
some additional annotations (e.g. named entity
information) are added to it or not.

To summarise, the existence of a unified data
structure ensures a smooth communication be-
tween components, while the provision of im-
port and export capabilities makes communica-
tion with the outside world simple.

2.3 Multilingual processing

In recent years, the emphasis on multilinguality
has grown, and important advances have been



Figure 2: Unicode text in Gate2

witnessed on the software scene with the emer-
gence of Unicode as a universal standard for rep-
resenting textual data.

GATE supports multilingual data processing
using Unicode as its default text encoding. It
also provides a means of entering text in var-
ious languages, using virtual keyboards where
the language is not supported by the underly-
ing operating platform. (Note that although
Java represents characters as Unicode, it doesn’t
support input in many of the languages covered
by Unicode.) Currently 28 languages are sup-
ported, and more are planned for future releases.
Because GATE is an open architecture, new vir-
tual keyboards can be defined by the users and
added to the system as needed. For displaying
the text, GATE relies on the rendering facilities
offered by the Java implementation for the plat-
form it runs on. Figure 2 gives an example of
text in various languages displayed by GATE.

The ability to handle Unicode data, along
with the separation between data and imple-
mentation, allows LE systems based on GATE
to be ported to new languages with no additional
overhead apart from the development of the re-
sources needed for the specific language. These
facilities have been developed as part of the
EMILLE project (McEnery et al., 2000), which
focuses on the construction a 63 million word
electronic corpus of South Asian languages.

3 Applications

One of GATE’s strengths is that it is flexible and
robust enough to enable the development of a
wide range of applications within its framework.
In this section, we describe briefly some of the
NLP applications we have developed using the
GATE architecture.

3.1 MUSE

The MUSE system (Maynard et al., 2001) is a
multi-purpose Named Entity recognition system
which is capable of processing texts from widely
different domains and genres, thereby aiming to
reduce the need for costly and time-consuming
adaptation of existing resources to new applica-
tions and domains. The system aims to iden-
tify the parameters relevant to the creation of a
name recognition system across different types
of variability such as changes in domain, genre
and media. For example, less formal texts may
not follow standard capitalisation, punctuation
and spelling formats, which can be a problem for
many generic NE systems. Current evaluations
with this system average around 93% precision
and 95% recall across a variety of text types.

3.2 ACE

The MUSE system has also been adapted to
take part in the current ACE (Automatic Con-
tent Extraction) program run by NIST. This re-
quires systems to perform recognition and track-
ing tasks of named, nominal and pronominal en-
tities and their mentions across three types of
clean news text (newswire, broadcast news and
newspaper) and two types of degraded news text
(OCR output and ASR output).

3.3 MUMIS

The MUMIS (MUltiMedia Indexing and Search-
ing environment) system uses Information Ex-
traction components developed within GATE
to produce formal annotations about essential
events in football video programme material.
This IE system comprises versions of the tokeni-
sation, sentence detection, POS-tagging, and se-
mantic tagging modules developed as part of
GATE’s standard resources, but also includes



morphological analysis, full syntactic parsing
and discourse interpretation modules, thereby
enabling the production of annotations over text
encoding structural, lexical, syntactic and se-
mantic information. The semantic tagging mod-
ule currently achieves around 91% precision and
76% recall, a significant improvement on a base-
line named entity recognition system evaluated
against it.

4 Processing Resources

Provided with GATE is a set of reusable pro-
cessing resources for common NLP tasks. (None
of them are definitive, and the user can replace
and/or extend them as necessary.) These are
packaged together to form ANNIE, A Nearly-
New IE system, but can also be used individu-
ally or coupled together with new modules in
order to create new applications. For exam-
ple, many other NLP tasks might require a sen-
tence splitter and POS tagger, but would not
necessarily require resources more specific to IE
tasks such as a named entity transducer. The
system is in use for a variety of IE and other
tasks, sometimes in combination with other sets
of application-specific modules.

ANNIE consists of the following main pro-
cessing resources: tokeniser, sentence splitter,
POS tagger, gazetteer, finite state transducer
(based on GATE’s built-in regular expressions
over annotations language (Cunningham et al.,
2002)), orthomatcher and coreference resolver.
The resources communicate via GATE’s anno-
tation API, which is a directed graph of arcs
bearing arbitrary feature/value data, and nodes
rooting this data into document content (in this
case text).

