
Author: Brian Davis

Organisation: Digitial Enterprise Research Institute, Galway

Version: 1.9

Last Revision: 11th March 2010

GATE Version: Release 4.0 (July 12th 2007)

1. Learning Outcomes

You will by the end of this tutorial:

• have basic knowledge of the GATE Deveploment Environment .
• know how to create a simple NLP application of your own in the GATE

Development Environment.

• know how to create the same GATE application programatically.

• learn how to exploit IE in GATE

• have been exposed to JAPE for NE Extraction and Relation Extraction

Glossary

GATE – General Architecture for Text Engineering

NLP – Natural Language Processing

IE – Information Extraction

JAPE – Java Annotation Patterns Engine

NE – Named Entities

Materials:
This document and source code to be provided either at the beginning of the
Tutorial or in the tutorial folder accompanying this document.

2. About GATE

“GATE is an infrastructure for developing and deploying software
components that process human language. GATE helps scientists and
developers in three ways”:

1. by specifiying an architecture, or organisational structure, for language
processing software;

2. by providing a framework, or class library, that implements the
architecture and can be used to embed language processing capabilities

in diverse applications;
3. by providing a development environment built on top of the framework

made up of convenient graphical tools for developing components.”

[1]

Recommended Reading:

[1]GATE User Guide See http://gate.ac.uk/sale/tao/split.html
[2] Software Architecture for Language Engineering
 http://gate.ac.uk/sale/thesis/

If you have not already, you should go through the following material:
of the GATE User Guide

Chapter 1, 6, 8

3. Practical

Task 1

Start Gate either using:

Use your platform specfic installer
See Gate User Guide Section 2.2.1

[1]http://gate.ac.uk/sale/tao/splitch2.html#x5-220002.2.1

OR

cd YourGateHomeDir

bin/ant run #(Linux or Unix)

bin/ant.bat run #Windows

In the USB stick (if provided)

Task 2

Load ANNIE (A Nearly New Information Extraction System) with
defaults.

See Gate USER Guide Chapter 6 for further details,

Click on and choose “Load ANNIE with defaults

The following will be loaded:

An instance of a Serial Analyser Controller will appear under “Applications” with
the name “Annie_####”. This type of Controller is used to manage a pipeline
of NLP processing resources which will be run over a corpus. A corpus is a
collection of documents. GATE consists of Processing Resources (PRs) –
Programs or Algorithms which will do some sort processing on text i.e.
Tokenising or dictionary lookup, parsing etc and Language Resources (LRs) –
documents, Corpora, Ontologies – data essentially .The third component is
Visual Resources (Vrs) but you do not need to worry about them here. All
GATE Resources are realised as Java Beans. See Chapter 1 in the Gate User
Guide for more details.

If you double click on the the “ANNIE” instance, the following will appear:

Notice how the PRs
you initially loaded when you double clicked on the “ANNIE with defaults” icon,
where also automatically added to the pipeline in the appropriate order. Note
that the order of you PRs is very important, for instance you cannot really split
sentences until you have tokenised the document, this is much more subtle
with respect to JAPE processing later. Briefly, the default PRs loaded with
ANNIE are:

Document Reset PR
GATE keeps annotations and text seperately (StandOff Markup), in fact any
GATE document will pass through a pipleine unaltered – in other words no
annotation or parsing information is embedded in a document. For design
reasons which are beyond the scope of this tutorial, GATE tends to employ
weak referencing in the JVM, thus overiding garbage collection. Consequently
you will need to explicity delete resources – mostly documents when using
GATE programatically. GATE will also keep annotation sets derived from
previous processing in memory. This has two consequences:

1)Old annotations residing in memory from a previous document may be
taken into account when processing the next document.

2)The JVM heap will begin to fill up with old annotation sets generated
from previous documents which can severely impact on performance.

Hence the purpose of the Document Reset PR is to clean out any previous
annotations, essentially releasing the annotation set objects for garbage
collection.

