
GATE API Basics
The CREOLE Model

Execution Control

The GATE Embedded API
Module 5

Tenth GATE Training Course
June 2017

c© 2017 The University of Sheffield

This material is licenced under the Creative Commons

Attribution-NonCommercial-ShareAlike Licence

(http://creativecommons.org/licenses/by-nc-sa/3.0/)

The GATE Embedded API 1 / 60

http://creativecommons.org/licenses/by-nc-sa/3.0/


GATE API Basics
The CREOLE Model

Execution Control

Outline

1 GATE API Basics

2 The CREOLE Model
CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

3 Execution Control
Processing Resources and Language Analysers
Controllers

The GATE Embedded API 2 / 60



GATE API Basics
The CREOLE Model

Execution Control

Before We Start

Prerequisites

Java 8 JDK (OpenJDK or Oracle)

latest GATE Developer/Embedded (version 8.4.1)

Java Development Environment such as Eclipse (not compulsory
but highly recommended!).

Hands-on resources

Download hands-on resources from the participants’ wiki

Unzip it somewhere on your hard disk

Have a look at the build.xml

Create a Java project in your IDE (call it module5)

Write a Hello World program to test your configurations
The GATE Embedded API 3 / 60



GATE API Basics
The CREOLE Model

Execution Control

Your First GATE-Based Project

Libraries to include

<gate-install-dir>/bin/gate.jar

<gate-install-dir>/lib/*.jar

Documentation

The GATE Embedded API 4 / 60



GATE API Basics
The CREOLE Model

Execution Control

For Eclipse users

Open your Eclipse preferences (in the usual place on the
application menu for Mac, under Window on other platforms)

Java → Build Path → User Libraries

Create a new library named GATE
Add JARs. . .

add bin/gate.jar and all the JARs in gate/lib

expand the gate.jar entry, edit the “Source attachment” and
point it at the src directory in your GATE.

OK

Add this user library to the build path of your module5 project.

Eclipse configurations for later modules assume this library.

The GATE Embedded API 5 / 60



GATE API Basics
The CREOLE Model

Execution Control

Exercise 1: Loading a Document

Try this:

1 import gate.*;
2 public class Main {
3 public static void main(String[] args)
4 throws Exception{
5 Gate.init(); / / prepare the library
6 / / create a new document
7 Factory.newDocument("This is a document");
8 }
9 }

The GATE Embedded API 6 / 60



GATE API Basics
The CREOLE Model

Execution Control

Interacting with GATE

Using GATE Developer

GATE 
Developer

GATE
Embedded

Control

Events

Interaction

Feedback

Using GATE API

The GATE Embedded API 7 / 60



GATE API Basics
The CREOLE Model

Execution Control

Interacting with GATE

Using GATE Developer

GATE 
Developer

GATE
Embedded

Control

Events

Interaction

Feedback

Using GATE API

GATE
Embedded

ControlProgramming
Java

Program

The GATE Embedded API 7 / 60



GATE API Basics
The CREOLE Model

Execution Control

Interacting with GATE

Using GATE Developer

GATE 
Developer

GATE
Embedded

Control

Events

Interaction

Feedback

Using GATE API

GATE
Embedded

Control

GATE
Developer

Ev
en
ts

Programming

Feedback

Java
Program

The GATE Embedded API 7 / 60



GATE API Basics
The CREOLE Model

Execution Control

Loading a Document (take 2)

1 package gatetutorial;
2 import gate.*;
3 import gate.gui.*;
4 import javax.swing.SwingUtilities;
5

6 public class Main {
7 public static void main(String[] args)
8 throws Exception{
9 / / prepare the library

10 Gate.init();
11 / / show the main window
12 SwingUtilities.invokeAndWait(
13 () -> MainFrame.getInstance().setVisible(true));
14 / / create a document
15 Factory.newDocument("This is a document");
16 }
17 }

The GATE Embedded API 8 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Outline

1 GATE API Basics

2 The CREOLE Model
CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

3 Execution Control
Processing Resources and Language Analysers
Controllers

The GATE Embedded API 9 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

CREOLE

The GATE component model is called CREOLE (Collection of
REusable Objects for Language Engineering).

CREOLE uses the following terminology:

CREOLE Plugins: contain definitions for a set of resources.

CREOLE Resources: Java objects with associated configuration.

CREOLE Configuration: the metadata associated with Java
classes that implement CREOLE resources.