The tokeniser splits text into simple tokens,
such as numbers, punctuation, symbols, and
words of different types (e.g. with an initial cap-
ital, all upper case, etc.). The aim is to limit the
work of the tokeniser to maximise efficiency, and
enable greater flexibility by placing the burden
of analysis on the grammars. This means that
the tokeniser does not need to be modified for
different applications or text types.

The sentence splitter is a cascade of finite-

state transducers which segments the text into
sentences. This module is required for the tag-
ger. Both the splitter and tagger are domain-
and application-independent.

The tagger is a modified version of the Brill
tagger, which produces a part-of-speech tag as
an annotation on each word or symbol. Nei-
ther the splitter nor the tagger are a mandatory
part of the NE system, but the annotations they
produce can be used by the grammar (described
below), in order to increase its power and cov-
erage.

The gazetteer consists of lists such as cities,
organisations, days of the week, etc. It not only
consists of entities, but also of names of useful
indicators, such as typical company designators
(e.g. ‘Ltd.’), titles, etc. The gazetteer lists are
compiled into finite state machines, which can
match text tokens.

The semantic tagger consists of hand-
crafted rules written in the JAPE (Java Anno-
tations Pattern Engine) language (Cunningham
et al., 2002), which describe patterns to match
and annotations to be created as a result. JAPE
is a version of CPSL (Common Pattern Speci-
fication Language) (Appelt, 1996), which pro-
vides finite state transduction over annotations
based on regular expressions. A JAPE grammar
consists of a set of phases, each of which con-
sists of a set of pattern/action rules, and which
run sequentially. Patterns can be specified by
describing a specific text string, or annotations
previously created by modules such as the to-
keniser, gazetteer, or document format analysis.
Rule prioritisation (if activated) prevents multi-
ple assignment of annotations to the same text
string.

The orthomatcher is another optional mod-
ule for the IE system. Its primary objective is
to perform co-reference, or entity tracking, by
recognising relations between entities. It also
has a secondary role in improving named entity
recognition by assigning annotations to previ-
ously unclassified names, based on relations with
existing entities.

The coreferencer finds identity relations be-
tween entities in the text. For more details see
(Dimitrov, 2002).



4.1 Implementation

The implementation of the processing resources
is centred on robustness, usability and the clear
distinction between declarative data representa-
tions and finite state algorithms. The behaviour
of all the processors is completely controlled by
external resources such as grammars or rule sets,
which makes them easily modifiable by users
who do not need to be familiar with program-
ming languages.

The fact that all processing resources use
finite-state transducer technology makes them
quite performant in terms of execution times.
Our initial experiments show that the full named
entity recognition system is capable of process-
ing around 2.5KB/s on a PIII 450 with 256 MB
RAM (independently of the size of the input file;
the processing requirement is linear in relation
to the text size). Scalability was tested by run-
ning the ANNIE modules over a randomly cho-
sen part of the British National Corpus (10% of
all documents), which contained documents of
up to 17MB in size.

5 Language Resource Creation

Since many NLP algorithms require annotated
corpora for training, GATE’s development en-
vironment provides easy-to-use and extendable
facilities for text annotation. In order to test
their usability in practice, we used these facili-
ties to build corpora of named entity annotated
texts for the MUSE, ACE, and MUMIS appli-
cations.

The annotation can be done manually by the
user or semi-automatically by running some pro-
cessing resources over the corpus and then cor-
recting/adding new annotations manually. De-
pending on the information that needs to be
annotated, some ANNIE modules can be used
or adapted to bootstrap the corpus annotation
task. For example, users from the humanities
created a gazetteer list with 18th century place
names in London, which when supplied to the
ANNIE gazetteer, allows the automatic annota-
tion of place information in a large collection of
18th century court reports from the Old Bailey
in London.

Since manual annotation is a difficult and
error-prone task, GATE tries to make it sim-
ple to use and yet keep it flexible. To add a
new annotation, one selects the text with the
mouse (e.g., “Mr. Clever”) and then clicks on
the desired annotation type (e.g., Person), which
is shown in the list of types on the right-hand-
side of the document viewer (see Figure 1). If
however the desired annotation type does not al-
ready appear there or the user wants to associate
more detailed information with the annotation
(not just its type), then an annotation editing
dialogue can be used.