ANNIE English Tokeniser

This PR splits a text into annotations of type Token, taking into account spaces
etc. In addition a JAPE transducer is used to conduct post processing in order
to handle contractions in English i.e. Don't, Can't. Only use the ANNIE
English tokeniser if you a certain your text contains only English. In
addition, if your document contains junk “markup” attempt one way or another
to clean it out of the text or ensure that it is well formed. Failing this, will
cause the English tokeniser to choke on certain input, particularly at the post
processing phase. If you cannot ensure this, use the GATE Unicode Tokeniser.

Always use the GATE Unicode Tokeniser for languages other than
English.

ANNIE Gazetteer

This PR compiles wordlists into Finite State Machines in order to conduct
NE(Named Entity) or Key Phrase look up. Output is annotations of type
LookUp. Used for NE Recognition. An NE is a: Person, Location Date, Address
See http://en.wikipedia.org/wiki/Named_entity_recognition

ANNIE Sentence Splitter

Assigns annotations of type Split to sentence boundaries in text based on
punctuation and \t \r keys. It is implemented as cascade of JAPE transducers.
Creates Sentence annotations.

ANNIE POS Tagger

The POS (Part of Speech) tagger assigns POS tags to Token annotations.
The (Hepple) tagger is a modified version of the Brill tagger. The list of tags
used is given in Appendix D of the GATE User Guide[1]. The tagger uses a
default lexicon and ruleset (the result of training on a large corpus taken from
the Wall Street Journal). A POS tag is the assignment of linguistic category to
a Token i.e. NNP or NNPS for Proper Nouns in singular or plural froms
respectively.

ANNIE NE transducers

This PR will

(1) attempt to find unknown Named Entities based on extraction
templates written in the JAPE language i.e. A Token with an NNP (proper
Noun) POS tag followed by a Lookup annotation for Company suffixs like
“Ltd or “GmBH” should be annotated as an NE of type Company or
Organisation.

(2) act on Lookup annotations and additional local contextual linguistic
information to output a final Semantic Type or NE. i.e. Lookups of type
“title” followed by a “firstname” and “lastname” should be annotated
entitely as an NE of type Person - “Mr John Smith”

A Brief Note on JAPE

JAPE – Java Annotation Patterns Engine

JAPE provides finite state transduction over annotations based on regular
expressions. JAPE is based CPSL – Common Pattern Specification Language –
See[1] Chapter 8

A JAPE grammar consists of a set of phases, each of which consists of a set of
pattern/action rules. The phases run sequentially and constitute a cascade of
finite state transducers over annotations. The left-hand-side (LHS) of the rules
consist of an annotation pattern that may contain regular expression operators
(e.g. *, ?, +). The right-hand-side (RHS) consists of annotation manipulation
statements in the Java code. Annotations matched on the LHS of a rule may
be referred to on the RHS by means of labels that are attached to pattern
elements. Cascaded FSTs are shallow or partial parsers, examples inlcude
FASTUS[3] and Jfrost within IBM LanguageWare[4]. They are often employed
in IE beacuse they are robust and efficient. One could achieve the same result
using a deep parser, however this would impact significantly on performance
and robustness, also the majority of parsing information would be discarded in
order to complete the same task in IE.

We will look at a JAPE in detail later. If you double click on the NE Transducer
in the Resources Tree you can view a JAPE file which calls a collection of
phases, similar to a main method in C or Java

Orthomatcher PR

The Orthomatcher module adds identity relations between named entities
found by the NE Transducer, in order to perform coreference. It does not find
new named entities as such, but it may assign a type to an unclassified proper
name, using the type of a matching name.
The matching rules are only invoked if the names being compared are both of
the same type, i.e. both already tagged as (say) organisations, or if one of
them is classified as ‘unknown’. This prevents a previously classified name from
being recategorised. An alias list exists also for Orthormatcher i.e. The PR
would create an identity relation between the “Big Blue” and “IBM”. The alias
list however most be manually constructed.

Task 3

Run ANNIE over a document.

Right Click on Language Resources and click on GATE corpus and click
OK

Repeat the same for GATE document however, when prompted for the source
URL, either provide a URL to for example your favourite TV Program on the
Web (if internet access is working or alternatively choose a file from your
desktop or from the documents subfolder in the tutorial folder.