The GATE Embedded API 10 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

CREOLE Plugins

CREOLE is organised as a set of plugins.

Each CREOLE plugin:

is a directory on disk (or on a web server);

is specified as a URL pointing to the directory;

contains a special file called creole.xml;
may contain one or more .jar files with compiled Java classes.

alternatively, the required Java classes may simply be placed on
the application classpath.

contains the definitions for a set of CREOLE resources.

The GATE Embedded API 11 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

CREOLE Resources

A CREOLE resource is a Java Bean with some additional metadata.

A CREOLE resource:

must implement the gate.Resource interface;

must provide accessor methods for its parameters;

must have associated CREOLE metadata.

The CREOLE metadata associated with a resource:

can be provided inside the creole.xml file for the plugin;

can be provided as special Java annotations inside the source
code (recommended).

More details about this later today!

The GATE Embedded API 12 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Outline

1 GATE API Basics

2 The CREOLE Model
CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

3 Execution Control
Processing Resources and Language Analysers
Controllers

The GATE Embedded API 13 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

GATE Resource Types

There are three types of resources:

Language Resources (LRs) used to encapsulate data (such as
documents and corpora);

Processing Resources (PRs) used to describe algorithms;

Visual Resources (VRs) used to create user interfaces.

The different types of GATE resources relate to each other:

PRs run over LRs,

VRs display and edit LRs,

VRs manage PRs, . . .

These associations are made via CREOLE configuration.

The GATE Embedded API 14 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

GATE Feature Maps

Feature Maps. . .

are simply Java Maps, with added support for firing events.

are used to provide parameter values when creating and
configuring CREOLE resources.

are used to store metadata on many GATE objects.

All GATE resources are feature bearers
(they implement gate.util.FeatureBearer):

1 public interface FeatureBearer{
2 public FeatureMap getFeatures();
3

4 public void setFeatures(FeatureMap features);
5 }

The GATE Embedded API 15 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

FeatureMap Implementation

gate.FeatureMap

1 public interface FeatureMap extends Map<Object, Object>
2 {
3 public void removeFeatureMapListener(
4 FeatureMapListener l);
5 public void addFeatureMapListener(
6 FeatureMapListener l);
7 }

Events: gate.event.FeatureMapListener

1 public interface FeatureMapListener
2 extends EventListener
3 {
4 public void featureMapUpdated();
5 }

The GATE Embedded API 16 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Resource Parameters

The behaviour of GATE resources can be affected by the use of
parameters.

Parameter values:

are provided as populated feature maps.

can be any Java Object;

This includes GATE resources!

The GATE Embedded API 17 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Parameter Types

There are two types of parameters:

Init-time Parameters

Are used during the instantiating resources.

Are available for all resource types.

Once set, they cannot be changed.

Run-time Parameters

are only avaialable for Processing Resources.

are set before executing the resource, and are used to affect the
behaviour of the PR.

can be changed between consecutive runs.

The GATE Embedded API 18 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Creating a GATE Resource

Always use the GATE Factory to create and delete GATE resources!

gate.Factory

1 public static Resource createResource(
2 String resourceClassName,
3 FeatureMap parameterValues,
4 FeatureMap features,
5 String resourceName){
6 ...
7 }

Only the first parameter is required; other variants of this method are
available, which require fewer parameters.

The GATE Embedded API 19 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Creating a GATE Resource

You will need the following values:

String resourceClassName: the class name for the
resource you are trying to create. This should be a string with the
fully-qualified class name, e.g.
"gate.corpora.DocumentImpl".

FeatureMap parameterValues: the values for the
init-time parameters. Parameters the are not specified will get
their default values (as described in the CREOLE configuration).
It is an error for a required parameter not to receive a value
(either explicit or default)!

FeatureMap features: the initial values for the new
resource’s features.

String resourceName: the name for the new resource.

The GATE Embedded API 20 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Example: Load a Document (take 3)

1 FeatureMap params = Factory.newFeatureMap();
2 params.put(
3 Document.DOCUMENT_STRING_CONTENT_PARAMETER_NAME,
4 "This is a document!");
5 FeatureMap feats = Factory.newFeatureMap();
6 feats.put("createdBy", "me!");
7 Factory.createResource("gate.corpora.DocumentImpl",
8 params, feats, "My first document");

TIP: Resource Parameters
The easiest way to find out what parameters resources take (and
which ones are required, and what types of values they accept) is to
use the GATE Developer UI and try to create the desired type of
resource in the GUI!