6 Evaluation

A vital part of any language engineering ap-
plication is the evaluation of its performance,
and a development environment for this pur-
pose would not be complete without some mech-
anisms for its measurement in a large number
of test cases. GATE contains two such mech-
anisms: an evaluation tool (AnnotationDiff)
which enables automated performance measure-
ment and visualisation of the results, and a
benchmarking tool, which enables the tracking
of a system’s progress and regression testing.

6.1 The AnnotationDiff Tool

Gate’s AnnotationDiff tool enables two sets of
annotations on a document to be compared, in
order to either compare a system-annotated text
with a reference (hand-annotated) text, or to
compare the output of two different versions of
the system (or two different systems). For each
annotation type, figures are generated for preci-
sion, recall, F-measure and false positives.

The AnnotationDiff viewer displays the two
sets of annotations, marked with different
colours (similar to ‘visual diff’ implementations
such as in the MKS Toolkit or TkDiff). Anno-
tations in the key set have two possible colours
depending on their state: white for annotations
which have a compatible (or partially compat-
ible) annotation in the response set, and or-
ange for annotations which are missing in the
response set. Annotations in the response set
have three possible colours: green if they are
compatible with the key annotation, blue if they



Figure 3: Fragment of results from benchmark
tool

are partially compatible, and red if they are spu-
rious. In the viewer, two annotations will be po-
sitioned on the same row if they are co-extensive,
and on different rows if not.

6.2 Benchmarking tool

GATE’s benchmarking tool differs from the An-
notationDiff in that it enables evaluation to be
carried out over a whole corpus rather than a
single document. It also enables tracking of the
system’s performance over time.

The tool requires a clean version of a corpus
(with no annotations) and an annotated refer-
ence corpus. First of all, the tool is run in gen-
eration mode to produce a set of texts annotated
by the system. These texts are stored for future
use. The tool can then be run in three ways:

1. Comparing the annotated set with the ref-
erence set;

2. Comparing the annotated set with the set
produced by a more recent version of the
system resources (the latest set);

3. Comparing the latest set with the reference
set.

In each case, performance statistics will be pro-
vided for each text in the set, and overall statis-
tics for the entire set, in comparison with the
reference set. In case 2, information is also pro-
vided about whether the figures have increased

or decreased in comparison with the annotated
set. The annotated set can be updated at any
time by rerunning the tool in generation mode
with the latest version of the system resources.
Furthermore, the system can be run in verbose
mode, where for each figure below a certain
threshold (set by the user), the non-coextensive
annotations (and their corresponding text) will
be displayed. The output of the tool is written
to an HTML file in tabular form, as shown in
Figure 3.

Current evaluations for the MUSE NE sys-
tem are producing average figures of 90-95%
Precision and Recall on a selection of different
text types (spoken transcriptions, emails etc.).
The default ANNIE system produces figures of
between 80-90% Precision and Recall on news
texts. This figure is lower than for the MUSE
system, because the resources have not been
tuned to a specific text type or application, but
are intended to be adapted as necessary. Work
on resolution of anaphora is currently averag-
ing 63% Precision and 45% Recall, although this
work is still very much in progress, and we ex-
pect these figures to improve in the near future.

7 Related Work

GATE draws from a large pool of previous work
on infrastructures, architectures and develop-
ment environments for representing and process-
ing language resources, corpora, and annota-
tions. Due to space limitations here we will dis-
cuss only a small subset. For a detailed review
and its use for deriving the desiderata for this
architecture see (Cunningham, 2000).

Work on standard ways to deal with XML
data is relevant here, such as the LT XML work
at Edinburgh (Thompson and McKelvie, 1997),
as is work on managing collections of documents
and their formats, e.g. (Brugman et al., 1998;
Grishman, 1997; Zajac, 1998). We have also
drawn from work on representing information
about text and speech, e.g. (Brugman et al.,
1998; Mikheev and Finch, 1997; Zajac, 1998;
Young et al., 1999), as well as annotation stan-
dards, such as the ATLAS project (an architec-
ture for linguistic annotation) at LDC (Bird et



al., 2000). Our approach is also related to work
on user interfaces to architectural facilities such
as development environments, e.g. (Brugman et
al., 1998) and to work on comparing different
versions of information, e.g. (Sparck-Jones and
Galliers, 1996; Paggio, 1998).