GATE will handle most file formats:

Plain Text

• HTML
• SGML
• XML
• RTF
• Email
• PDF (some documents)
• Microsoft Word (some documents)

Recall the the application we are using is a Corpus pipeline. We are not
processing a single document. If that were the case, we would have created a
serial controller instead.

Hence we will need to add our document to our Corpus. Right Click on the
Corpus Icon in the Resources and click on the following icon to add your
document.

Double Click on the ANNIE application icon again .

The ANNIE pipeline shown in the main viewing pane (see above) . If the
corpus is not already loaded use the pulldown selector to find it. (To the right
of Corpus: in the view pane)

Run ANNIE by clicking the Run Button

Wait a few seconds :-)

Now click on your GATE document in Language Resources tree. See icon
below.

The document viewer should open as shown below.

Double Click on both Annotations and Annotation
Sets buttons in the documentviewer.

Annotation Sets will appear on the Right hand side and Annotations (and their
features) will appear on the left hand side.

Take some time to explore the results.

Task 4: Domain specific IE

Now that we are off to a start, lets create our own GATE application which can
extract simple relations from a business text.

Step 1

Close your documents and the existing ANNIE application.
Create a Corpus pipeline in GATE.

Load the following Processing Resources (PRs) by right clicking on the
Processing Resource Tree:

ANNIE English Tokeniser
ANNIE Gazetteer
ANNIE POS Tagger
ANNIE SentenceSplitter

Click Ok for all of the above PRs to accept the default values EXCEPT the
ANNIE Gazetteer. See the ANNIE gazetteer settings below. Point the
listsURL attribute to following path:
file:<YOURHOMEDIR><MYTUTORIALDIR>/resources/gazetteers/mylists.def

Now, create a new JAPE transducer PR.

In the grammarURL attribute value, browse the material copied from within the
Tutorial folder to this location:
file:/<YOURHOMEDIR><MYTUTORIALDIR>/resources/JAPE/main.jape

Using the green arrows in the Application Viewing pane for the “tutorial”
pipeline. Move the PRs accross and “drop” them into the Corpus Pipeline.

file:///

until your pipeline looks like the following below in the correct order :

Follow the same steps used in Task 3 to create a corpus.
In addition create a document, but this time use the following file from the
tutorial folder:
file/<YOURHOMEDIR><MYTUTORIALDIR>/documents/BusinessText.t
xt
Add the GATE document to the GATE Corpus and set the Corpus in the
“tutorial” pipeline. (Repeat of steps in Task 3)

Your Corpus pipeline should look like this.

Run the pipeline and wait until processing is completed. After this has
occurred, double click on the GATE document (same steps as in Task 3).

Lets take a look at the annotations outputted:

Notice there are two annotation sets “clicked on” in the GUI –
companytoCompanyRelation1 and companytoCompanyRelation6

Both relations are concerned with relations of type acquisition between
Company annotations. companytoCompany1 is concerned with Company1
acquiring Company2 and companytoCompany6 concerns acquiring
relations where the trigger phrases are in the passive tense i.e. “IBM was
taken over by Cognos”.

Lets have a little more look in detail at the JAPE grammars which do all the
work.
Open the file:<YOURHOMEDIR><MYTUTORIALDIR>/resources/JAPE/
main.jape

MultiPhase: RelationExtractionGrammars
Phases:
preprocessing1
preprocessing2
acquireRelation

 Now Lets take a closer look at file

<YOURHOMEDIR><MYTUTORIALDIR>/resources/JAPE/preprocessing
2.jape

/*
* preprocessing2.jape
* Copyright (c) 2007- , DERI, National University of Ireland,Galway.
* Brian Davis, 12 December 2007
* Project: Training - Prototype
* $Id: preprocessing2.jape,v 1.0 2007/12/12 19:24:00 GMT
*
* The Phase seperates Annotations of Company relations from Lookup Annotations
*/

Phase: preprocessing2
Input: Lookup

Rule: Preprocess1
(
{Lookup.majorType==acquires_verb}
):acquiresVerb

-->
:acquiresVerb
 {
 gate.AnnotationSet matchedAnns=
 (gate.AnnotationSet)bindings.get("acquiresVerb");
 gate.FeatureMap newFeatures= Factory.newFeatureMap();
 newFeatures.put("rule","Preprocess1");

annotations.add(matchedAnns.firstNode(),matchedAnns.lastNode(),"ownerOf", newFeatures);
 }