The GATE Embedded API 21 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Example: Load a Document (take 3)

The GATE Embedded API 22 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Shortcuts for Loading GATE Resources

Loading a GATE document

1 import gate.*;
2 / / create a document from a String content
3 Document doc = Factory.newDocument("Document text");
4 / / . . . or a URL
5 doc = Factory.newDocument(new URL("https://gate.ac.uk"));
6 / / . . . or a URL and a specified encoding
7 doc = Factory.newDocument(new URL("https://gate.ac.uk"),
8 "UTF-8");

Loading a GATE corpus

1 Corpus corpus = Factory.newCorpus("Corpus Name");

The GATE Embedded API 23 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Exercise 2: Loading a Document (again!)

Load a document:

using the GATE home page as a source;

using the UTF-8 encoding;

having the name “This is home”;

having a feature named "date", with the value the current date.

TIP: Make sure the GATE Developer main window is shown to test the
results!

The GATE Embedded API 24 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Outline

1 GATE API Basics

2 The CREOLE Model
CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

3 Execution Control
Processing Resources and Language Analysers
Controllers

The GATE Embedded API 25 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

GATE Documents

A GATE Document comprises:

a DocumentContent object;

a Default annotation set (which has no name);

zero or more named annotation sets;

A Document is also a type of Resource, so it also has:

a name;

features.

The GATE Embedded API 26 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Main Document API Calls

1 / / Obtain the document content
2 public DocumentContent getContent();
3 / / Get the default annotation set.
4 public AnnotationSet getAnnotations();
5 / / Get a named annotation set.
6 public AnnotationSet getAnnotations(String name);
7 / / Get the names for the annotation sets.
8 public Set<String> getAnnotationSetNames();
9 / / Get all named annotation sets.

10 public Map<String, AnnotationSet>
11 getNamedAnnotationSets();
12 / / Convert to GATE stand-off XML
13 public String toXml();
14 / / Convert some annotations to inline XML.
15 public String toXml(Set aSourceAnnotationSet,
16 boolean includeFeatures);

The GATE Embedded API 27 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Annotation Sets

GATE Annotation Sets. . .

maintain a set of Node objects (which are associated with offsets
in the document content);

and a set of annotations (which have a start and an end node).

implement the gate.AnnotationSet interface;

. . . which extends Set<Annotation>.

implement several get() methods for obtaining the included
annotations according to various constraints.

are created, deleted, and managed by the Document they belong
to.

TIP: always use a Document object to create a new annotation set! Do
not use the constructor!

The GATE Embedded API 28 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Main AnnotationSet API Calls

Nodes

1 / / Get the node with the smallest offset.
2 public Node firstNode();
3 / / Get the node with the largest offset.
4 public Node lastNode();

Creating new Annotations

1 / / Create (and add) a new annotation
2 public Integer add(Long start, Long end,
3 String type, FeatureMap features);
4 / / Create (and add) a new annotation
5 public Integer add(Node start, Node end,
6 String type, FeatureMap features)

The GATE Embedded API 29 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

AnnotationSet API (continued)

Getting Annotations by ID, or type

1 / / Get annotation by ID
2 public Annotation get(Integer id);
3 / / Get all annotations of one type
4 public AnnotationSet get(String type)
5 / / Get all annotation types present
6 public Set<String> getAllTypes()
7 / / Get all annotations of specified types
8 public AnnotationSet get(Set<String> types)

The GATE Embedded API 30 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

AnnotationSet API (continued)

Getting Annotations by position

1 / / Get all annotations starting at a given
2 / / location, or right after.
3 public AnnotationSet get(Long offset)
4 / / Get all annotations that overlap an interval
5 public AnnotationSet get(Long startOffset,
6 Long endOffset)
7 / / Get all annotations within an interval.
8 public AnnotationSet getContained(Long startOffset,
9 Long endOffset)

10 / / Get all annotations covering an interval.
11 public AnnotationSet getCovering(String neededType,
12 Long startOffset, Long endOffset)

The GATE Embedded API 31 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

AnnotationSet API (continued)

Combined get methods

1 / / Get by type and feature constraints.
2 public AnnotationSet get(String type,
3 FeatureMap constraints)
4 / / Get by type, constraints and start position.
5 public AnnotationSet get(String type,
6 FeatureMap constraints, Long offset)
7 / / Get by type, and interval overlap.
8 public AnnotationSet get(String type,
9 Long startOffset, Long endOffset)

10 / / Get by type and feature presence
11 public AnnotationSet get(String type,
12 Set featureNames)

The GATE Embedded API 32 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Exercise 3: The AnnotationSet API

For the document loaded in excercise 2:

find out how many named annotation sets it has;

find out how many annotations each set contains;

for each annotation set, for each annotation type, find out how
many annotations are present.

