
Ontology-Based Categorization of Web Services with Machine
Learning

Adam Funk, Kalina Bontcheva

Department of Computer Science
University of Sheffield

Regent Court, Sheffield, S1 4DP, UK
a.funk@dcs.shef.ac.uk, k.bontcheva@dcs.shef.ac.uk

Abstract
We present the problem of categorizing web services according to a shallow ontology for presentation on a specialist portal,
using their WSDL and associated textual documents found by a crawler. We treat this as a text classification problem
and apply first information extraction (IE) techniques (voting using keywords weight according to their context), then
machine learning (ML), and finally a combined approach in which ML has priority over weighted keywords, but the latter
can still make up categorizations for services for which ML does not produce enough. We evaluate the techniques (using
data manually annotated through the portal, which we also use as the training data for ML) according to standard IE
measures for flat categorization as well as the Balanced Distance Metric (more suitable for ontological classification) and
compare them with related work in web service categorization. The ML and combined categorization results are good and
the system is designed to take users’ contributions through the portal’s Web 2.0 features as additional training data.

1. Introduction
The web is no longer just a set of documents; services
now feature prominently, and both research and indus-
try devote considerable effort and interest to service-
oriented architecture (SOA), web services, and related
technologies. In a web of services or a service-oriented-
architecture, discovery is an essential task for building
and using applications. Unfortunately the widely used
service description techniques only cover the syntactic
level. Previous research projects showed that semantic
descriptions (such as OWL-S, WSMO, and SAWSDL)
can enable precise service discovery, but they are not
widely deployed (Della Valle et al., 2008).
The main existing solution for service discovery is
UDDI (Universal Description, Discovery and Integra-
tion1), a standard for programmatically publishing and
retrieving structured information about web services.
Some companies operate public UDDI repositories, but
its success has not been widespread because of compli-
cated registration, missing monitoring facilities, and
other difficulties. A few portals have been designed
to act as web service repositories, but they all rely on
manual registration and review, so coverage is limited
and information falls out of date easily. Furthermore,
the standard web search engines do not provide effec-
tive ways to search for services or to allow filtering
according to availability and service parameters.
The Service-Finder project aims to address this prob-
lem for a wider audience by offering a comprehensive
framework for service discovery through a portal2, so
we must address the problem of creating semantic de-
scriptions of Web Services. The TAO project3 dealt

1http://www.oasis-open.org/committees/
uddi-spec/doc/tcspecs.htm

2http://demo.service-finder.eu/
3http://www.tao-project.eu/

with semi-automatic creation of semantic service de-
scriptions, but focused on legacy applications and re-
lied on the existence of substantial software documen-
tation. Service-Finder offers automatic creation of ser-
vice descriptions for a wide range of publicly avail-
able services and enables service consumers (not just
providers) to collaboratively enrich the semantic de-
scriptions according to Web 2.0 principles.

2. The research problem

The information flow in Service-Finder is structured as
follows. The Service Crawler (SC) carries out focused
crawling for web services and archives WSDL files
and related HTML files, then passes batches of these
data to the Automatic Annotator (AA), which pro-
cesses them using information extraction techniques to
produce semantic annotations for the Conceptual In-
dexer and Matcher (CIM). The CIM acts as a semantic
repository and back end for the Service-Finder Por-
tal (SFP)—it answers the latter’s queries and records
users’ annotations in the repository along with the
automatic annotations. The Clustering Engine (CE)
also provides recommendations by clustering users
and services based on the users’ behaviour and inter-
ests (Brockmans et al., 2009; Della Valle et al., 2008).

This paper focuses on a specific problem in Service-
Finder: automatically categorizing web services so
that portal users can find them effectively. Although
users can improve the category annotations, the aim is
to provide reasonably good ones to start with so users
will find the portal useful and contribute—so they do
not have to face 23 000 uncategorized services with
only keyword searching.