/* - acquires, took over */

As mentioned earlier JAPE consists of collection of rules each one consisting of
a set of LHS --> RHS rules or <Pattern> --> {action } rules. The LHS of a
JAPE rule uses Regular expressions (|, ?, *, +) over annotations while the
RHS consists of a block of JAVA code for annotation manipulation. In the
above rule
acquiresVerb is a binding varaiable for the Lookup annotation (Gazetteer
Lookup). The binding variable is cast into an AnnotationSet object
(matchedAnns). A FeatureMap object is created to store additional linguistic
information, other annotations and/or in case this debugging information (i.e.
If I want to know the name of the Jape rule that fired to create this
annotation.) FeatureMaps store abitary attribute/value pairs as type
String/Object Java Objects respectively. Hence the value of a Feature can
be anything. Finally, in the last line we create and add a new annotation to
the default annotationSet annotations.

annotations.add(matchedAnns.firstNode(),matchedAnns.lastNode(),"ownerOf", newFeatures);

The four parameters of the add method are:

The (1) start and the end (2) positions of the matchedAnns annotation,
(3) the name of the new annotation as a String literal, in this case
“ownerOf” and (4) the FeatureMap object, newFeatures.

Now a new annotation “OwnerOf” has been created, which we will manipulate

at a later stage.

Now Lets take a closer look at file
<YOURHOMEDIR><MYTUTORIALDIR>/resources/JAPE/acquireRelation.j
ape

/*
* acquireRelation.jape
*
* Copyright (c) 2007- , DERI, National University of Ireland, Galway.
* Brian Davis, 12 December 2007
* Project: Lion - Prototype
* $Id: acquireRelation.jape,v 1.0 2007/12/12 16:47:00 GMT
*/

Phase: CompanyRelations

Input: Company ownerOf Split CC

Rule: CompanytoCompanyRelation1

(

({Company}):c1 ({ownerOf}):v ({Company}):c2 ({Split}|{CC})

):companytoCompanyRelation1

-->

:companytoCompanyRelation1

 {

 gate.AnnotationSet matchedCompanies=(gate.AnnotationSet) bindings.get("c1");
 Annotation company1=matchedCompanies.iterator().next();
 gate.AnnotationSet matchedCompanies2=(gate.AnnotationSet) bindings.get("c2");
 Annotation company2=matchedCompanies2.iterator().next();
 gate.AnnotationSet matchedVerb=(gate.AnnotationSet) bindings.get("v");
 Annotation verb=matchedVerb.iterator().next();
 gate.AnnotationSet matchedAnns= (gate.AnnotationSet)
 bindings.get("companytoCompanyRelation1");
 gate.FeatureMap newFeatures= Factory.newFeatureMap();
 newFeatures.put("Company1",company1);
 newFeatures.put("ownerOf",verb);
 newFeatures.put("Company2",company2);
 newFeatures.put("rule","CompanytoCompanyRelation1");
 annotations.add(matchedAnns.firstNode(),matchedAnns.lastNode(),"companytoCompanyRelat
ion1", newFeatures);

}

This Jape file is responsible for extracting relations of type
companytoCompanyRelation1 and companytoCompanyRelation6 - relations of
type “ownership” between two Company annotations. The rules are similar to
the above file with some notable exceptions:

In a Jape file you can specify the input annotations to a transducer much like
you would pass parameters to a procedure or a function in any other

programming language.

Observe The line:

Input: Company ownerOf Split CC

states that the JAPE transducer should only consider the annotations of type
Company #Companies already identified by gazetteer lookup and split into

 Company Annotations i.e “IBM”, “Microsoft”

ownerOf #trigger phrases of type “ownerOf” already identified by gazetteer
lookup and split into seperate “ownerOf” Annotations

Split #annotations created by the Sentence Splitter - ?,.,\t,\r

CC #cetain types of Coordinating conjunctions between clauses – or, and,
“,”

Note that due to specifying the Input, all other annotations will be
ignored i.e. Lookup, Token etc. This also justifies seperating Lookup
annoations into Company etc – as JAPE patterns for relation extraction
based on Lookup annotations only, would overgeneralise and the rules
would never fire.