TIP: Make sure the GATE Developer main window is shown to test the
results!

The GATE Embedded API 33 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Annotations

GATE Annotations. . .

are metadata associated with a document segment;

have a type (String);

have a start and an end Node (gate.Node);

have features;

are created, deleted and managed by annotation sets.

TIP: always use an annotation set to create a new annotation! Do not
use the constructor.

The GATE Embedded API 34 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Annotation API

Main Annotation methods:

1 public String getType();
2 public Node getStartNode();
3 public Node getEndNode();
4 public FeatureMap getFeatures();

gate.Node

1 public Long getOffset();

The GATE Embedded API 35 / 60



GATE API Basics
The CREOLE Model

Execution Control

CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

Exercise 4: Annotation API

Implement the following:

Use the document created in exercise 3;

Use the annotation set Original markups and obtain
annotations of type a (anchor).

Iterate over each annotation, obtain its features and print the
value of href feature.

TIP: Before printing the value of href feature, use the
new URL(URL context, String spec) constuctor such
that the value of the href feature is parsed within the context of the
document’s source url.

The GATE Embedded API 36 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

Outline

1 GATE API Basics

2 The CREOLE Model
CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

3 Execution Control
Processing Resources and Language Analysers
Controllers

The GATE Embedded API 37 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

GATE Processing Resources

Processing Resources (PRs) are java classes that can be executed.

gate.Executable

1 public interface Executable {
2 public void execute() throws ExecutionException;
3 public void interrupt();
4 public boolean isInterrupted();
5 }

gate.ProcessingResource

1 public interface ProcessingResource
2 extends Resource, Executable
3 {
4 public void reInit()
5 throws ResourceInstantiationException;
6 }

The GATE Embedded API 38 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

Language Analysers

Analysers are PRs that are designed to run over the documents in a
corpus.

1 public interface LanguageAnalyser
2 extends ProcessingResource {
3

4 / / Set the document property for this analyser.
5 public void setDocument(Document document);
6

7 / / Get the document property for this analyser.
8 public Document getDocument();
9

10 / / Set the corpus property for this analyser.
11 public void setCorpus(Corpus corpus);
12

13 / / Get the corpus property for this analyser.
14 public Corpus getCorpus();

The GATE Embedded API 39 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

Loading a CREOLE Plugin

Documents and corpora are built in resource types.

All other CREOLE resources are defined as plugins.

Before instantiating a resource, you need to load its CREOLE
plugin first!

Loading a CREOLE plugin

1 / / get the root plugins dir
2 File pluginsDir = Gate.getPluginsHome();
3 / / Let’s load the Tools plugin
4 File aPluginDir = new File(pluginsDir, "Tools");
5 / / load the plugin.
6 Gate.getCreoleRegister().registerDirectories(
7 aPluginDir.toURI().toURL());

The GATE Embedded API 40 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

Exercise 5: Run a Tokeniser

Implement the following:

Load the plugin named "ANNIE";

Instantiate a Language Analyser of type
gate.creole.tokeniser.DefaultTokeniser (using
the default values for all parameters);

set the document of the tokeniser to the document created in
exercise 2;

set the corpus of the tokeniser to null;

call the execute() method of the tokeniser;

inspect the document and see what the results were.

The GATE Embedded API 41 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

Outline

1 GATE API Basics

2 The CREOLE Model
CREOLE Basics
Resources, Parameters, Features
Annotations, Documents, Corpora

3 Execution Control
Processing Resources and Language Analysers
Controllers

The GATE Embedded API 42 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

GATE Controllers

Controllers provide the implementation for execution control in
GATE.

They are called applications in GATE Developer.

The implementations provided by default implement a pipeline
architecture (they run a set of PRs one after another).
Other kind of implementations are also possible.

e.g. the Groovy plugin provides a scriptable controller
implementation

A controller is a class that implements gate.Controller.