Input from SC to AA
Number of .arc.gz files 5
Total compressed size 441 MB
Number of documents 250 k
Preprocessing
Suppressed HTTP status 49k

unwanted provider IDs 5k
empty documents 3k
duplicates reduced 23k

Preprocessing results
Documents HTML 37k

WSDL 110k
abstract 25k

total (31% reduction) 173k
Output from AA to CIM
Number of RDF-XML files 30
Total compressed size 40 MB
Number of RDF triples 4.5 M
Number of Providers 8700
Number of Services 25 000

Table 1: Typical AA input, preprocessing, and output

2.1. Data
A batch of AA input from the SC consists of several
files in the Heritrix4 Internet Archive format; Table 1
summarizes one of the last batches processed. The SC
also provides an index which associates each document
with one service identifier. (The services and providers
are identified by URIs, and a service’s URI can be eas-
ily converted to the relevant provider’s URI.)
The AA’s task is to extract information (such as con-
tact addresses), classify documents and services, and
semantically annotate the services, providers, and in-
teresting documents, using tools built on the GATE
(Cunningham et al., 2002) infrastructure. This paper
presents work on the service categorization task.
Table 1 also shows the results of preprocessing the
archive files to produce datastores of GATE docu-
ments (relating to about 8 000 providers and 23 000
services). The preprocessor merges exact duplicate
documents5, suppresses WSDL documents that the
XML parser rejects, and suppresses documents whose
provider URIs indicate that the services are not usable
from the crawled WSDL files because they contain in-
valid endpoints (they have been incorrectly generated
or the endpoints have been deliberately edited out of
the publicly available versions).
The AA uses the WSDL documents to generate in-
stances of Endpoint, Interface, and Operation, and to
instantiate relations between them and the Service in-
stances, but carries out very little textual information

4http://crawler.archive.org/
5Each provider is associated with one or more services.

Each input document is associated by the SC with one ser-
vice, but merged documents that refer to different services
(of the same provider) are associated with all of them. Each
abstract relates to only one service.

extraction (IE) on them. The abstracts are compiled
by the SC from various textual elements and attributes
in the WSDL files (service name, documentation, op-
eration names, input and output parameters, etc.).
The SC generates one abstract for each service URI,
choosing the best WSDL file associated with the ser-
vice (typically the shortest WSDL URL containing the
provider name). The AA carries out textual IE on the
abstracts as well as the HTML files.

2.2. The categorization task
The category ontology used in the project contains
59 subclasses of Category arranged in a shallow tree
(with some multiple inheritance) under seven main
branches, as shown in Figure 1. Each service can be
annotated with more than one category, as shown in
Figure fig:categories. (See (Della Valle et al., 2008;
Brockmans et al., 2008) for further details of the on-
tology design.)
Since we originally had no manually annotated data to
use for training but needed to generate category anno-
tations quickly for the first release of the portal, we de-
vised a weighted voting system based on keywords; this
was relatively easy to integrate with the AA pipeline
which was already being developed to apply gazetteers
and rules to the documents for other purposes. §3.1
explains this approach in more detail and presents the
evaluation results.
After the first release of the portal, members of the
project manually annotated 224 services through the
portal to produce 387 category annotations (using 45
of the service categories), which we exported to use for
evaluation of the keyword-based system and as train-
ing data for machine learning (ML). At that point, we
did not have enough annotations from outside users
to make a significant contribution, but in the future,
their annotations will also be exported and used in the
same way. §3.2 explains and evaluates the ML tech-
niques used.

3. Methodology
3.1. Keywords, rules, and multipliers
For our first approach to categorization, we devised an
ad hoc gazetteer of keywords and phrases associated
with service categories (the category names, parts of
the multiword names, morphological variations (such
as plurals), synonyms, and related words obtained by
examining the documents); Table 2 shows examples for
three of the categories. This gazetteer processor was
configured to be case-insensitive but to match whole
words only (for example, Address would match part of
address list but nothing in headdress).
Because some place where keywords can appear are
more significant than others, JAPE rules6 later in the
pipeline create special annotations over the gazetteer

6JAPE processors in GATE compile rules that specify
regular expressions of annotations and create additional
annotations, manipulate features, and execute Java code
when matches are detected. (Cunningham et al., 2000)



Category
Business

Accounting
Communications

Email
Fax
Instant Messaging
SMS

eCommerce
Payment

Finance
Currency
Securities
Stock

Logistics
Shipping

Marketing
Customer
Relationship
Management

Misc
Government
Identity Verification
Jobs
Real Estate

Category
Content

Address Information
Demographic
Finance

Currency
Securities
Stock

Internet Search
Maps and Geography
Multimedia

Image
Media Management
Music
Video

News
Product Information
Regional Information
Weather

Value Manipulation
Converters
Date and Time
Spelling and Grammar

Translation
Validation
Value Generators

Category
Consumer

Auction
Bookmarking
Communications

Email
Fax
Instant Messaging
SMS

Lending
Shopping
Travel

Science
Genetics
Mathematics

Utilities
Analysis
File and Storage
Interoperability
Tests
Measurements
Monitoring
Survey