Now lets look at the LHS JAPE pattern

(

({Company}):c1 ({ownerOf}):v ({Company}):c2 ({Split}|{CC})

):companytoCompanyRelation1

#Annotations are surrounded by {...}
#Patterns or Annotations to be bound are to labels using (...):bindVar

With

({Split}|{CC})

You have a simple RE pattern which implies match either a Split or a CC
annotation. The entire pattern is bound by the following label/binding variable
companytoCompanyRelation1 in the following manner:

 (<PATTERN>):bindVar
-->
 :bindVar { JAVA BLOCK }

Consequently this rule will match:

 “IBM to acquire Cognos in an all-cash transaction at a price of
approximately $5 billion USD or”

Now we will move The RHS action rule of this JAPE example:

Some explanations:

gate.AnnotationSet matchedCompanies=(gate.AnnotationSet) bindings.get("c1");
 Annotation company1=matchedCompanies.iterator().next();

#This piece of code converts the binding variable for the Company annotation
into an AnnotationSet called matchedCompanies. Since I am only
interested in one Company, I used the AnnotationSet's iterator method
to give me the first Annotation within the AnnoationSet. This process is
repeated from the v and c2 labels bound to the JAPE LHS.

gate.AnnotationSet matchedAnns= (gate.AnnotationSet)
 bindings.get("companytoCompanyRelation1");

#We apply the same process again, but this time we create a new annotation
set that spans the entire relation containing the Company ownerOf Company
annotations.

 gate.FeatureMap newFeatures= Factory.newFeatureMap();
 newFeatures.put("Company1",company1);
 newFeatures.put("ownerOf",verb);
 newFeatures.put("Company2",company2);
 newFeatures.put("rule","CompanytoCompanyRelation1");

Now we create a new FeatureMap and attribute\value pairs. Recall that value
of an attribute can be any Java Object. In the above example, the new
annotations for ownerOf and the companies involved in the relation are
“chained” or embedded within the companytoCompanyRelation1 annotation
using FeatureMaps.

 annotations.add(matchedAnns.firstNode(),matchedAnns.lastNode(),"companytoCompanyRelatio
n1", newFeatures);

Finally just as before we add our new companytoCompanyRelation1 to the
default annotationSet annotations. Later we will learn how to access these
annoations programatically in GATE and map them into RDF triples.

BUT First lets play a little with JAPE -

Task 5: X marks the spot !

Create a new JAPE rule to extract isCustomerOf relations between companies.

Use the following file:<YOURHOMEDIR><MYTUTORIALDIR>
resources/JAPE/myjape.jape

/*

* myjape.jape

*

* Copyright (c) 2008- , Some University .

* Somebody, 09 September 2008

* Project XXXXXXX

*/

Phase: CompanyRelations2

Input: Company customerOf Split

Options: control=all

Rule: CompanytoCompanyRelation2

(

({Company}):c1({customerOf}):v({Company}):c2 {Split}

):companytoCompanyRelation2

-->

:XXXXXXXXXXX

 {

gate.AnnotationSet matchedCompanies=(gate.AnnotationSet)
bindings.get("c1");

 Annotation company1=matchedCompanies.iterator().next();

 gate.AnnotationSet matchedCompanies2=(gate.AnnotationSet)
bindings.get("c2");

 Annotation company2=matchedCompanies2.iterator().next();

 gate.AnnotationSet matchedVerb=(gate.AnnotationSet) bindings.get("v");

 Annotation verb=matchedVerb.iterator().next();

 gate.AnnotationSet matchedAnns= (gate.AnnotationSet)
bindings.get("XXXXXXXXXX");

 gate.FeatureMap newFeatures= Factory.newFeatureMap();

 newFeatures.put("Company1",company1);

 newFeatures.put("customerOf",verb);

 newFeatures.put("Company2",company2);

newFeatures.put("rule","CompanytoCompanyRelation2");

annotations.add(XXXXXXXXX);

}

/* Company 2 Company relation - buys, purchases, is a customer of */

Once you have finished – reinitialize your JAPE transducer – but dont forget to
amend your main.jape file to include your new Grammar.