The GATE Embedded API 43 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

Implementation

gate.Controller

1 public interface Controller extends Resource,
2 Executable, NameBearer, FeatureBearer {
3 public Collection getPRs();
4 public void setPRs(Collection PRs);
5 public void execute() throws ExecutionException;
6 }

all default controller implementations also implement
gate.ProcessingResource (so you can include
controllers inside other controllers!);

like all GATE resources, controllers are created using the
Factory class;

controllers have names, and features.

The GATE Embedded API 44 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

Default Controller Types

The following default controller implementations are provided (all in the
gate.creole package):

SerialController: a pipeline of PRs.

ConditionalSerialController: a pipeline of PRs.
Each PR has an associated RunningStrategy value which
can be used to decide at runtime whether or not to run the PR.

SerialAnalyserController: a pipeline of
LanguageAnalysers, which runs all the PRs over all the
documents in a Corpus. The corpus and document
parameters for each PR are set by the controller.

RealtimeCorpusController: a version of
SerialAnalyserController that interrupts the execution
over a document when a specified timeout has lapsed.

The GATE Embedded API 45 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

SerialAnalyserController API

SerialAnalyserController is the most used type of
Controller. Its most important methods are:
1 / / Adds a new PR at a given position
2 public void add(int index, ProcessingResource pr);
3 / / Adds a new PR at the end
4 public void add(ProcessingResource pr);
5 / / Replaces the PR at a given position
6 public ProcessingResource set(int index,
7 ProcessingResource pr);
8 / / Remove a PRs by position
9 public ProcessingResource remove(int index);

10 / / Remove a specified PR
11 public boolean remove(ProcessingResource pr);
12 / / Sets the corpus to be processed
13 public void setCorpus(gate.Corpus corpus);
14 / / Runs the controller
15 public void execute() throws ExecutionException;

The GATE Embedded API 46 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

Exercise 6: Run a Tokeniser (again!)

Implement the following:

Create a SerialAnalyserController, and add the tokeniser from
exercise 5 to it;

Create a corpus, and add the document from exercise 2 to it;

Set the corpus value of the controller to the newly created
corpus;

Execute the controller;

Inspect the results.

The GATE Embedded API 47 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

Controller Persistency (or Saving Applications)

The configuration of a controller (i.e. the list of PRs included, as
well as the features and parameter values for the controller and
its PRs) can be saved using a special type of XML serialisation.

This is done using the
gate.util.persistence.PersistenceManager
class.

This is what GATE Developer does when saving and loading
applications.

The GATE Embedded API 48 / 60



GATE API Basics
The CREOLE Model

Execution Control

Processing Resources and Language Analysers
Controllers

Implementation

gate.util.persistence.PersistenceManager

1 / / Serialises the configuration of a GATE object
2 / / to a special XML format.
3 public static void saveObjectToFile(Object obj,
4 File file) throws PersistenceException,
5 IOException ;
6

7 / / Re-creates the serialised GATE object from the saved
8 / / configuration data.
9 public static Object loadObjectFromFile(File file)

10 throws PersistenceException, IOException,
11 ResourceInstantiationException;
12 / / Loads a GATE object from a [remote] location.
13 public static Object loadObjectFromUrl(URL url)
14 throws PersistenceException, IOException,
15 ResourceInstantiationException;

The GATE Embedded API 49 / 60



GATE API Basics
The CREOLE Model

Execution Control

Thank you!

Questions?

More answers at:

https://gate.ac.uk (Our website)

https://gate.ac.uk/mail/ (Our mailing list)

The GATE Embedded API 50 / 60

https://gate.ac.uk
https://gate.ac.uk/mail/


GATE API Basics
The CREOLE Model

Execution Control

Exercise 2: Solution

A possible solution

1 import gate.*;
2 import java.net.URL;
3 import java.util.Date;
4 import javax.swing.SwingUtilities;
5

6 public class Main {
7 public static void main(String[] args)
8 throws Exception{
9

10 / / prepare the library
11 Gate.init();
12 / / show the main window
13 SwingUtilities.invokeAndWait(
14 () -> MainFrame.getInstance().setVisible(true));

The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 2: Solution (continued)

16 / / init-time parameter for document
17 FeatureMap params = Factory.newFeatureMap();
18 params.put(Document.DOCUMENT_URL_PARAMETER_NAME,
19 new URL("https://www.gate.ac.uk"));
20