Figure 1: Service categories ontology

Genetics
Genetics
genetic
bioinformatic
bioinformatics
arabidopsis
protein
proteins
RNA
DNA
MeSH

News
News
current events
Address Information
Address Information
Address
Addresses
Addressing
postcode
zip code
phone
telephone

Table 2: Examples of keywords from the gazetteer for
three categories

matches, each of which has a multiplier m which starts
at 1 and is increased according to the following rules:
• +3 if the match is in an HTML <title>, <h1>,

<h2>, <h3>, or <h4> element;

• +2 if the match is in a <p> element that contains
a significant number of interesting keywords (from
various gazetteers in the application);

• +2 if the document has an interesting value7

2.0≤i;

7The IE pipeline adjusts each document’s interesting
feature, initially 0, between 0 and 3 according to the infor-
mation it finds.

• +1 if the document has an interesting value
1.0≤i<2.0.

Each category keyword match in a document is later
treated asm (the multiplier) votes for the relevant cat-
egory for each service associated with the document.
These votes are compiled for every service, which is
labelled with the two highest-scoring categories. (This
arbitrary limit was agreed within the project.)
We used the manually annotated data described in §2.2
to evaluate the AA’s categorization of those services.
Table 3 shows the traditional IE measures8 for the
three major datasets (which we call Crawls 1, 2, and 3)
that have been processed through Service-Finder, as
well as the Balanced Distance Metric (BDM) (May-
nard et al., 2006) for the latest one. The traditional
measures count each categorization as wrong if it is not
an exact match, even if the key (manual) and response
(automatic) categories are close in the ontology tree.
BDM scoring, however, counts 1 for an exact match
but gives partial credit for getting a superclass or sub-
class of the key, as well as for hitting another node on
the same branch of the class tree. It counts a response
as 0 only if its lowest superclass in common with the
key is the top class. These augmented precision, recall,
and F1 measures are more suitable for ontology-based
classification (Maynard et al., 2008).
The BDM scores for Crawl 3 are noticeably higher
than the traditional ones; this indicates that the sys-
tem is categorizing quite a few services with “nearly

8Precision, recall, and F1 (Manning and Schütze, 1999).



Crawl traditional % BDM %
P R F1 AP AR AF1

1 35.8 16.3 22.4
2 39.3 12.4 18.9
3 20.0 31.6 24.5 38.4 40.3 39.3

Table 3: Evaluation of keyword-based service categorization (limited to two categories per service)

Type Language %
Abstracts English 24 181 99.3

Spanish 35 0.1
Romanian 29 0.1
Czech 20 0.1
other 94 0.4

HTMLs English 36 248 87.0
unclassifiable 3 959 9.5
German 426 1.0
Spanish 131 0.3
French 99 0.2
other 825 2.0

Table 4: Summary of language identification results

correct” classes from the category ontology. These re-
sults are still not very good, however. After Crawl 2,
we improved recall by adding more keywords to the
gazetteers, but this made precision deteriorate signifi-
cantly. We had suspected that the documents in other
languages than English might pose a problem, but we
added an automatic language identification tool based
on character n-grams (Schutz, 2008) to count the num-
ber of abstracts and HTML documents by language, as
shown in Table 4 and concluded that adding transla-
tions to the gazetteers would not be fruitful. Instead,
we pursued experiments in service categorization based
on machine learning.

3.2. Machine learning
We treat this as a text classification problem and use
the Support Vector Machine (SVM) technique, which
is well documented for this purpose. (Joachims, 1998;
Li et al., 2004; Li et al., 2007) SVM text classifica-
tion is carried out using n-grams of features of sequen-
tial units of text (such as unmodified tokens, part-of-
speech tags, orthographic features, or lemmata), but
previous research indicates that increasing n from 1 to
2 slows down performance and rarely improves the re-
sults, and increasing n beyond 2 typically deteriorates
the results. (Li et al., 2004; Pang et al., 2002; Funk et
al., 2008)
One disadvantage of SVM ML is that it can learn and
apply only one class to each instance (document, in this
case), so we had to simplify the problem for services
with more than one manually annotated category by
using the lowest (most specific) class in the category
ontology (or making an arbitrary choice between two
equal categories). As we shall see later, however, it