This work is particularly novel in that it ad-
dresses the complete range of issues in NLP ap-
plication development in a flexible and extensi-
ble way, rather than focusing just on some par-
ticular aspect of the development process. In
addition, it promotes robustness, re-usability,
and scalability as important principles that help
with the construction of practical NLP systems.

8 Conclusions

In this paper we have described an infrastruc-
ture for language engineering software which
aims to assist the develeopment of robust tools
and resources for NLP.

One future direction is the integration of pro-
cessing resources which learn in the background
while the user is annotating corpora in GATE’s
visual environment. Currently, statistical mod-
els can be integrated but need to be trained sep-
arately. We are also extending the system to
handle language generation modules, in order
to enable the construction of applications which
require language production in addition to anal-
ysis, e.g. intelligent report generation from IE
data.

References

D.E. Appelt. 1996. The Common Pattern Specifi-
cation Language. Technical report, SRI Interna-
tional, Artificial Intelligence Center.

S. Bird, D. Day, J. Garofolo, J. Henderson,
C. Laprun, and M. Liberman. 2000. ATLAS: A
flexible and extensible architecture for linguistic
annotation. In Proceedings of the Second Inter-
national Conference on Language Resources and
Evaluation, Athens.

H. Brugman, H.G. Russel, and P. Wittenburg. 1998.
An infrastructure for collaboratively building and
using multimedia corpora in the humaniora. In
Proceedings of the ED-MEDIA/ED-TELECOM
Conference, Freiburg.

H. Cunningham, D. Maynard, K. Bontcheva,
V. Tablan, and C. Ursu. 2002. The GATE User
Guide. http://gate.ac.uk/.

H. Cunningham. 2000. Software Architecture for
Language Engineering. Ph.D. thesis, University
of Sheffield. http://gate.ac.uk/sale/thesis/.

H. Cunningham. 2002. GATE, a General Archi-
tecture for Text Engineering. Computers and the
Humanities, 36:223–254.

M. Dimitrov. 2002. A Light-weight Approach
to Coreference Resolution for Named Entities in
Text. MSc Thesis, University of Sofia, Bulgaria.
http://www.ontotext.com/ie/thesis-m.pdf.

R. Grishman. 1997. TIPSTER Architec-
ture Design Document Version 2.3. Techni-
cal report, DARPA. http://www.itl.nist.gov/-

div894/894.02/related projects/tipster/.

D. Maynard, V. Tablan, C. Ursu, H. Cunningham,
and Y. Wilks. 2001. Named Entity Recognition
from Diverse Text Types. In Recent Advances
in Natural Language Processing 2001 Conference,
pages 257–274, Tzigov Chark, Bulgaria.

A.M. McEnery, P. Baker, R. Gaizauskas, and
H. Cunningham. 2000. EMILLE: Building a Cor-
pus of South Asian Languages. Vivek, A Quar-
terly in Artificial Intelligence, 13(3):23–32.

A. Mikheev and S. Finch. 1997. A Workbench for
Finding Structure in Text. In Fifth Conference on
Applied NLP (ANLP-97), Washington, DC.

P. Paggio. 1998. Validating the TEMAA LE evaluta-
tion methodology: a case study on Danish spelling
checkers. Journal of Natural Language Engineer-
ing, 4(3):211–228.

K. Sparck-Jones and J. Galliers. 1996. Evaluating
Natural Language Processing Systems. Springer,
Berlin.

H. Thompson and D. McKelvie. 1997. Hyper-
link semantics for standoff markup of read-only
documents. In Proceedings of SGML Europe’97,
Barcelona.

S. Young, D. Kershaw, J. Odell, D. Ollason,
V. Valtchev, and P. Woodland. 1999. The HTK
Book (Version 2.2). Entropic Ltd., Cambridge.
ftp://ftp.entropic.com/pub/htk/.

R. Zajac. 1998. Reuse and Integration of NLP
Components in the Calypso Architecture. In
Workshop on Distributing and Accessing Lin-
guistic Resources, pages 34–40, Granada, Spain.
http://www.dcs.shef.ac.uk/~hamish/dalr/.