21 params.put(Document.DOCUMENT_ENCODING_PARAMETER_NAME,
22 "UTF-8");
23

24 / / document features
25 FeatureMap feats = Factory.newFeatureMap();
26 feats.put("date", new Date());
27 Factory.createResource("gate.corpora.DocumentImpl",
28 params, feats, "This is home");
29 }
30 }

The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 2: Solution (continued)

The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 3: Solution

Additions to the solution of Exercise 2

1 ...
2

3 / / obtain a map of all named annotation sets
4 Map<String, AnnotationSet> namedASes =
5 doc.getNamedAnnotationSets();
6 System.out.println("No. of named Annotation Sets:"
7 + namedASes.size());
8

9 / / no of annotations each set contains
10 for (String setName : namedASes.keySet()) {
11 / / annotation set
12 AnnotationSet aSet = namedASes.get(setName);
13 / / no of annotations
14 System.out.println("No. of Annotations for " +
15 setName + ":" + aSet.size());

The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 3: Solution (Continued..)

17 / / all annotation types
18 Set<String> annotTypes = aSet.getAllTypes();
19 for(String aType : annotTypes) {
20 System.out.println(" " + aType + ": "
21 + aSet.get(aType).size());
22 }
23 }
24

25 ...

The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 3: Solution (continued)

The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 4: Solution

Additions to the solution of Exercise 2
1 ...
2

3 / / obtain the Original markups annotation set
4 AnnotationSet origMarkupsSet =
5 doc.getAnnotations("Original markups");
6

7 / / obtain annotations of type ’a’
8 AnnotationSet anchorSet = origMarkupsSet.get("a");
9

10 / / iterate over each annotation
11 / / obtain its features and print the value of href feature
12 for (Annotation anchor : anchorSet) {
13 String href = (String) anchor.getFeatures().get("href");
14 if(href != null) {
15 / / resolving href value against the document’s url
16 System.out.println(new URL(doc.getSourceUrl(), href));
17 }
18 }
19

20 ...
The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 4: Solution (continued)

The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 5: Solution

Additions to the solution of Exercise 2
1 ...
2

3 / / get the root plugins dir
4 File pluginsDir = Gate.getPluginsHome();
5 / / Let’s load the ANNIE plugin
6 File aPluginDir = new File(pluginsDir, "ANNIE");
7 / / load the plugin.
8 Gate.getCreoleRegister().registerDirectories(
9 aPluginDir.toURI().toURL());

10

11 / / create tokenizer
12 LanguageAnalyser pr = (LanguageAnalyser)
13 Factory.createResource(
14 "gate.creole.tokeniser.DefaultTokeniser");
15

16 pr.setDocument(doc); / / set the document
17 pr.setCorpus(null); / / set the corpus to null
18 pr.execute(); / / execute the PR
19

20 ...
The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 5: Solution (continued)

The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 6: Solution

Additions to the solution of Exercise 2

1 ...
2

3 / / get the root plugins dir
4 File pluginsDir = Gate.getPluginsHome();
5 / / Let’s load the ANNIE plugin
6 File aPluginDir = new File(pluginsDir, "ANNIE");
7 / / load the plugin.
8 Gate.getCreoleRegister().registerDirectories(
9 aPluginDir.toURI().toURL());

10

11 / / create tokenizer
12 LanguageAnalyser pr = (LanguageAnalyser)
13 Factory.createResource(
14 "gate.creole.tokeniser.DefaultTokeniser");

The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 6: Solution (Continued..)

16

17 / / create serialAnalyzerController
18 SerialAnalyserController controller =
19 (SerialAnalyserController) Factory.createResource(
20 "gate.creole.SerialAnalyserController");
21 / / add pr to the corpus
22 controller.add(pr);
23

24 / / create a corpus
25 Corpus corpus = Factory.newCorpus("corpus");
26 corpus.add(doc); / / add document to the corpus
27 controller.setCorpus(corpus); / / set corpus
28 controller.execute(); / / execute the corpus
29

30 ...

The GATE Embedded API



GATE API Basics
The CREOLE Model

Execution Control

Exercise 6: Solution (continued)

The GATE Embedded API


	GATE API Basics
	The CREOLE Model
	CREOLE Basics
	Resources, Parameters, Features
	Annotations, Documents, Corpora

	Execution Control
	Processing Resources and Language Analysers
	Controllers