Reinitialize your JAPE transducers like so:

More Advanced Problems:

What happens if we have false positives i.e.

Oracle's Larry Ellison has long threatened to acquire BEA Systems, finally
making an offer on October 12, 2007, however this was rejected by BEAs

Board of Directors.

SAP no longer plans to buy Business Objects.

Write a JAPE file to handle the following exceptions: contradiction and
negation.

Tips

You will need to:
add new gazeteer entries
Modify preprocessing2.jape
Modify acquireRelation.jape

Hint one way to do it is to create a Contrst annotation (for contrastive
conjunction). A contrastive conjunction implies the preceeding clause will be
contradicted by the proceeding subclause

We could create a new rule as such:

Phase: CompanyRelations2

Input: Company customerOf Split Contrst

Options: control=appelt

Priority:25

Rule: CompanytoCompanyRelationNeg

(

({Company}):c1 ({ownerOf}):v ({Company}):c2 ({Contrst})

):companytoCompanyRelationNeg

--> {}

and add it into

<YOURHOMEDIR><MYTUTORIALDIR>/resources/JAPE/acquireRelation.j
ape

Make sure it preceeds the old rule. Why?

Notice in the file we currently have set the controll of this jape grammar to all.
This means all rules will fire! We can change it to:

Options: control=appelt

This means the rule with the longest match will fire first! In addtion you can
specify the the prioity of rules to fired (just to be on the save side) i.e.

Priority:25

You do not need to change the priority of the other rules in this case since
unless specified, the default priority for all rules is -1 which is the lowest
priority. Hence priorities are positive integers.

Finally you'll notice --> {}. This is an empty Java block, hence when it is fired
it will do nothing. More importanly JAPE will consume the annotations and
continue matching from the next offset. If the rule does not match then the
next set of possitive rules can proceed in priority to match.

You could use the negative operators (GATE 5) in JAPE to colapse the rule
CompanytoCompanyRelationNeg into CompanytoCompanyRelation2

Rule: CompanytoCompanyRelation2

(

({Company}):c1({customerOf}):v({Company}):c2 !({Contrst}){Split}
)

Be warned though that negating Contrst tells JAPE to match any other
annotation except Contrst, hence in this case you could match Company
, customerOf or Split which could lead to overgeneration of your rule or
unepected results. If you are unsure which approach to use, pick the first one
(<PATTERN> --> {}).

For Testing use:
file/<YOURHOMEDIR><MYTUTORIALDIR>/documents/BusinessTextD
ecoy.txt

Finally, those of you with a theoretical computational linguistic's background
will not doubt express concerns over the oversimplicity of the rules to handle
negatio/contradiction above. In particular, it would difficult to account for all
syntactic variations of negation before or after the verb trigger phrase
customerOf. Furthermore JAPE patterns have the equivalent recognition
power of a regular language and one might presume this would insufficent for
your needs. One would assume JAPE cannot backtrack, but in fact some
degree of backtracking is permitted since the annotation sets you have created
are always accessable via the right hand side Java block, hence you can always
access the memory of your parse/annotation information and delete, amend,
update annotation sets or specific annotations. Futhermore you can check for
intersections with your matched annotation span and other annotations which
is useful if you cannot account for the syntactic ordering of some linguistic
phenomenon (HINT for negation:-)) . Futhermore, there is no reason not to
use other available parsers within GATE such as, NP and VP chunkers, Minipar
parser, Standford parser, SUPPLE parser, RASP parser, depending on your NLP

task.
One useful advantage is that the annoations created by such parsers as
Minipar, NP and VP chunkers etc can be later manipulated in JAPE.

A the JAVA code is available to build in the
<YOURHOMEDIR><MYTUTORIALDIR>/sources directory please
inspect the README file for instructions to compile and run the
program.

Thank You for your time and enjoy playing with GATE!

References

[1]GATE User Guide See http://gate.ac.uk/sale/tao/split.html
[2]Software Architecture for Language Engineering
 http://gate.ac.uk/sale/thesis/index.html
[3]http://www.alphaworks.ibm.com/tech/lrw
[4]http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.36.7858