is possible to generate more than one category for a
service with multiple documents.
We carried out several document classification experi-
ments on the manually annotated services using stan-
dard parameters for GATE’s SVM tool, with unigrams
of tokens9 as the instance attributes (i.e., treating each
document as a bag of words) and one service category
per document as the target class, one-against-others
classification, and a linear kernel. (See (Li et al., 2004;
Li et al., 2007) for the technical details of the parame-
ters.) All the ML experiments described here are eval-
uated with 4-fold cross-validation, which makes bet-
ter use of the available corpus. The first experiment
used 0.1 as the classification probability threshold, first
over 224 abstracts (one per service) and then over 1019
documents (including the abstracts). The first part of
Table 5 shows the traditional and BDM measures for
document classification.
We noted that the performance was much better for
both abstracts and HTML documents, and decided
to carry out further experiments using this combina-
tion. (Working with HTMLs only is not practical since
quite a few services have no HTMLs or only a few
small ones, whereas every service has an abstract with
some content.) Table 5 shows the results for document
classification with various values for the classification
threshold (the minimum probability required for the
SVM to assign a classification). One normally expects
increasing the threshold to increase precision and de-
crease recall, but the effect above 0.3 was quite se-
vere here, so we decided to continue with just the two
low threshold values. (We consider recall important
because it is beneficial to try to provide at least one
approximate category for every service on the portal;
otherwise users are less likely to find the service at all
and then improve the categorization.)
The evaluation results presented so far in this section
are scored per document, with one key and one re-
sponse category for each document, the key being the
single category selected from the manual annotations
(as explained above). But the ML tool can assign
different categories to documents related to the same
service, so we now consider letting each service’s doc-
uments vote (with equal weighting) to assign one or

9We used the standard ANNIE tokenizer for natural
language on the HTML documents and a source code tok-
enizer on the abstracts. The second one splits camel-cased
strings (e.g., getUnsplicedSequence → get Unspliced
Sequence) as well as tokens separated by whitespace and
inter-word punctuation.



Crawl Documents Threshold traditional % BDM %
P R F1 AP AR AF1

3 Abstracts 0.1 27.2 29.5 28.3 29.5 29.5 29.5
Abstracts & HTMLs 0.1 47.8 47.8 47.8 66.8 66.8 66.8

0.3 68.0 40.9 50.7 74.1 51.0 60.4
0.5 85.3 19.8 31.4 88.1 29.6 44.3
0.8 97.9 8.1 14.7 98.3 17.7 30.0

Table 5: ML trials: scoring one category per document

Crawl Documents Threshold Max. cat. traditional % BDM %
per service P R F1 AP AR AF1

3 A&H 0.1 1 54.3 49.8 52.0 74.7 51.7 61.1
0.1 2 35.0 52.6 42.0 50.0 55.7 52.7
0.3 1 58.1 52.8 55.3 79.1 55.0 64.9
0.3 2 49.8 53.5 51.6 68.8 56.5 62.0

Table 6: ML trials: scoring services based on voting from the documents

two categories to it.10 Table 6 presents the traditional
and BDM measures for service categories derived from
this process, for thresholds of 0.1 and 0.3 and for one
or two categories per service.
It is surprising to see the precision and F1 drop when
each service has two categories, but we can explain
this in two ways. First, many of the services had
only one manual annotation, so the second automatic
one counts as a spurious classification, even if it is
closely related: for example, several services were au-
tomatically labelled with Genetics and its direct su-
perclass Science, although the manual annotators only
marked them as Genetics—these services get a 50%
score. Since the ultimate purpose of this work is to help
users find services on the portal, however, we do not
consider this a significant fault. Second, some services
which had very few documents received only one auto-
matic category even when two categories were allowed
(because all the documents were labelled with the same
category); several such services automatically received
one correct category but lacked the second one—these
too get a 50% score.

3.3. Integrated approach
We then integrated the machine learning and keyword-
based categorization components in the AA pipeline
in such a way that ML categorizations always over-
rule keyword-based ones, but the latter can still be
used if necessary to make up to one or two categories
per service. (The ML categorization is turned into a
votable annotation on each document with a multiplier
m = 100, sufficient to outvote keywords’ annotations.)
This produced the results shown in Table 7. The mea-
sures are slightly lower but this approach gives wider
coverage of the services and categories (only 45 of the
59 categories were represented in the manually anno-
tated data used for training the ML component).

10If an HTML document can be associated with more
than one service, its categorization votes for each relevant
service.

4. Related work
As a result of the proliferation of web services and
growing interest in web service discovery, browsing,
composition, and related matters in recent years, sev-
eral approaches have been investigated in service clas-
sification.
Belhajjame & al. (Belhajjame et al., 2008) presented
an algorithm to automatically annotate web services
with information to support service discovery and com-
posability (in particular, to allow data-driven compo-
sition of workflows). This work achieved good results
for a very detailed type of annotation (concentrating
on the service and operation details) over a limited do-
main (bioinformatics), but does not really apply to our
broad coverage.
The Woogle web-service search engine included a clus-
tering system (Dong et al., 2004) based on parame-
ter names into meaningful groups to allow similarity
search. This work also achieved good results, although
it would not be applicable to the Service-Finder task,
which uses a priori categories. Woogle’s approach was
also dependent on UDDI repositories, which (as ex-
plained in §1) we cannot rely on.
The ASSAM (Automated Semantic Service Annota-
tion with Machine Learning) (Heß et al., 2004) tool
loads WSDL files along with previously created on-
tologies and provides a GUI for the user to annotate
the services, and learns from previous annotations in
order to show suggestions and make manual annota-
tion faster and easier. This system uses the authors’
work on web service annotation with machine learn-
ing (Hess and Kushmerick, 2003; Heß and Kushmer-
ick, 2004), which is related to our approach presented
here. That work used Naïve Bayes and SVM classifi-
cation on combinations of bags of words from UDDI
descriptions, WSDL files, and services’ input and out-
put messages to classify two sets of services according
to ontologies with 11 and 26 categories, respectively.
The authors obtained accuracy up to around 75%, and
noted that it is beneficial to offer users a choice from



Crawl Documents Max. cat. traditional % BDM %
per service P R F1 AP AR AF1

3 A&H 1 49.3 45.9 47.6 69.6 48.3 57.0
2 32.3 55.6 40.9 47.0 58.9 52.3

4 A&H 2 32.0 55.4 40.6 47.4 59.1 52.6

Table 7: Evaluation of combined service categorization by voting from the document classifications (ML always
overrules keywords; ML threshold = 0.1)

a small number of predicted categories (this is similar
to our point that “near miss” categories are still useful
for our portal users); their best result for this purpose
was to get the correct category in the top three pre-
dictions 82% of the time. It is also worth noting that
they obtained better results by training and applying
separate classifiers for the different types of input data.
Although our results in Tables 6 and 7 are not as high
as ASSAM’s best (Heß and Kushmerick, 2004) our
task is more difficult: our service ontology has twice as
many classes and a service can belong to any number
of them, although ML techniques only produce one la-
bel per instance. We currently deal with the second
problem by treating each document rather than each
service as an instance, and then collating the results
and putting an arbitrary limit on the number of cate-
gories per service.

5. Conclusion
We consider the results in Table 6 and 7 to be very
good for our purposes.
A useful result of these experiments for Service-Finder
and in general has been to show that it may not be
worthwhile to pursue incremental improvements in the
first classification approach (using keywords and rules),
since it was relatively easy to get significantly better
results for this task with machine learning. Further-
more, training from manual annotations—unlike the
first approach—can also take advantage of the portal’s
collaborative (Web 2.0) tools.
For future work in this type of classification task, we
would be interested in testing several improvements.
For the machine learning itself, experimenting with us-
ing separate classifiers for abstracts and HTML docu-
ments would be worthwhile, since using separate clas-
sifiers for different types of input texts significantly im-
proved ASSAM’s results (Hess and Kushmerick, 2003;
Heß and Kushmerick, 2004).) It would also be use-
ful to develop an ontologically aware voting system to
avoid assigning near-duplicate categories: for example,
if the top three voting results for a service are Finance,
Currency, and Logistics, eliminate Finance (a direct
superclass of Currency) and return only the other two,
which are on separate branches.

Acknowledgements
This research is partially supported by the European
Union’s Seventh Framework Program project Service-
Finder (FP7-215876).

6. References
Khalid Belhajjame, Suzanne M. Embury, Norman W.
Paton, Robert Stevens, and Carole A. Goble. 2008.
Automatic annotation of web services based on
workflow definitions. ACM Trans. Web, 2(2):1–34.

S. Brockmans, M. Erdmann, and W. Schoch. 2008.
Hybrid matchmaker and Service-Finder ontologies
(alpha release). Deliverable D4.2, Service-Finder
Consortium.

S. Brockmans, I. Celino, D. Cerizza, E. Della Valle,
M. Erdmann, A. Funk, H. Lausen, W.Schoch,
N. Steinmetz, and A. Turati. 2009. Service-Finder:
First steps toward the realization of web service dis-
covery at web scale. In Interoperability through Se-
mantic Data and Service Integration Workshop (IS-
DSI 2009) at SEBD, Genova, Italy, June.

H. Cunningham, D. Maynard, and V. Tablan. 2000.
JAPE: a Java Annotation Patterns Engine (Sec-
ond Edition). Research Memorandum CS–00–10,
Department of Computer Science, University of
Sheffield, November.

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A Framework and Graph-
ical Development Environment for Robust NLP
Tools and Applications. In Proceedings of the 40th
Anniversary Meeting of the Association for Compu-
tational Linguistics (ACL’02).

Emanuele Della Valle, Dario Cerizza, Irene Celino,
Andrea Turati, Holger Lausen, Nathalie Steinmetz,
Michael Erdmann, and Adam Funk. 2008. Realiz-
ing Service-Finder: Web service discovery at web
scale. In European Semantic Technology Conference
(ESTC), Vienna, September.

X. Dong, A. Halevy, J. Madhavan, E. Nemes, and
J. Zhang. 2004. Similarity search for web ser-
vices. In International Conference on Very Large
Databases (VLDB), Toronto.

A. Funk, Y. Li, H. Saggion, K. Bontcheva, and C. Lei-
bold. 2008. Opinion analysis for business intel-
ligence applications. In First international work-
shop on Ontology-Supported Business Intelligence
(at ISWC), Karlsruhe, October. ACM.

A. Hess and N. Kushmerick. 2003. Learning to attach
semantic metadata to web services. In Proceedings
of the Second International Semantic Web Confer-
ence (ISWC 2003), pages 258–273. Springer.

A. Heß and N. Kushmerick. 2004. Machine learn-
ing for annotating semantic web services. In



AAAI Spring Symposium on Semantic Web Services,
March.

A. Heß, E. Johnston, and N. Kushmerick. 2004.
ASSAM: A tool for semi-automatically annotat-
ing web services with semantic metadata. In In-
ternational Semantic Web Conference (ISWC), Hi-
roshima, November.

T. Joachims. 1998. Text categorization with support
vector machines: Learning with many relevant fea-
tures. In Claire Nédellec and Céline Rouveirol, edi-
tors, Proceedings of ECML-98, 10th European Con-
ference on Machine Learning, number 1398 in Lec-
ture Notes in Computer Science, pages 137–142,
Chemnitz, Germany. Springer Verlag, Heidelberg.

Y. Li, K. Bontcheva, and H. Cunningham. 2004. An
SVM Based Learning Algorithm for Information Ex-
traction. Machine Learning Workshop, Sheffield.
http://gate.ac.uk/sale/ml-ws04/mlw2004.pdf.

Y. Li, K. Bontcheva, and H. Cunningham. 2007. SVM
Based Learning System for F-term Patent Classifica-
tion. In Proceedings of the Sixth NTCIR Workshop
Meeting on Evaluation of Information Access Tech-
nologies: Information Retrieval, Question Answer-
ing and Cross-Lingual Information Access, pages
396–402, May.

Christopher D. Manning and Hinrich Schütze. 1999.
Evaluation measures. In Foundations of statistical
natural language processing, chapter 8.1, pages 267–
271. Cambridge, MA, MIT Press.

D. Maynard, W. Peters, and Y. Li. 2006. Metrics for
evaluation of ontology-based information extraction.
In WWW 2006 Workshop on Evaluation of Ontolo-
gies for the Web (EON), Edinburgh, Scotland.

Diana Maynard, Yaoyong Li, and Wim Peters. 2008.
NLP Techniques for Term Extraction and Ontology
Population. In P. Buitelaar and P. Cimiano, edi-
tors, Bridging the Gap between Text and Knowledge
- Selected Contributions to Ontology Learning and
Population from Text. IOS Press.

B. Pang, L. Lee, and S. Vaithyanathan. 2002. Thumbs
up? Sentiment Classification Using Machine Learn-
ing Techniques. In Proceedings of the 2002 Confer-
ence on EMNLP, pages 79–86.

Alex Schutz. 2008. XtraK4Me: Extraction of
keyphrases for metadata creation. GATE plug-in
software, Semantic Information Systems and Lan-
guage Engineering Group (SmILE), DERI, Galway,
Ireland, August.


